
Partial redundan
y elimination:A simple, pragmati
, and provably
orre
t algorithmV.K.Paleri, Y.N.Srikant, and P.ShankarDepartment of Computer S
ien
e and Automation, Indian Institute of S
ien
eBangalore-560 012, IndiaAbstra
tWe propose a new algorithm for partial redundan
y elimination based on the new
on
epts of safepartial availability and safe partial anti
ipability. These new
on
epts are derived by the integration ofthe notion of safety into the de�nitions of partial availability and partial anti
ipability. The algorithmworks on
ow graphs whose nodes are basi
 blo
ks. It is both
omputationally and lifetime optimal andrequires four unidire
tional analyzes. The most important feature of the algorithm is its simpli
ity; thealgorithm evolves naturally from the new
on
ept of safe partial availability.Key Words: Computational optimality, data-
ow analysis,
ow graphs, life-time optimality, partialredundan
y elimination.1 Introdu
tionA
omputation whi
h is performed twi
e in a
ertain path in the program is said to be partiallyredundant. Partial redundan
y elimination involves the insertion and deletion of
omputationsin the program in su
h a way that after the transformation the program
ontains no more - ingeneral, fewer - o

urren
es of su
h
omputations. In order to preserve the semanti
s of theoriginal program, the insertions of
omputations
orresponding to the transformation must besafe, i.e., it must not introdu
e
omputations of new values on any path in the program.Morel and Renvoise showed that global
ommon subexpression elimination and loop invari-ant
ode motion are spe
ial
ases of partial redundan
y elimination [12℄. They viewed partialredundan
y elimination as a program
ow analysis problem in whi
h the points of insertion anddeletion of
omputations are determined by solving data-
ow equations. The te
hnique is basedon a purely Boolean approa
h and hen
e permits simultaneous treatment of all expressions ofa program using bit-ve
tors. The algorithm does not require detailed
ontrol
ow analysis.Morel and Renvoise's algorithm does not eliminate all partial redundan
ies that exist ina program. Taking the issue of safety into a

ount Dhamdhere provided a solution whi
heliminated all partial redundan
ies, using the
on
ept of edge pla
ement [4, 5℄. The solutiongiven by Morel and Renvoise also has the problem of redundant
ode motion -
ode movementwithout any exe
ution time gains. This problem was addressed in several papers [2, 4, 5℄, whi
hredu
ed but
ould not entirely prevent redundant
ode motion.The algorithm given by Morel and Renvoise involves bidire
tional data-
ow analysis. Bidi-re
tional analyzes are, in general,
on
eptually and
omputationally more
omplex than unidi-re
tional ones [5, 6, 7℄. It was shown that the transformation
an also be solved as a unidire
-tional problem [3, 4, 8℄. 1

All the above solutions for partial redundan
y elimination have one or more of the problemsof redundant
ode motion, unremoved redundan
ies, or limited appli
ability due to redu
ibilityrestri
tion of the
ow graph. Knoop, R�uthing, and Ste�en proposed a
omputationally optimalalgorithm,
omposed of unidire
tional analyzes, for stru
turally unrestri
ted
ow graphs, withno redundant
ode motion [10℄. A variant of this algorithm was given by Dreshler and Stadelin [9℄. Knoop et.al., later presented an algorithm [11℄ whi
h works on
ow graphs whose nodesare basi
 blo
ks as against nodes with single statements in their earlier work [10℄.Here, we propose a new algorithm for partial redundan
y elimination. A preliminary versionof this algorithm, with ea
h node of the
ontrol
ow graph as single statement,
an be found inour earlier work [13℄. The algorithm is based on the new
on
epts of safe partial availability andsafe partial anti
ipability,
on
epts derived by the integration of the notion of safety into thede�nitions of partial availability and partial anti
ipability. As the
on
ept of partial redundan
yis based on partial availability, we have the
on
ept of safe partial redundan
y based on safepartial availability. Using safe partial redundan
y we have the following points as the basis forthe algorithm:� Every safe partially redundant
omputation o�ers s
ope for redundan
y elimination.� Any safe partially redundant
omputation at a point
an be made totally redundant byinsertion of new
omputations at proper points, without
hanging the semanti
s of theprogram.� Computation of any expression that is totally redundant
an be repla
ed by a
opy rule.With the above points as basis, we
an make the following
on
lusion:� After the transformation, no expression is re
omputed at a point if its value is availablefrom previous
omputations.The algorithm requires four unidire
tional data-
ow analyzes for the
omputation of avail-ability, anti
ipability, safe partial availability, and safe partial anti
ipability. It is
omputation-ally and lifetime optimal; after the transformation, the number of
hosen
omputations on ea
hpath is the minimum and the live ranges of the new temporaries introdu
ed are also the min-imum. The algorithm is pra
ti
al as it works on
ow graphs whose nodes are basi
 blo
ks. In
omparison with its prede
essor [11℄, our algorithm does not require the edge splitting transfor-mation to be done before its appli
ation - edge splitting is done only at pla
es where insertionof
omputation is ne
essary. The most important feature of the algorithm is its
on
eptualsimpli
ity.2 The Basi
 Con
eptHere, we give an informal des
ription of the basi
 idea behind our algorithm. We say anexpression is available at a point if it has been
omputed along all paths rea
hing this pointwith no
hanges to its operands sin
e the
omputation. An expression is said to be anti
ipableat a point if every path from this point has a
omputation of that expression with no
hangesto its operands in between. We say a point is safe for an expression if it is either available oranti
ipable at that point. Partial availability and partial anti
ipability are weaker propertieswith the requirement of a
omputation along \at least one path" as against \all paths" in the
ase of availability and anti
ipability.Safe partial availability(or anti
ipability) at a point di�ers from partial availability(or an-ti
ipability) in that it requires all points on the path along whi
h the
omputation is partially2

