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Abstract

Estimating program worst case execution time or WCET is an important problem in the domain

of real-time and embedded systems that are associated with deadlines. In such systems, it is

vital that a part or whole of the program executes within a specified time limit. If WCET of

a program is greater than the specified time limit then the program is either recoded or the

architecture is redesigned to meet the specified time limit. Knowledge of WCET guides effective

scheduling of tasks ensuring optimum resource usage. Current state of the art techniques

estimate WCET of a program by dividing the program into a number of smaller components.

The cost of execution of these program components on the target are either statically obtained

by a static WCET analyzer or obtained by direct measurement by a measurements based

WCET analyzer before they are combined in an orderly manner using well known techniques

such as integer linear programming, timing schema or graph algorithms, to give the final WCET

estimate. Statistical WCET analyzers fit end to end measured execution times into a model

usually based on extreme value theory and extrapolate the curve up to the desired probability

to estimate WCET.

Static WCET analysis methods estimate WCET without running the program on the target

system and are hence constrained to make conservative assumptions about dynamic program

behavior, potentially leading to pessimistic WCET estimates. A static WCET analyzer is

complex to build and is not easily retargetable. A measurements based WCET analyzer has

access to runtime behavior, as a result, the pessimism of the estimate can be reduced. The

process of measurement and the amount of instrumentation should not affect the very timing

of the program which is being analyzed. Achieving accurate WCET estimates with sparse

instrumentation is not easy. In the case of statistical WCET analyzers, the model should be

chosen such that it is close to the real world. In case of both measurements and statistical
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WCET analyzers, the choice of test inputs exercised to build the samples should cover those

paths that most likely contribute to WCET.

The thesis proposes a hybrid WCET analyzer that consists of strong aspects of both static

WCET analysis (theoretical upper bound) and measurement based WCET analysis (accurate

information about runtime behavior). The thesis proposes to estimate program WCET as a

product of maximum instruction count (IC), where IC is the number of instructions executed

and maximum cycles per instruction (CPI). The idea of estimating WCET as a product of IC

and CPI instead of estimating it as a function of processor cycles, arises from the way RISC ar-

chitectures which comprise real-time and embedded systems, are built. RISC machines consist

of an instruction pipeline wherein multiple instructions are in execution at the same time. In

such systems, it is more meaningful to talk about the average cycles per instruction than the

number of cycles taken by each instruction. If there is low confidence on the coverage aspect

of the test input set, maximum IC is taken as the theoretical upper bound on IC, computed

by static structural analysis. If the test input set adequately covers the program, maximum IC

could be the measured maximum IC observed across different runs when the program is run

with the test input set. CPI is the measured parameter. On advanced architectures, this simple

timing equation is observed to give 10-50% improvement in accuracy of WCET compared to

Chronos, a static WCET analyzer.

Factorizing execution time as a product of IC and CPI, reveals the existence of a correlation

between CPI and IC in many programs. Either a direct or an inverse correlation is observed.

In some programs, the correlation is mixed. In some straight line programs, irrespective of

the input, there is negligible variation seen in IC or CPI. Using these observations, a scatter

plot of CPI versus IC is generated using large number of CPI, IC samples. A curve is fit over

these points and extrapolated up to theoretical upper bound on IC. The product of theoretical

upper bound on IC and the corresponding CPI is found to be more accurate than the product

of maximum IC and maximum CPI in many cases. On advanced architectures, correlation is

observed to give 50-60% improvement in accuracy of WCET compared to Chronos.

The prime advantage of viewing execution time in terms of CPI is that it enables us to make

use of program phase behavior that refers to a phase like variation of program CPI during ex-

ecution. On close observation, this kind of CPI variation is determined by the way in which

instructions are executed in a program. We use existing algorithms which statically decompose
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the program into regions that exhibit homogeneous phase behavior. The worst case execution

time of each phase is estimated by a product of the phase worst case IC and phase worst

case CPI. The individual worst case execution times of the phases are combined together with

the information about the worst case occurrence of these phases to yield the overall program

worst case execution time. Variation of CPI within a phase is repetitive and homogeneous.

On an average, the coefficient of variation of CPI within a phase is within 10% of mean CPI.

As a result, one can capture CPI information of a phase with very less instrumentation (1

instrumentation point in every 100-1000 instructions). Less instrumentation is desirable in any

measurement based WCET analysis technique as it implies minimum intrusion in the measure-

ment process. With the instrumentation ratio being low, we can resort to even source code

level instrumentation, which will result in negligible overhead(up to 2.2% using performance

API such as PAPI).

The homogeneous variation of CPI within a phase implies that we can obtain tight confi-

dence intervals of CPI associated with a probability using a simple probabilistic inequality like

Chebyshev inequality. We shall see that using the theoretical upper bound on IC and the prob-

abilistic upper bound on CPI, we can derive a probabilistic bound on the program WCET. In

some programs, there are points where CPI variation is quite high. Using Chebyshev inequality

as is, results in highly pessimistic upper bounds on CPI. We hence propose a mechanism to

isolate such points of high CPI variation and divide phases into smaller sub-phases by defining

a PC signature that codifies executed paths concisely and is obtained using profiling. This

process of refining phases is observed to bring down the variance of CPI within a sub-phase

and hence tighten the CPI bounds(9-33%). In some programs, refinement based on signature

is not successful in bringing down the CPI variance. For such programs we describe a method

wherein sub-phases are further refined based on allowable CPI variance within a sub-phase

which is user controlled leading to further improvement in accuracy of WCET(13-52%).

