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Abstract

We propose a new algorithm for partial redundancy elimination based on the new concepts of safe
partial availability and safe partial anticipability. These new concepts are derived by the integration of
the notion of safety into the definitions of partial availability and partial anticipability. The algorithm
works on flow graphs whose nodes are basic blocks. It is both computationally and lifetime optimal and
requires four unidirectional analyzes. The most important feature of the algorithm is its simplicity; the
algorithm evolves naturally from the new concept of safe partial availability.

Key Words: Computational optimality, data-flow analysis, flow graphs, life-time optimality, partial
redundancy elimination.

1 Introduction

A computation which is performed twice in a certain path in the program is said to be partially
redundant. Partial redundancy elimination involves the insertion and deletion of computations
in the program in such a way that after the transformation the program contains no more - in
general, fewer - occurrences of such computations. In order to preserve the semantics of the
original program, the insertions of computations corresponding to the transformation must be
safe, i.e., it must not introduce computations of new values on any path in the program.

Morel and Renvoise showed that global common subexpression elimination and loop invari-
ant code motion are special cases of partial redundancy elimination [12]. They viewed partial
redundancy elimination as a program flow analysis problem in which the points of insertion and
deletion of computations are determined by solving data-flow equations. The technique is based
on a purely Boolean approach and hence permits simultaneous treatment of all expressions of
a program using bit-vectors. The algorithm does not require detailed control flow analysis.

Morel and Renvoise’s algorithm does not eliminate all partial redundancies that exist in
a program. Taking the issue of safety into account Dhamdhere provided a solution which
eliminated all partial redundancies, using the concept of edge placement [4, 5]. The solution
given by Morel and Renvoise also has the problem of redundant code motion - code movement
without any execution time gains. This problem was addressed in several papers [2, 4, 5], which
reduced but could not entirely prevent redundant code motion.

The algorithm given by Morel and Renvoise involves bidirectional data-flow analysis. Bidi-
rectional analyzes are, in general, conceptually and computationally more complex than unidi-
rectional ones [5, 6, 7]. It was shown that the transformation can also be solved as a unidirec-
tional problem [3, 4, 8].



All the above solutions for partial redundancy elimination have one or more of the problems
of redundant code motion, unremoved redundancies, or limited applicability due to reducibility
restriction of the flow graph. Knoop, Riithing, and Steffen proposed a computationally optimal
algorithm, composed of unidirectional analyzes, for structurally unrestricted flow graphs, with
no redundant code motion [10]. A variant of this algorithm was given by Dreshler and Stadel
in [9]. Knoop et.al., later presented an algorithm [11] which works on flow graphs whose nodes
are basic blocks as against nodes with single statements in their earlier work [10].

Here, we propose a new algorithm for partial redundancy elimination. A preliminary version
of this algorithm, with each node of the control flow graph as single statement, can be found in
our earlier work [13]. The algorithm is based on the new concepts of safe partial availability and
safe partial anticipability, concepts derived by the integration of the notion of safety into the
definitions of partial availability and partial anticipability. As the concept of partial redundancy
is based on partial availability, we have the concept of safe partial redundancy based on safe
partial availability. Using safe partial redundancy we have the following points as the basis for
the algorithm:

e Every safe partially redundant computation offers scope for redundancy elimination.

e Any safe partially redundant computation at a point can be made totally redundant by
insertion of new computations at proper points, without changing the semantics of the
program.

e Computation of any expression that is totally redundant can be replaced by a copy rule.
With the above points as basis, we can make the following conclusion:

e After the transformation, no expression is recomputed at a point if its value is available
from previous computations.

The algorithm requires four unidirectional data-flow analyzes for the computation of avail-
ability, anticipability, safe partial availability, and safe partial anticipability. It is computation-
ally and lifetime optimal; after the transformation, the number of chosen computations on each
path is the minimum and the live ranges of the new temporaries introduced are also the min-
imum. The algorithm is practical as it works on flow graphs whose nodes are basic blocks. In
comparison with its predecessor [11], our algorithm does not require the edge splitting transfor-
mation to be done before its application - edge splitting is done only at places where insertion
of computation is necessary. The most important feature of the algorithm is its conceptual
simplicity.