available(or anti
ipable) to be safe. In the example given in Figure 1(a), partial availability ofthe expression a + b at the entry of node 4 is true but safe partial availability at that pointis false, be
ause the entry and exit points of node 3 are not safe. In Figure 1(b), safe partialavailability at the entry of node 4 is true. We say a
omputation is safe partially redundant ina node, if it is lo
ally anti
ipable and is safe partially available at the entry of the node. InFigure 1(b), the
omputation in node 4 is safe partially redundant.
(a)

1 2

3

4 5

x = a + b

y = a + b

(b)

1 2

3

x = a +b

y = a + b4Figure 1: Safe partial availabilityThe algorithm assumes that all lo
al redundan
ies are already eliminated by means of somestandard te
hniques for
ommon subexpression elimination on basi
 blo
ks [1℄. After the re-moval of all lo
al redundan
ies within a basi
 blo
k i, we note that there exists at most one
omputation before the �rst modi�
ation, whi
h we
all the �rst
omputation, denoted byFIRSTi, and at most one
omputation before the �rst modi�
ation starting from bottom,whi
h we
all the last
omputation, denoted by LASTi. All other
omputations within thebasi
 blo
k appear in between two modi�
ations and hen
e are irrelevant for our algorithm.We
all the �rst and last
omputations as
andidate
omputations -
omputations whi
h arerelevant to the algorithm. Note that the �rst and last
omputations
oin
ide when a single
omputation in a basi
 blo
k has no modi�
ation to its operands in the blo
k.The basis of the algorithm is to identify safe partially redundant
omputations and makethem totally redundant by the insertion of new
omputations at proper points. The totallyredundant
omputations after the insertions are then repla
ed. If a + b is the expression ofinterest then by insertion we mean insertion of the
omputation h = a + b, where h is a newvariable; repla
ement means substitution of a
omputation, like x = a+ b, by x = h.Given a
ontrol
ow graph we �rst
ompute availability and anti
ipability at the entryand exit points of all nodes in the graph by two iterative analyzes. From availability andanti
ipability we
ompute safety - a simple
omputation, not an iterative analysis - at all points.After
omputing safety, we
ompute safe partial availability and safe partial anti
ipability atthe entry and exit points of all nodes, whi
h require another two iterative analyzes. We thenmark all points whi
h satisfy both safe partial availability and safe partial anti
ipability. Now,
onsider the paths formed by
onne
ting all the adja
ent points whi
h are marked. We observethat the required points of insertion for the transformation are the ones just before the last
omputation in nodes
orresponding to the starting points of su
h paths and also the edges thatenter jun
tion nodes on these paths. The
omputations to be repla
ed are the ones appearingon these paths; for a path, only the last
omputation in the node
orresponding to the startingpoint and only the �rst
omputation in the node
orresponding to the end point are
onsideredto be on the path.Consider the example given in Figure 2(a). We have marked all points satisfying safepartial availability and safe partial anti
ipability by small
ir
les. Path < 1; 3; 4 >
onne
tsall adja
ent marked points. Based on the above observation, we see that the point just before3

the last
omputation in node 1 and also edge (2, 3) are the points of insertion and the last
omputation in node 1 and the �rst
omputation in node 4 are the
omputations to be repla
ed.The graph after the transformation is shown in Figure 2(b).
x = a + b
a = c

b = d
y = a+ b

a = c
h = a + b
x = h

h = a + b

y = h
b = d

1 2

3

4

1 2

3

4

(a) (b)Figure 2: Partial redundan
y elimination (a) Before transformation (b) After transformation3 Notations and De�nitions3.1 Flow GraphWe represent a program as a dire
ted
ow graph G = (N;E; s; e), where N is the set ofnodes of the
ow graph, E the set of edges of the
ow graph, s the unique entry node withno prede
essors, and e the unique exit node without any su

essors. Nodes n 2 N representbasi
 blo
ks
onsisting of a linear sequen
e of three-address statements. Arithmeti
 statementsare of the form v := expr, where v is a variable and expr is a simple expression, like a + b,built of variables,
onstants, and operators, having at most one operator. Both nodes s ande are assumed to be empty. Edges (i; j) 2 E represent the
ontrol
ow from node i to nodej in the
ow graph. Every node n 2 N is assumed to lie on a path from s to e. The setssu