2 The Basic Concept

Here, we give an informal description of the basic idea behind our algorithm. We say an
expression is available at a point if it has been computed along all paths reaching this point
with no changes to its operands since the computation. An expression is said to be anticipable
at a point if every path from this point has a computation of that expression with no changes
to its operands in between. We say a point is safe for an expression if it is either available or
anticipable at that point. Partial availability and partial anticipability are weaker properties
with the requirement of a computation along “at least one path” as against “all paths” in the
case of availability and anticipability.

Safe partial availability(or anticipability) at a point differs from partial availability (or an-
ticipability) in that it requires all points on the path along which the computation is partially



available(or anticipable) to be safe. In the example given in Figure 1(a), partial availability of
the expression a 4+ b at the entry of node 4 is true but safe partial availability at that point
is false, because the entry and exit points of node 3 are not safe. In Figure 1(b), safe partial
availability at the entry of node 4 is true. We say a computation is safe partially redundant in
a node, if it is locally anticipable and is safe partially available at the entry of the node. In
Figure 1(b), the computation in node 4 is safe partially redundant.
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Figure 1: Safe partial availability

The algorithm assumes that all local redundancies are already eliminated by means of some
standard techniques for common subexpression elimination on basic blocks [1]. After the re-
moval of all local redundancies within a basic block i, we note that there exists at most one
computation before the first modification, which we call the first computation, denoted by
FIRST;, and at most one computation before the first modification starting from bottom,
which we call the last computation, denoted by LAST;. All other computations within the
basic block appear in between two modifications and hence are irrelevant for our algorithm.
We call the first and last computations as candidate computations - computations which are
relevant to the algorithm. Note that the first and last computations coincide when a single
computation in a basic block has no modification to its operands in the block.

The basis of the algorithm is to identify safe partially redundant computations and make
them totally redundant by the insertion of new computations at proper points. The totally
redundant computations after the insertions are then replaced. If a + b is the expression of
interest then by insertion we mean insertion of the computation h = a + b, where h is a new
variable; replacement means substitution of a computation, like z = a + b, by = = h.

Given a control flow graph we first compute availability and anticipability at the entry
and exit points of all nodes in the graph by two iterative analyzes. From availability and
anticipability we compute safety - a simple computation, not an iterative analysis - at all points.
After computing safety, we compute safe partial availability and safe partial anticipability at
the entry and exit points of all nodes, which require another two iterative analyzes. We then
mark all points which satisfy both safe partial availability and safe partial anticipability. Now,
consider the paths formed by connecting all the adjacent points which are marked. We observe
that the required points of insertion for the transformation are the ones just before the last
computation in nodes corresponding to the starting points of such paths and also the edges that
enter junction nodes on these paths. The computations to be replaced are the ones appearing
on these paths; for a path, only the last computation in the node corresponding to the starting
point and only the first computation in the node corresponding to the end point are considered
to be on the path.

Consider the example given in Figure 2(a). We have marked all points satisfying safe
partial availability and safe partial anticipability by small circles. Path < 1,3,4 > connects
all adjacent marked points. Based on the above observation, we see that the point just before



the last computation in node 1 and also edge (2, 3) are the points of insertion and the last
computation in node 1 and the first computation in node 4 are the computations to be replaced.
The graph after the transformation is shown in Figure 2(b).

2
h
e

/
]

-
=
nonon
o
+
o

—atb y
4
4 =g b

h
d
@ (b)

Figure 2: Partial redundancy elimination (a) Before transformation (b) After transformation

3 Notations and Definitions

3.1 Flow Graph

We represent a program as a directed flow graph G = (N, E,s,e), where N is the set of
nodes of the flow graph, E the set of edges of the flow graph, s the unique entry node with
no predecessors, and e the unique exit node without any successors. Nodes n € N represent
basic blocks consisting of a linear sequence of three-address statements. Arithmetic statements
are of the form v := expr, where v is a variable and expr is a simple expression, like a + b,
built of variables, constants, and operators, having at most one operator. Both nodes s and
e are assumed to be empty. Edges (i,j) € E represent the control flow from node i to node
j in the flow graph. Every node n € N is assumed to lie on a path from s to e. The sets
succ(n) = {ml|(n,m) € E} and pred(n) = {m|(m,n) € E} denote the set of all immediate
successors and immediate predecessors, respectively, of node n. A finite path of G is a sequence
< ny,...,ng > of nodes such that n;;1 € succ(n;) for all 1 < i < k. A path from node i to
node j is denoted by p[i, j]. If i or j is excluded from the path we will write it as pli, j] or p[i, j,
respectively. The set of all finite paths of G leading from a node 7 to a node j is denoted by
Pli, j].