(n) = fmj(n;m) 2 Eg and pred(n) = fmj(m;n) 2 Eg denote the set of all immediatesu

essors and immediate prede
essors, respe
tively, of node n. A �nite path of G is a sequen
e< n1; : : : ; nk > of nodes su
h that ni+1 2 su

(ni) for all 1 � i < k. A path from node i tonode j is denoted by p[i; j℄. If i or j is ex
luded from the path we will write it as p℄i; j℄ or p[i; j[,respe
tively. The set of all �nite paths of G leading from a node i to a node j is denoted byP [i; j℄.3.2 Boolean PropertiesWe use the same terminology used by Morel and Renvoise [12℄. For ea
h expression and ea
hnode Boolean properties are de�ned. Some of these properties depend only on the statement inthe node and are termed lo
al. Other properties whi
h depend on statements beyond a nodeare termed global. We de�ne the Boolean properties and develop our algorithm for an arbitraryand �xed expression, sin
e a global algorithm dealing with all expressions simultaneously is theindependent
ombination of all of them, whi
h
an be realized using bit-ve
tors.3.2.1 Lo
al PropertiesWe asso
iate the lo
al properties, transparen
y, availability, and anti
ipability with a node. Anexpression is said to be transparent in a node i, denoted by TRANSPi, if its operands are notmodi�ed by the exe
ution of the statements in node i. We say an expression is lo
ally available4

in a node i, and denote it by COMPi, if there is at least one
omputation of the expression inthe node and if the statements appearing in the node in
luding and after the last
omputationof the expression do not modify its operands. An expression is said to be lo
ally anti
ipable ina node i, denoted by ANTLOCi, if there is at least one
omputation of the expression in thenode and if the statements appearing in the node before the �rst
omputation of the expressiondo not modify its operands.3.2.2 Global PropertiesThe global properties, availability, anti
ipability, safe partial availability, and safe partial an-ti
ipability are of interest to us and we use AV INi, ANTINi, SPAV INi, and SPANTINito denote these properties (respe
tively), of an expression at the entry of node i. Similarly,AV OUTi, ANTOUTi, SPAV OUTi, and SPANTOUTi are used to denote the same propertiesat the exit of node i.We use SAFEINi and SAFEOUTi to denote the fa
t that it is safe to insert a
omputationat the entry and exit, respe
tively, of node i. We say a path p[m;n℄, from point m to pointn in the
ow graph, is safe if every point on the path is safe and denote it by SAFE[m;n℄.Also, we say a path p[i; j℄, where i and j are nodes, is transparent if every node on the path istransparent and denote it by TRANSP[i;j℄.The relation between global and lo
al properties for all nodes of the graph are expressed interms of systems of Boolean equations. Boolean
onjun
tions are denoted by . and Q, disjun
-tions by + and P, and Boolean negation by :.Availability. An expression is said to be available at a point p if every path from the en-try node s to p
ontains a
omputation of that expression, and after the last su
h
omputationprior to rea
hing p there are no modi�
ations to its operands.An expression is available at the entry of a node if it is available on exit from ea
h prede
essorof the node. An expression is available at the exit of a node if it is lo
ally available or if it isavailable at the entry of the node and transparent in this node, i.e.,AV INi = (FALSE if i = sQj2pred(i)AV OUTj otherwiseAV OUTi = COMPi +AV INi:TRANSPiAnti
ipability. An expression is said to be anti
ipable at a point p if every path from p to theexit node e
ontains a
omputation of that expression, and after p prior to rea
hing the �rstsu
h
omputation there are no modi�
ations to its operands.An expression is anti
ipable at the exit of a node if it is anti
ipable at the entry of ea
hsu

essor of the node. An expression is anti
ipable at the entry of a node if it is lo
allyanti
ipable or it is anti
ipable at the exit of the node and transparent in this node, i.e.,ANTOUTi = (FALSE if i = eQj2su

(i)ANTINj otherwiseANTINi = ANTLOCi +ANTOUTi:TRANSPiSafety. A point p is
onsidered to be safe for an expression if the insertion of a
omputationof that expression at p does not introdu
e a new value on any path through p. Alternatively,a point p is safe if the expression is either available or anti
ipable at that point. The points of5