3.2 Boolean Properties

We use the same terminology used by Morel and Renvoise [12]. For each expression and each
node Boolean properties are defined. Some of these properties depend only on the statement in
the node and are termed local. Other properties which depend on statements beyond a node
are termed global. We define the Boolean properties and develop our algorithm for an arbitrary
and fixed expression, since a global algorithm dealing with all expressions simultaneously is the
independent combination of all of them, which can be realized using bit-vectors.

3.2.1 Local Properties

We associate the local properties, transparency, availability, and anticipability with a node. An
expression is said to be transparent in a node ¢, denoted by TRAN S P;, if its operands are not
modified by the execution of the statements in node i. We say an expression is locally available



in a node 7, and denote it by COM P;, if there is at least one computation of the expression in
the node and if the statements appearing in the node including and after the last computation
of the expression do not modify its operands. An expression is said to be locally anticipable in
a node i, denoted by ANTLOC;, if there is at least one computation of the expression in the
node and if the statements appearing in the node before the first computation of the expression
do not modify its operands.

3.2.2 Global Properties

The global properties, availability, anticipability, safe partial availability, and safe partial an-
ticipability are of interest to us and we use AVIN;, ANTIN;, SPAVIN;, and SPANTIN;
to denote these properties (respectively), of an expression at the entry of node i. Similarly,
AVOUT;, ANTOUT;, SPAVOUT;, and SPANTOUT; are used to denote the same properties
at the exit of node .

We use SAFEIN; and SAFEOQOUT; to denote the fact that it is safe to insert a computation
at the entry and exit, respectively, of node i. We say a path p[m,n], from point m to point
n in the flow graph, is safe if every point on the path is safe and denote it by SAFEy, ..
Also, we say a path pli, j|, where ¢ and j are nodes, is transparent if every node on the path is
transparent and denote it by TRANSP; ;1.

The relation between global and local properties for all nodes of the graph are expressed in
terms of systems of Boolean equations. Boolean conjunctions are denoted by . and [], disjunc-
tions by + and ), and Boolean negation by —.

Availability. An expression is said to be available at a point p if every path from the en-
try node s to p contains a computation of that expression, and after the last such computation
prior to reaching p there are no modifications to its operands.

An expression is available at the entry of a node if it is available on exit from each predecessor
of the node. An expression is available at the exit of a node if it is locally available or if it is
available at the entry of the node and transparent in this node, i.e.,

FALSE ifi=s
AVIN,; = { [Liepreasy AVOUT;  otherwise

AVOUT; = COMP;+ AVIN; TRANSP;

Anticipability. An expression is said to be anticipable at a point p if every path from p to the
exit node e contains a computation of that expression, and after p prior to reaching the first
such computation there are no modifications to its operands.

An expression is anticipable at the exit of a node if it is anticipable at the entry of each
successor of the node. An expression is anticipable at the entry of a node if it is locally
anticipable or it is anticipable at the exit of the node and transparent in this node, i.e.,

ANTOUT. — {FALSE ifi=e

[1jcsuceiiy ANTIN; otherwise

ANTIN; = ANTLOC; + ANTOUT, TRANSP;

Safety. A point p is considered to be safe for an expression if the insertion of a computation
of that expression at p does not introduce a new value on any path through p. Alternatively,
a point p is safe if the expression is either available or anticipable at that point. The points of



interest to us are the entry and exit of nodes, i.e.,

SAFFEIN; = AVIN;+ ANTIN;
SAFEOUT;, = AVOUT,+ ANTOUT;

Safe Partial Availability. We say an expression is safe partially available at a point n, if
there is at least one path from the entry node s to n which contains a computation of that
expression, and after the last such computation on this path prior to reaching n, say at node
m, there are no modifications to its operands, the path from the exit of node m to n being safe.

An expression is safe partially available at the entry of a node if the entry point of the node
is safe and the expression is safe partially available on exit from at least one predecessor of the
node. An expression is safe partially available at the exit of a node if the exit point of the node
is safe and the expression is locally available or is safe partially available at the entry of the
node and transparent in this node.

FALSE ifi =s or ~SAFFEIN;

SPAVIN,; = { > jepred(i) SPAVOUT; otherwise

FALSE it ~SAFFEOUT;

SPAVOUT; = {COMPiJrSPAVINi.TRANSPi otherwise

Safe Partial Anticipability. We say an expression is safe partially anticipable at a point m,
if there is at least one path from m to the exit node e which contains a computation of that
expression, and after m prior to reaching the first such computation on this path, say at node
n, there are no modifications of its operands, the path from m to the entry of node n being
safe.

An expression is safe partially anticipable at the exit of a node if the exit point of the node
is safe and the expression is safe partially anticipable at the entry of at least one successor of
the node. An expression is safe partially anticipable at the entry of a node if the entry point of
the node is safe and the expression is locally anticipable or is safe partially anticipable at the
exit of the node and transparent in this node.

FALSE ifi =eor ~SAFEOUT,;

SPANTOUT; = {ngsucc(i)SPANTINj otherwise

FALSE if -SAFFEIN;

SPANTIN; = {ANTLoCi-I-SPANTOUCZ}.TRANSPi otherwise

Such systems of Boolean equations are usually solved using an iterative process, which can
yield several solutions depending upon the initialization of the unknowns. For the Boolean
systems above, the required solution is the largest one for the system involving the conjunction
operator [ and the initialization value is TRUE for all the unknowns in this case. For the
systems involving the disjunction operator > the required solution is the smallest one and the
initialization value is FALSE for all unknowns.

Safe Partial Redundancy. There are only two computations relevant to the algorithm in
a basic block ¢ - FIRST; and LAST;. In a node 4, the computation FIRST; - which im-
plies ANTLOC; - is said to be safe partially redundant, denoted by SPREDUND;,, if the
computation is also safe partially available at the entry of the node, i.e.,

ifs

SPREDUND;, = ANTLOC;.SPAVIN;



Note that the computation LAST; in a node 7, when it is distinct from FIRST;, cannot be
safe partially redundant.

Total Redundancy. In a node ¢, the computation FIRST; - which implies ANTLOC; -
is said to be totally redundant - or simply, redundant - denoted by REDUN D;, if the com-
putation is also available at the entry of the node, i.e.,

ifs

REDUND;, = ANTLOC;.AVIN;

The computation LAST; in a node ¢ is said to be redundant, denoted by REDUN D;,, if
the computation is available at a point, say p, just before it, i.e.,

REDUND;, = COM P;.AV,, where p is the point just before LAST;.

Note that AV), denotes availability at a point p. Similarly, we denote anticipability at a
point p as ANT,.
Isolatedness. A computation is said to be isolated if it is neither safe partially available nor
safe partially anticipable at that point. We denote the isolatedness of FIRST; and LAST;, in
a node i, by ISOLATED;, and ISOLATED;,, respectively, i.e.,

ISOLATED;, = ANTLOC;.~SPAVIN; ~(TRANSP,.SPANTOUT;)
ISOLATED;, = COMP,;~SPANTOUT; ~(TRANSP;.SPAVIN;)

4 The Algorithm

The algorithm introduces new computations of the expression at points of the program chosen
in such a way that the safe partially redundant computations become totally redundant. As in
[11], our algorithm introduces a new auxiliary variable h for the expression concerned, inserts
assignments of the form A := expr at some program points, and replaces some of the candidate
computations of the expression by h, to achieve the transformation. These points of insertions
and replacements are computed by the algorithm.

We observe that for an optimal solution the points of insertion must be either just before
the last computation in a basic block or on an edge in the flow graph, which are denoted
by INSERT; and INSERT|; ;), respectively. There are two candidates for replacement in a
basic block - the first and the last computations - and we denote the replacements of them by
REPLACE;, and REPLACE;, respectively.

The steps of the algorithm are as follows:

1. Compute AVIN/AVOUT and ANTIN/ANTOUT for all nodes.
Compute SAFEIN/SAFEOUT for all nodes.
Compute SPAVIN/SPAVOUT and SPANTIN/SPANTOUT for all nodes.