interest to us are the entry and exit of nodes, i.e.,SAFEINi = AV INi +ANTINiSAFEOUTi = AV OUTi +ANTOUTiSafe Partial Availability. We say an expression is safe partially available at a point n, ifthere is at least one path from the entry node s to n whi
h
ontains a
omputation of thatexpression, and after the last su
h
omputation on this path prior to rea
hing n, say at nodem, there are no modi�
ations to its operands, the path from the exit of node m to n being safe.An expression is safe partially available at the entry of a node if the entry point of the nodeis safe and the expression is safe partially available on exit from at least one prede
essor of thenode. An expression is safe partially available at the exit of a node if the exit point of the nodeis safe and the expression is lo
ally available or is safe partially available at the entry of thenode and transparent in this node.SPAV INi = (FALSE if i = s or :SAFEINiPj2pred(i) SPAV OUTj otherwiseSPAV OUTi = (FALSE if :SAFEOUTiCOMPi + SPAV INi:TRANSPi otherwiseSafe Partial Anti
ipability. We say an expression is safe partially anti
ipable at a point m,if there is at least one path from m to the exit node e whi
h
ontains a
omputation of thatexpression, and after m prior to rea
hing the �rst su
h
omputation on this path, say at noden, there are no modi�
ations of its operands, the path from m to the entry of node n beingsafe.An expression is safe partially anti
ipable at the exit of a node if the exit point of the nodeis safe and the expression is safe partially anti
ipable at the entry of at least one su

essor ofthe node. An expression is safe partially anti
ipable at the entry of a node if the entry point ofthe node is safe and the expression is lo
ally anti
ipable or is safe partially anti
ipable at theexit of the node and transparent in this node.SPANTOUTi = (FALSE if i = e or :SAFEOUTiPj2su

(i) SPANTINj otherwiseSPANTINi = (FALSE if :SAFEINiANTLOCi + SPANTOUTi:TRANSPi otherwiseSu
h systems of Boolean equations are usually solved using an iterative pro
ess, whi
h
anyield several solutions depending upon the initialization of the unknowns. For the Booleansystems above, the required solution is the largest one for the system involving the
onjun
tionoperator Q and the initialization value is TRUE for all the unknowns in this
ase. For thesystems involving the disjun
tion operator P the required solution is the smallest one and theinitialization value is FALSE for all unknowns.Safe Partial Redundan
y. There are only two
omputations relevant to the algorithm ina basi
 blo
k i - FIRSTi and LASTi. In a node i, the
omputation FIRSTi - whi
h im-plies ANTLOCi - is said to be safe partially redundant, denoted by SPREDUNDif , if the
omputation is also safe partially available at the entry of the node, i.e.,SPREDUNDif = ANTLOCi:SPAV INi6

Note that the
omputation LASTi in a node i, when it is distin
t from FIRSTi,
annot besafe partially redundant.Total Redundan
y. In a node i, the
omputation FIRSTi - whi
h implies ANTLOCi -is said to be totally redundant - or simply, redundant - denoted by REDUNDif , if the
om-putation is also available at the entry of the node, i.e.,REDUNDif = ANTLOCi:AV INiThe
omputation LASTi in a node i is said to be redundant, denoted by REDUNDil , ifthe
omputation is available at a point, say p, just before it, i.e.,REDUNDil = COMPi:AVp;where p is the point just before LASTi.Note that AVp denotes availability at a point p. Similarly, we denote anti
ipability at apoint p as ANTp.Isolatedness. A
omputation is said to be isolated if it is neither safe partially available norsafe partially anti
ipable at that point. We denote the isolatedness of FIRSTi and LASTi, ina node i, by ISOLATEDif and ISOLATEDil , respe
tively, i.e.,ISOLATEDif = ANTLOCi::SPAV INi::(TRANSPi:SPANTOUTi)ISOLATEDil = COMPi::SPANTOUTi::(TRANSPi:SPAV INi)4 The AlgorithmThe algorithm introdu
es new
omputations of the expression at points of the program
hosenin su
h a way that the safe partially redundant
omputations be
ome totally redundant. As in[11℄, our algorithm introdu
es a new auxiliary variable h for the expression
on
erned, insertsassignments of the form h := expr at some program points, and repla
es some of the
andidate
omputations of the expression by h, to a
hieve the transformation. These points of insertionsand repla
ements are
omputed by the algorithm.We observe that for an optimal solution the points of insertion must be either just beforethe last
omputation in a basi
 blo
k or on an edge in the
ow graph, whi
h are denotedby INSERTi and INSERT(i;j), respe
tively. There are two
andidates for repla
ement in abasi
 blo
k - the �rst and the last
omputations - and we denote the repla
ements of them byREPLACEif and REPLACEil , respe
tively.The steps of the algorithm are as follows:1. Compute AVIN/AVOUT and ANTIN/ANTOUT for all nodes.2. Compute SAFEIN/SAFEOUT for all nodes.3. Compute SPAVIN/SPAVOUT and SPANTIN/SPANTOUT for all nodes.4. Compute points of insertion and repla
ement INSERTi, INSERT(i;j), REPLACEif ,and REPLACEil .The points of insertions and repla
ements are
omputed using the following equations:INSERTi = COMPi:SPANTOUTi:(:TRANSPi + :SPAV INi)INSERT(i;j) = :SPAV OUTi:SPAV INj :SPANTINjREPLACEif = ANTLOCi:(SPAV INi + TRANSPi:SPANTOUTi)REPLACEil = COMPi:(SPANTOUTi + TRANSPi:SPAV INi)7