Ll A

Compute points of insertion and replacement INSERT;, INSERT(; j), REPLACE;
and REPLACE;,.

f

The points of insertions and replacements are computed using the following equations:

INSERT, = COMP,.SPANTOUT;.(~<TRANSP; + ~SPAVIN;)

INSERT; ;) = —SPAVOUT,.SPAVIN;.SPANTIN;
REPLACE;; = ANTLOC;.(SPAVIN; + TRANSP,.SPANTOUT,)
REPLACE;, = COMP,.(SPANTOUT; + TRANSP;.SPAVIN;)
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The algorithm requires four unidirectional analyzes for the computation of availability, an-
ticipability, safe partial availability, and safe partial anticipability. It does not require the edge
splitting transformation before the application of the algorithm as in [11]. Edge splittings are
done only at places where it is necessary. The algorithm is computationally and lifetime optimal.

5 Correctness and Optimality of the Algorithm

In this section, we give the proofs for the correctness, computational optimality, and lifetime
optimality of the algorithm.

5.1 Correctness

Here, we prove that the algorithm performs partial redundancy elimination correctly.

Lemma 1 All insertions of computations corresponding to the transformation are done at safe
points.

Proof: For a point p, we have, SAFE, = AV, + ANT,. We consider an edge as a point of
insertion and denote the safety on edge (i,7) by SAFE(; j). Similarly, anticipability on edge
(4,7) is denoted by ANT(; ;.

Let us consider the two cases of insertions:

Case(i): INSERT;.

INSERT; inserts the computation at a point, say p, just before LAST;. We show that point p
is safe.

INSERT; = COMP,. SPANTOUT;.(-TRANSPi+ ~SPAVINi)
= COMP;
= ANT, [The computation corresponding to COMP; is LAST;.]

4

SAFE, [SAFE,= AV, + ANT,]

Case(ii): INSERT( ;.
INSERT; ;) inserts the computation on edge (i, ), which is also shown to be safe.

INSERT; ;) = -SPAVOUT,.SPAVIN;.SPANTIN;
= -SPAVOUT;.SPAVIN;
= -AVIN;.SPAVIN; [-SPAVOUT; = -AVIN;]
= -AVIN;.SAFEIN;. PAVIN; [SPAVIN; = SAFFEIN;.PAVIN;]
= —AVIN;.SAFEIN;
= ANTIN; [SAFEIN;= AVIN;+ ANTIN;]
= ANT( ;)
= SAFE

That is, all insertions of computations corresponding to the transformation are done at safe
points. [ |

Lemma 2 All candidate computations which are safe partially redundant become totally redun-
dant after insertions corresponding to the transformation.



Proof: We have to show that SPREDUND;, = REDUND
to the transformation.
From the definition of safe partial availability, we have,

is, after insertions corresponding

SPAVIN;
where, s is the entry node and P[s,i] is the set of all paths from node s to node i.
In order to select the earliest node m(from entry node s) on the path satisfying the required
condition, we may write,
SPAVIN;
= dp:p€Pls,i]:[Fm:meNAméep: (COMP,,.(-TRANSP,, + ~SPAVIN,,)
TRANSP, ;- SAFEour,, . 1n;)]

Considering all paths from s to 4, we may write,

SPAVIN;
= Vp:p€Pls,i]:[Fm:meNAmep: (COMP,,.(-TRANSP,, + ~SPAVIN,,)
TRANSB, i1.SAF Eiour,, iny)
+ (@m,n: (m,n) € EA(m,n) €p: ((nSPAVOUT,,.SPAVIN,)
.TRANSP[n,i[.SAFE[INm]Ni]))]
Refer to Fig.2(a) to see the two possibilities mentioned above, for any path.
Now, we have,
SPRE'DUNDif = ANTLOC;.SPAVIN;
= Vp:p€P[s,i]:[Fm:meNAmep: (COMP,,.(-TRANSP,, + ~SPAVIN,,)
TRANSPy, ;- SAF Eiour,, 1N, ANTLOC))
+ (3m,n: (m,n) € EA(m,n) € p: (nSPAVOUT,,.SPAVIN,,)
TRANSP,, 1.SAFEyy, 1n) ANTLOG)))]
= Vp:p€ePls,i]:[(Fm:meNAmep: (COMP,,.(-TRANSP,, + -SPAVIN,,)
SPANTOUT,,))
+ (Im,n: (m,n) € EA(m,n) €p: (-SPAVOUT,,.SPAVIN,,
SPANTIN,))]
[From, ANTLOC; TRANSP,, ;.SAF E oy, 1x] = SPANTOUT,,
and ANTLOC; TRANSP,, ;.SAFEy, ;v = SPANTIN,)]