The algorithm requires four unidire
tional analyzes for the
omputation of availability, an-ti
ipability, safe partial availability, and safe partial anti
ipability. It does not require the edgesplitting transformation before the appli
ation of the algorithm as in [11℄. Edge splittings aredone only at pla
es where it is ne
essary. The algorithm is
omputationally and lifetime optimal.5 Corre
tness and Optimality of the AlgorithmIn this se
tion, we give the proofs for the
orre
tness,
omputational optimality, and lifetimeoptimality of the algorithm.5.1 Corre
tnessHere, we prove that the algorithm performs partial redundan
y elimination
orre
tly.Lemma 1 All insertions of
omputations
orresponding to the transformation are done at safepoints.Proof: For a point p, we have, SAFEp = AVp + ANTp. We
onsider an edge as a point ofinsertion and denote the safety on edge (i; j) by SAFE(i;j). Similarly, anti
ipability on edge(i; j) is denoted by ANT(i;j).Let us
onsider the two
ases of insertions:Case(i): INSERTi.INSERTi inserts the
omputation at a point, say p, just before LASTi. We show that point pis safe.INSERTi = COMPi:SPANTOUTi:(:TRANSPi+ :SPAV INi)) COMPi) ANTp [The
omputation
orresponding to COMPi is LASTi.℄) SAFEp [SAFEp = AVp +ANTp℄Case(ii): INSERT(i;j).INSERT(i;j) inserts the
omputation on edge (i; j), whi
h is also shown to be safe.INSERT(i;j) = :SPAV OUTi:SPAV INj :SPANTINj) :SPAV OUTi:SPAV INj) :AV INj:SPAV INj [:SPAV OUTi) :AV INj ℄) :AV INj:SAFEINj :PAV INj [SPAV INj) SAFEINj :PAV INj℄) :AV INj:SAFEINj) ANTINj [SAFEINj = AV INj +ANTINj ℄) ANT(i;j)) SAFE(i;j)That is, all insertions of
omputations
orresponding to the transformation are done at safepoints.Lemma 2 All
andidate
omputations whi
h are safe partially redundant be
ome totally redun-dant after insertions
orresponding to the transformation.
8

Proof: We have to show that SPREDUNDif) REDUNDif , after insertions
orrespondingto the transformation.From the de�nition of safe partial availability, we have,SPAV INi) 9p : p 2 P [s; i℄ : [9m : m 2 N ^m 2 p : (COMPm:TRANSP℄m;i[:SAFE[OUTm;INi℄)℄where, s is the entry node and P [s; i℄ is the set of all paths from node s to node i.In order to sele
t the earliest node m(from entry node s) on the path satisfying the required
ondition, we may write,SPAV INi) 9p : p 2 P [s; i℄ : [9m : m 2 N ^m 2 p : (COMPm:(:TRANSPm + :SPAV INm):TRANSP℄m;i[:SAFE[OUTm;INi℄)℄Considering all paths from s to i, we may write,SPAV INi) 8p : p 2 P [s; i℄ : [(9m : m 2 N ^m 2 p : (COMPm:(:TRANSPm + :SPAV INm):TRANSP℄m;i[:SAFE[OUTm;INi℄))+ (9m;n : (m;n) 2 E ^ (m;n) 2 p : ((:SPAV OUTm:SPAV INn):TRANSP[n;i[:SAFE[INn;INi℄))℄Refer to Fig.2(a) to see the two possibilities mentioned above, for any path.Now, we have,SPREDUNDif = ANTLOCi:SPAV INi) 8p : p 2 P [s; i℄ : [(9m : m 2 N ^m 2 p : (COMPm:(:TRANSPm + :SPAV INm):TRANSP℄m;i[:SAFE[OUTm;INi℄:ANTLOCi))+ (9m;n : (m;n) 2 E ^ (m;n) 2 p : ((:SPAV OUTm:SPAV INn):TRANSP[n;i[:SAFE[INn;INi℄:ANTLOCi))℄) 8p : p 2 P [s; i℄ : [(9m : m 2 N ^m 2 p : (COMPm:(:TRANSPm + :SPAV INm):SPANTOUTm))+ (9m;n : (m;n) 2 E ^ (m;n) 2 p : (:SPAV OUTm:SPAV INn:SPANTINn))℄[From, ANTLOCi:TRANSP℄m;i[:SAFE[OUTm;INi℄) SPANTOUTmand ANTLOCi:TRANSP[n;i[:SAFE[INn;INi℄) SPANTINn℄Rearranging the terms we get,SPREDUNDif) 8p : p 2 P [s; i℄ : [(9m : m 2 N ^m 2 p : (COMPm:SPANTOUTm:(:TRANSPm + :SPAV INm)))+ (9m;n : (m;n) 2 E ^ (m;n) 2 p : (:SPAV OUTm:SPAV INn:SPANTINn))℄) 8p : p 2 P [s; i℄ : [(9m : m 2 N ^m 2 p : INSERTm)+ (9m;n : (m;n) 2 E ^ (m;n) 2 p : INSERT(m;n))℄[From, INSERTm = COMPm:SPANTOUTm:(:TRANSPm + :SPAV INm)9

and INSERT(m;n) = :SPAV OUTm:SPAV INn:SPANTINn℄) AV INi; after insertions (INSERTm or INSERT(m;n)), on all paths.) REDUNDif [ANTLOCi:AV INi) REDUNDif ℄That is, all safe partially redundant
omputations in the original program be
ome totally re-dundant after insertions
orresponding to the transformation.Lemma 3 Only those
andidate
omputations whi
h would be redundant after insertions
or-responding to the transformation are repla
ed.Proof: We have to show that after insertions
orresponding to the transformationREPLACEif) REDUNDif , andREPLACEil) REDUNDilFirst, let us show that REPLACEil) REDUNDil . We have,REPLACEil = COMPi:(SPANTOUTi + TRANSPi:SPAV INi)= COMPi:SPANTOUTi +COMPi:TRANSPi:SPAV INiLet us
onsider it as two separate
ases:Case(i) : REPLACEil = COMPi:SPANTOUTiREPLACEil = COMPi:SPANTOUTi= COMPi:SPANTOUTi:(SPAV INp + :SPAV INp);where p is the point just before LASTi.= COMPi:SPANTOUTi:SPAV INp+COMPi:SPANTOUTi::SPAV INpLet us
onsider the above equation also as two separate
ases:Case(i)a : REPLACEil = COMPi:SPANTOUTi:SPAV INpREPLACEil = COMPi:SPANTOUTi:SPAV INp) COMPi:SPAV INp) COMPi:SPAV INp:TRANSPi [COMPi:SPAV INp) TRANSPi℄) ANTLOCi:SPAV INi[COMPi:TRANSPi) ANTLOCi;SPAV INp:TRANSPi) SPAV INi℄) SPREDUNDif [SPREDUNDif = ANTLOCi:SPAV INi℄) REDUNDif [From Lemma 2℄) REDUNDil [COMPi:TRANSPi) FIRSTi = LASTi℄Case(i)b : REPLACEil = COMPi:SPANTOUTi::SPAV INpREPLACEil = COMPi:SPANTOUTi::SPAV INp) INSERTi [From the de�nition of INSERTi℄) REDUNDil [COMPi:INSERTi) REDUNDil ℄10

Case(ii) : REPLACEil = COMPi:TRANSPi:SPAV INiREPLACEil = COMPi:TRANSPi:SPAV INi) ANTLOCi:SPAV INi [COMPi:TRANSPi) ANTLOCi℄) SPREDUNDif [SPREDUNDif = ANTLOCi:SPAV INi℄) REDUNDif [From Lemma 2℄) REDUNDil [COMPi:TRANSPi) FIRSTi = LASTi℄Now, let us show that REPLACEif) REDUNDif , after insertions
orresponding to thetransformation. We have,REPLACEif = ANTLOCi:(SPAV INi + TRANSPi:SPANTOUTi)= ANTLOCi:SPAV INi +ANTLOCi:TRANSPi:SPANTOUTiLet us
onsider it as two separate
asesCase(i) : REPLACEi = ANTLOCi:SPAV INiREPLACEif = ANTLOCi:SPAV INi) SPREDUNDif [SPREDUNDif = ANTLOCi:SPAV INi℄) REDUNDif [From Lemma 2℄Case(ii) : REPLACEif = ANTLOCi:TRANSPi:SPANTOUTiREPLACEif = ANTLOCi:TRANSPi:SPANTOUTi) COMPi:SPANTOUTi [ANTLOCi:TRANSPi) COMPi℄) REDUNDil [From Case(i) of REPLACEil above℄) REDUNDif [ANTLOCi:TRANSPi) FIRSTi = LASTi℄We have shown that all
andidate
omputations whi
h are repla
ed are the ones whi
h be
omeredundant after insertions
orresponding to the transformation.Lemma 4 After the transformation no path
ontains more
omputations of an expression thanit
ontained before.Proof: We have to show that there is at least one repla
ement
orresponding to ea
h insertionon a path.Let us
onsider the two
ases of insertions:Case(i) : INSERTiINSERTi = COMPi:SPANTOUTi:(:TRANSPi + :SPAV INi)) COMPi:SPANTOUTi) REPLACEil [From the de�nition of REPLACEil ℄i.e., Any path involving node i,
orresponding to INSERTi, has at least one repla
ement,REPLACEil .Case(ii) : INSERT(i;j)INSERT(i;j) = :SPAV OUTi:SPAV INj :SPANTINj) ANTINj [From Case(ii), Lemma 1℄) 8p : p 2 P [j; e℄ : (9k : SAFE[INj ;INk℄:TRANSP[j;k[:ANTLOCk)where, e is the exit node.11