Rearranging the terms we get,

SPREDUND;,
= Vp:p€ePlsil:[Fm:meNAmep: (COMP,,.SPANTOUT,,
(~TRANSP,, + ~SPAVIN,,)))
+ (3m,n: (m,n) € EA(m,n) € p: (=SPAVOUT,,.SPAVIN,
SPANTIN,))]
= Vp:p€P[s,i]:[(Im:me NAmep: INSERT,)
+(3m,n: (m,n) € EA(m,n) € p: INSERT 1, ))]
[From, INSERT,, = COMP,,.SPANTOUT,,.(<-TRANSP,, + ~SPAVIN,,)
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and INSERT(y, ) = ~SPAVOUT,,.SPAVIN,.SPANTIN,]
= AVIN;, after insertions (INSERTy, or INSERT(y,)), on all paths.
= REDUND;,, [ANTLOC;.AVIN; = REDUNDif]

That is, all safe partially redundant computations in the original program become totally re-
dundant after insertions corresponding to the transformation. |

Lemma 3 Only those candidate computations which would be redundant after insertions cor-
responding to the transformation are replaced.

Proof: We have to show that after insertions corresponding to the transformation

REPLACE;, = REDUND;,, and
REPLACE;, = REDUND;

First, let us show that REPLACE;, == REDUN D;,. We have,

REPLACE;, = COMP;.(SPANTOUT; +TRANSP;,.SPAVIN;)
COMP;.SPANTOUT; + COMP;, TRANSP;.SPAVIN;

Let us consider it as two separate cases:
Case(i) : REPLACE; = COMP,.SPANTOUT,;

REPLACE;, = COMP,.SPANTOUT;
= COMP;.SPANTOUT;.(SPAVIN, + ~SPAVIN,),
where p is the point just before LAST;.
= COMP,.SPANTOUT;.SPAVIN,
+COMP;,.SPANTOUT;.~SPAVIN,

Let us consider the above equation also as two separate cases:
Case(i)a : REPLACE; = COMP;.SPANTOUT;.SPAVIN,

REPLACE; = COMP,.SPANTOUT,.SPAVIN,

COMP,.SPAVIN,

COMP;.SPAVIN, TRANSP; [COMP;.SPAVIN, = TRANSP,)
ANTLOC;.SPAVIN;

[COMP;, TRANSP; = ANTLOC;;

SPAVIN, TRANSP; = SPAVIN;]

= SPREDUND;, [SPREDUND;, = ANTLOC;.SPAVIN;]

= REDUND;, [From Lemma 2]

= REDUND,; [COMP,TRANSP; = FIRST; = LAST)

R

Case(i)b : REPLACE;, = COMP,.SPANTOUT;.~SPAVIN,

REPLACE;, = COMP,.SPANTOUT;.~SPAVIN,
INSERT; [From the definition of INSERT;]

=
= REDUND; [COMP; INSERT; = REDUNDZ-Z]
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Case(ii) : REPLACE; = COMP, TRANSP,.SPAVIN,;

REPLACE;, = COMP, TRANSP;.SPAVIN;
= ANTLOC;.SPAVIN; [COMP,. TRANSP; = ANTLOC;]
= SPREDUND;, [SPRE'DUNDif = ANTLOC;.SPAVIN;]
= REDUND;, [From Lemma 2]

= REDUND,;, [COMP,TRANSP; = FIRST; = LAST)

Now, let us show that REPLACE;, = REDUND
transformation. We have,

i;, after insertions corresponding to the
REPLACE;; = ANTLOC;.(SPAVIN; + TRANSP,.SPANTOUT,)
= ANTLOC;. SPAVIN; + ANTLOCi. TRANSP, SPANTOUT;

Let us consider it as two separate cases
Case(i) : REPLACE; = ANTLOC;.SPAVIN;

REPLACE;, = ANTLOC;.SPAVIN;
= SPREDUND,;, [SPREDUND;, = ANTLOC;.SPAVIN;]
= REDUND;, [From Lemma 2]

Case(ii) : REPLACE;, = ANTLOC; TRANSP,.SPANTOUT,

REPLACE;, = ANTLOC,TRANSP,.SPANTOUT;,
= COMP;.SPANTOUT; [ANTLOC; TRANSP; = COMP}]
= REDUND;, [From Case(i) of REPLACE;, above]
= REDUND;, [ANTLOC;TRANSP; = FIRST, = LAST)]

We have shown that all candidate computations which are replaced are the ones which become
redundant after insertions corresponding to the transformation. |

Lemma 4 After the transformation no path contains more computations of an expression than
it contained before.

Proof: We have to show that there is at least one replacement corresponding to each insertion
on a path.
Let us consider the two cases of insertions:
Case(i) : INSERT;
INSERT; = COMP,.SPANTOUT;.(-TRANSP; + -SPAVIN;)
= COMP,.SPANTOUT;
= REPLACE;, [From the definition of REPLACE;]
i.e., Any path involving node 4, corresponding to INSERT;, has at least one replacement,
REPLACE;,.
Case(ii) : INSERT( ;)
INSERT; ;) = -SPAVOUT;.SPAVIN;.SPANTIN;
= ANTIN; [From Case(ii), Lemma 1]
= Vp:pe€ P[], 8] : (E”{,‘ : SAFE[]Nj’]Nk].TRANSPU’k[.ANTLOCk)

where, e is the exit node.
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= Vp:pe Plj,e: (3k: ANTLOC,.SPAVINy)
[SAFEyy, 1ny TRANSP, 4 .SPAVIN; = SPAVIN]

= Vp:p€ Plj,e]: (Fk: REPLACE,)
[ANTLOC,.SPAVIN, = REPLACE,)

i.e., Any path involving edge (i, j), corresponding to INSERT]; j), has at least one replacement,

REPLACE,.
From case(i) and case(ii), we conclude that any insertion on a path implies at least one replace-
ment on the same path. [ |

Theorem 1 The algorithm performs partial redundancy elimination correctly.

Proof: By Lemmas 1, 2, 3, and 4. | |

5.2 Computational Optimality

Lemma 5 A candidate computation is not replaced by the transformation if and only if it is
an isolated computation.

Proof: We have to show that

ANTLOC;~REPLACE;, = ISOLATED;,, and
COMP,~REPLACE; = ISOLATED;

Case(i) : ANTLOC; ~REPLACE;, = ISOLATED;,

REPLACE;, = ANTLOC;.(SPAVIN; + TRANSP,.SPANTOUT;)
~REPLACE;, = -ANTLOC;+~(SPAVIN; + TRANSP,.SPANTOUT;)

Hence,

ANTLOC;.~REPLACE;,

= ANTLOC;.~(SPAVIN; + TRANSP;.SPANTOUT,)
= ANTLOC;~SPAVIN; ~(TRANSP;. SPANTOUT;)
= ISOLATED;,

Case(ii) : COMP;.~REPLACE; = ISOLATED;,

REPLACE; = COMP;,.(SPANTOUT, + TRANSP,.SPAVIN;)
~REPLACE;, = -COMP;+—~(SPANTOUT; + TRANSP;.SPAVINi)

Hence,

COMP,.~REPLACE;
— COMP,.~(SPANTOUT; + TRANSP;,.SPAVIN;)
— COMP;,.~SPANTOUT;~(TRANSP;,.SPAVIN;)
ISOLATED;,

i.e., All candidate computations which are not replaced by the transformation are isolated
computations and vice versa. [ |

Theorem 2 The transformation is computationally optimal.
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Proof: We have to show that there does not exist any other correct transformation with less
number of computations of an expression on any path.

Let us assume that there exists another correct transformation with less number of compu-
tations of an expression on a path. This is possible only under two situations:
Case(i) : Number of replacements on the path is more in the new transformation, without a
corresponding increase in insertions. This

= a computation which was not replaced by our transformation is
replaced by the new one without an additional insertion.