) 8p : p 2 P [j; e℄ : (9k : ANTLOCk:SPAV INk)[SAFE[INj ;INk℄:TRANSP[j;k[:SPAV INj) SPAV INk℄) 8p : p 2 P [j; e℄ : (9k : REPLACEkf)[ANTLOCk:SPAV INk) REPLACEkf ℄i.e., Any path involving edge (i; j),
orresponding to INSERT(i;j), has at least one repla
ement,REPLACEkf .From
ase(i) and
ase(ii), we
on
lude that any insertion on a path implies at least one repla
e-ment on the same path.Theorem 1 The algorithm performs partial redundan
y elimination
orre
tly.Proof: By Lemmas 1, 2, 3, and 4.5.2 Computational OptimalityLemma 5 A
andidate
omputation is not repla
ed by the transformation if and only if it isan isolated
omputation.Proof: We have to show thatANTLOCi::REPLACEif = ISOLATEDif , andCOMPi::REPLACEil = ISOLATEDilCase(i) : ANTLOCi::REPLACEif = ISOLATEDifREPLACEif = ANTLOCi:(SPAV INi + TRANSPi:SPANTOUTi):REPLACEif = :ANTLOCi + :(SPAV INi + TRANSPi:SPANTOUTi)Hen
e,ANTLOCi::REPLACEif= ANTLOCi::(SPAV INi + TRANSPi:SPANTOUTi)= ANTLOCi::SPAV INi::(TRANSPi:SPANTOUTi)= ISOLATEDifCase(ii) : COMPi::REPLACEil = ISOLATEDilREPLACEil = COMPi:(SPANTOUTi + TRANSPi:SPAV INi):REPLACEil = :COMPi + :(SPANTOUTi + TRANSPi:SPAV INi)Hen
e,COMPi::REPLACEil= COMPi::(SPANTOUTi + TRANSPi:SPAV INi)= COMPi::SPANTOUTi::(TRANSPi:SPAV INi)= ISOLATEDili.e., All
andidate
omputations whi
h are not repla
ed by the transformation are isolated
omputations and vi
e versa.Theorem 2 The transformation is
omputationally optimal.12

Proof: We have to show that there does not exist any other
orre
t transformation with lessnumber of
omputations of an expression on any path.Let us assume that there exists another
orre
t transformation with less number of
ompu-tations of an expression on a path. This is possible only under two situations:Case(i) : Number of repla
ements on the path is more in the new transformation, without a
orresponding in
rease in insertions. This) a
omputation whi
h was not repla
ed by our transformation isrepla
ed by the new one without an additional insertion.) the new transformation repla
es an isolated
omputation withouta
orresponding insertion. [By Lemma 5℄) in
orre
t transformationCase(ii) : Number of insertions on the path is less in the new transformation.This implies that some of the insertions in our transformation were unne
essary. Let us
onsiderthe two
ases of insertions:Case (ii)a : INSERTiLet us assume that the insertion
orresponding to INSERTi in our transformation was unne
-essary and hen
e not done.INSERTi) REPLACEil [From
ase(i), Lemma 4℄) the new variable introdu
ed by REPLACEil in node ihas no initialization. [From the assumption,
ase(ii)a℄) in
orre
t transformationCase(ii)b : INSERT(i;j)Let us assume that the insertion
orresponding to INSERT(i;j) in our transformation wasunne
essary and hen
e not done.INSERT(i;j)) 8p : p 2 P [j; e℄ : (9k : REPLACEkf) [From
ase(ii), Lemma 4℄) the new variable introdu
ed by REPLACEkf in node khas no initialization along the path involving edge (i; j).[From the assumption,
ase(ii)b℄) in
orre
t transformationBoth
ase(i) and
ase(ii) lead to in
orre
t transformation,
ontradi
ting our assumption thatthere exists another
orre
t transformation with less number of
omputations of an expressionon a path.Hen
e, we
on
lude that the transformation is
omputationally optimal.5.3 Lifetime OptimalityTheorem 3 The transformation is lifetime optimal.Proof: We have to show that the transformation keeps the live ranges of the newly introdu
edtemporaries to the minimum.Let us assume that the live ranges of the temporaries introdu
ed by our transformation is notminimal. This implies that there exists at least one insertion whi
h
an be moved to a laterpoint in the
ow graph, preserving
orre
tness of the algorithm. Let us
onsider the two
ases13

of insertions:Case(i) : INSERTi.Let us insert the
omputation just after LASTi, the next later point in the
ow graph, insteadof just before it. This) the new variable introdu
ed by REPLACEil in node i has no initialization[INSERTi) REPLACEil : From
ase(i), Lemma 4℄) in
orre
t transformationSimilarly, insertion at any other later points, instead of insertion just before LASTi, also leadsto in
orre
t transformation.Case(ii) : INSERT(i;j).Let us insert the
omputation at the entry of node j, the next later point in the
ow graph,instead of insertion on the edge (i; j). This) number of
omputations on paths involving other edges to jis in
reased by one. Note that j Pred(j) j> 1:) the transformation is not
omputationally optimalSimilarly, insertion at any other later point also leads to violation of
omputational optimality.In both
ase(i) and
ase(ii) insertion at a later point leads to the violation of either the
orre
t-ness or the
omputational optimality of the transformation,
ontrary to our assumption.Hen
e, the transformation is lifetime optimal.6 An ExampleConsider the following example - same as in [11℄ - in Figure 3.Lo
al Properties:ANTLOC = f2; 4; 7; 8; 9gCOMP = f2; 4; 7; 9gTRANSP = f1; 3; 4; 5; 6; 7; 9; 10gGlobal Boolean Properties:AV IN = �AV OUT = f2; 4; 7; 9gANTIN = f2; 4; 5; 6; 7; 8; 9gANTOUT = f4; 5; 6; 7; 8gSAFEIN = f2; 4; 5; 6; 7; 8; 9gSAFEOUT = f2; 4; 5; 6; 7; 8; 9gSPAV IN = f4; 5; 8gSPAV OUT = f2; 4; 5; 7; 9gSPANTIN = f2; 4; 5; 6; 7; 8; 9gSPANTOUT = f4; 5; 6; 7; 8g 14

1

2

3

4 5

6

7

8

9

10

y = a + b
a = c
x = a + b

y = a + b

y = a + b

z = a + b
a = c

x = a + b

Figure 3: Initial program
1

2

3

4 5

6

7

8

9

10

y = a + b
a = c
x = a + b

a = c

x = a + b

h = a + b

y = h

 z = h

h = a + b
y = h

Figure 4: Transformed program15

Insertions and Repla
ements:INSERTi = f7gINSERT(i;j) = f(3; 5)gREPLACEif = f4; 7; 8gREPLACEil = f4; 7gThe solution is insertions just before the last
omputation in node 7 and on edge (3, 5),and repla
ement of the �rst
omputation in nodes 4, 7, and 8 and repla
ement of the last
omputations in nodes 4 and 7. The transformed program is given in Figure 4.7 Con
lusionWe have presented a simple, optimal, and pra
ti
al algorithm for partial redundan
y elimina-tion. The algorithm is
on
eptually simple as it evolves naturally from the new
on
ept of safepartial availability. The proof of
orre
tness of the algorithm also be
omes simple with the new
on
ept of safe partial availability as the basis of the argument. The algorithm is
omputation-ally and lifetime optimal. It works on
ow graphs whose nodes are basi
 blo
ks whi
h is thestandard in optimizing
ompilers. In
omparison with its prede
essor [11℄, our algorithm alsorequires four unidire
tional analyzes but it does not require the edge splitting transformationsto be done before its appli
ation.Referen
es[1℄ A.V.Aho, R.Sethi, and J.D.Ullman, Compilers: Prin
iples, Te
hniques, and Tools(Addison-Wesley, 1986).[2℄ F.Chow, A portable ma
hine independent optimizer - Design and implementation, PhDThesis, Dept. of Ele
tri
al Engineering, Stanford University, Stanford, Calif., and Te
h.Rep. 83-254, Computer Systems Lab., Stanford University, 1983.[3℄ V.M.Dhaneshwar and D.M.Dhamdhere, Strength redu
tion of large expressions, Journalof Programming Languages 3 (1995) 95-120.[4℄ D.M.Dhamdhere, A fast algorithm for
ode movement optimization, SIGPLAN Noti
es 23,10(1988) 172-180.[5℄ D.M.Dhamdhere, Pra
ti
al adaptation of the global optimization algorithm of Morel andRenvoise, ACM TOPLAS 13, 2(1991) 291-294.[6℄ D.M.Dhamdhere and U.P.Khedker, Complexity of bidire
tional data-
ow analysis, in: Con-feren
e re
ord of 20th ACM Symposium on the Prin
iples of Programming Languages(ACM, New York, 1993) 397-409.[7℄ D.M.Dhamdhere and H.Patil, An elimination algorithm for bidire
tional data-
ow prob-lems using edge pla
ement, ACM TOPLAS 15, 2(1993) 312-336.[8℄ D.M.Dhamdhere, B.K.Rosen, and F.K.Zade
k, How to analyze large programs eÆ
ientlyand informatively, in: Pro
eedings of the ACM SIGPLAN Conferen
e on ProgrammingLanguage Design and Implementation '92, ACM SIGPLAN Noti
es 27, 7(1992) 212-223.16

[9℄ K.H.Dreshler and M.P.Stadel, A variation of Knoop, R�uthing, and Ste�en's lazy
odemotion, ACM SIGPLAN Noti
es 28, 5(1993) 29-38.[10℄ J.Knoop, O.R�uthing, and B.Ste�en, Lazy
ode motion, ACM SIGPLAN Noti
es 27,7(1992) 224-234.[11℄ J.Knoop, O.R�uthing, and B.Ste�en, Optimal
ode motion: theory and pra
ti
e, ACMTOPLAS 16, 4(1994) 1117-1155.[12℄ E.Morel and C.Renvoise, Global optimization by suppression of partial redundan
ies,Comm. of the ACM 22, 2(1979) 96-103.[13℄ V.K.Paleri, Y.N.Srikant, and P.Shankar, A simple algorithm for partial redundan
y elimi-nation, ACM SIGPLAN Noti
es 33, 12(1998) 35-43.

17