= the new transformation replaces an isolated computation without
a corresponding insertion. [By Lemma 5]

= incorrect transformation

Case(ii) : Number of insertions on the path is less in the new transformation.
This implies that some of the insertions in our transformation were unnecessary. Let us consider
the two cases of insertions:

Case (ii)a : INSERT;
Let us assume that the insertion corresponding to INSE RT; in our transformation was unnec-
essary and hence not done.

INSERT; = REPLACE; [From case(i), Lemma 4]
= the new variable introduced by REPLACE;, in node i
has no initialization. [From the assumption, case(ii)a]
= incorrect transformation
Case(ii)b : INSERT( ;)
Let us assume that the insertion corresponding to INSERT(; ;) in our transformation was
unnecessary and hence not done.

INSERT;j = Vp:p€ Plje]: (3k: REPLACE),) [From case(ii), Lemma 4]
= the new variable introduced by REPLACE}, in node k
has no initialization along the path involving edge (i, ).
[From the assumption, case(ii)b]

= incorrect transformation

Both case(i) and case(ii) lead to incorrect transformation, contradicting our assumption that
there exists another correct transformation with less number of computations of an expression
on a path.

Hence, we conclude that the transformation is computationally optimal. [ |

5.3 Lifetime Optimality

Theorem 3 The transformation is lifetime optimal.

Proof: We have to show that the transformation keeps the live ranges of the newly introduced
temporaries to the minimum.

Let us assume that the live ranges of the temporaries introduced by our transformation is not
minimal. This implies that there exists at least one insertion which can be moved to a later
point in the flow graph, preserving correctness of the algorithm. Let us consider the two cases
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of insertions:

Case(i) : INSERT;.
Let us insert the computation just after LAST;, the next later point in the flow graph, instead
of just before it. This
= the new variable introduced by REPLACE;, in node i has no initialization
[INSERT; = REPLACE;,. From case(i), Lemma 4]
= incorrect transformation

Similarly, insertion at any other later points, instead of insertion just before LAST;, also leads
to incorrect transformation.

Case(ii) : INSERT(; ;).
Let us insert the computation at the entry of node j, the next later point in the flow graph,
instead of insertion on the edge (i,7). This

= number of computations on paths involving other edges to j

is increased by one. Note that | Pred(j) |> 1.

= the transformation is not computationally optimal
Similarly, insertion at any other later point also leads to violation of computational optimality.
In both case(i) and case(ii) insertion at a later point leads to the violation of either the correct-

ness or the computational optimality of the transformation, contrary to our assumption.
Hence, the transformation is lifetime optimal. [ |

6 An Example

Consider the following example - same as in [11] - in Figure 3.

Local Properties:
ANTLOC = {2,4,7,8,9}
COMP = {2,4,7,9}
TRANSP = {1,3,4,5,6,7,9,10}

Global Boolean Properties:

AVIN = ¢

AVOUT {2,4,7,9}

ANTIN = {2,4,5,6,7,8,9}
ANTOUT = {4,5,6,7,8}

SAFEIN = {2,4,5,6,7,8,9}
SAFEOUT = {2,4,5,6,7,8,9}

SPAVIN = {4,5,8}
SPAVOUT = {2,4,5,7,9}
SPANTIN = {2,4,5,6,7,8,9}
SPANTOUT = {4,5,6,7,8}
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y=a+bh
2| a=c
x=a+b

4

Figure 3: Initial program

1

y=a+bh
2| a=c
x=a+b

Figure 4: Transformed program
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Insertions and Replacements:

INSERT, = {7}
INSERT;;, = {(3,5)}
REPLACE;, = {4,7,8}
REPLACE;, = {4,7}

The solution is insertions just before the last computation in node 7 and on edge (3, 5),
and replacement of the first computation in nodes 4, 7, and 8 and replacement of the last
computations in nodes 4 and 7. The transformed program is given in Figure 4.

7 Conclusion

We have presented a simple, optimal, and practical algorithm for partial redundancy elimina-
tion. The algorithm is conceptually simple as it evolves naturally from the new concept of safe
partial availability. The proof of correctness of the algorithm also becomes simple with the new
concept of safe partial availability as the basis of the argument. The algorithm is computation-
ally and lifetime optimal. It works on flow graphs whose nodes are basic blocks which is the
standard in optimizing compilers. In comparison with its predecessor [11], our algorithm also
requires four unidirectional analyzes but it does not require the edge splitting transformations
to be done before its application.
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