The proposed probabilistic WCET analyzer is compared with RapiTime, a commercial

probabilistic measurement based WCET analyzer. At a probability of 0.99, RapiTime with the

highest level of instrumentation(FULL), estimates WCET with 10.6% more accuracy compared

to our WCET estimate obtained by refinement based on PC signatures. However, with further

refinement based on controlling CPI variance of a subphase to 50% and 10% of its original value,

the accuracy of our WCET estimate improves by 18% and 32% compared to RapiTime. Use of
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program phase behavior enables us to achieve this result with only 12% of the instrumentation

points used by RapiTime. WCET analysis based on signatures takes only half the time taken by

RapiTime using FULL instrumentation. Further refinement based on controlling CPI variance

takes about 3/4ths of the time taken by RapiTime.

Since theoretical worst case IC computation is independent of worst case CPI computa-

tion, the two processes can be parallelized, reducing overall analysis time significantly, unlike

many state of the art methods that carry out structural analysis and architecture model-

ing/measurement of execution time together. The phases can themselves be analyzed in paral-

lel as the results of analysis of one phases is independent of the results of analysis of the other

phases. Running a parallelized version of our technique on one of our programs, the serial

version of which is 4 times slower than RapiTime, we observe a speedup of a factor of 5.5 with

8 threads.

The homogeneity of CPI variation within a phase also helps in estimating worst case remain-

ing execution time well before time for a particular (program, input) pair. This information

is very useful in a situation where the time between the availability of the result of a program

and the usage of the result is quite high. Energy consumption can be reduced by reducing the

processor frequency in such a case. Early availability of an accurate estimate of the remain-

ing execution time prevents hoarding of resources for longer than needed and helps in better

resource utilization.
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Chapter 1

Introduction

Real-time systems pervade several aspects of modern life such as household appliances, air

traffic controllers, medical systems, robotics, ticket reservation systems, video games and de-

fense systems. These systems operate within the constraints of time. In such systems, the

availability of results within the allotted time is as important as the logical correctness of the

results themselves. In real-time systems and embedded systems, where time is a critical re-

source, estimating program worst case execution time (WCET) is an important problem. In

such systems, it is vital that a part or whole of the program executes within a specified time

limit. If a program is not able to produce the result within the allotted time, it is said to miss

its deadline. If the program WCET is greater than the specified time limit then the program

has to be recoded or the architecture has to be redesigned to meet the specified time limit.

Realtime systems are broadly classified into two kinds. Hard real-time systems are systems

where all programs must strictly meet its deadlines. Failure to do so can compromise the

integrity of the system itself and can cause grave damage to life and property. Examples of

such systems are autopilot, navigation control systems built into aircrafts, air traffic controllers

and automobile control programs. On the other hand, in soft real-time systems, the ability

for a program to meet its deadline is only a desired property and such systems can tolerate a

few deadline misses. Typical examples are multimedia and telecommunication systems. Soft

real-time systems are generally driven by human perception. As a result a few misses do not

cause the user to observe a significant change in the behavior of the system. In the case of

soft real-time systems, performance is important. As a result, accuracy of the WCET estimate

assumes higher priority than safety. If WCET is estimated to be much higher than the actual

1
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WCET, hoarding of resources ensue even when there is no real need, thus causing ineffective

resource utilization leading the system to perform poorly.

The execution time of a program is dependent on its input and the underlying system ar-

chitecture on which the program runs. Each program is associated with a theoretical upper

bound on its execution time on a given architecture, which is the worst case execution time,

popularly referred to as WCET. Information about WCET also helps in an efficient scheduling

of resources in a situation where several programs are executed in sequel. The worst case input

is defined as the hypothetical input that causes the program to execute for the theoretical

upperlimit of time. Since building the set of all possible inputs is computationally hard, the

earliest attempts of estimating WCET involved working with a representative set of test in-

puts, executing the program with each one of them and multiplying the maximum observed

execution time by a predetermined factor. However such an estimate can get too pessimistic

to be even usable and hence much more informed methods are needed to obtain a reasonably

accurate estimate.

The WCET of a program is influenced by two main factors.

1. The number of instructions executed, determined by the static program structure.

2. The time taken by instructions to execute, determined by the underlying system archi-

tecture.

In early microprocessors, the cost of executing all instructions take the same time. But with

the introduction of the pipeline mode of execution, each instruction takes a variable amount

of time depending on the preceeding and succeeding instructions. Processor complexity fur-

ther increases with the introduction of components like cache memories that are introduced to

mitigate the delay in fetching instructions and data from the main memory. The presence and

absence of the instructions or data in the cache have a significant influence on the estimated

WCET of the program[65]. This is further exacerbated by components such as branch predic-

tors that track program history to predict branch targets early. As a result, one can no longer

analyze an instruction in isolation.

Estimating WCET accurately is hence a computationally hard problem owing to the large

size of the possible inputs and the complexity of the underlying system architecture. There is a
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possibility that the estimated WCET is much larger than the actual WCET. Such an estimate

is said to be pessimistic. During the course of exhaustive testing, if one encounters a test input

where the maximum measured execution time is greater than the estimated WCET then the

estimated WCET is said to be unsafe. A safe estimate is always greater or equal to the actual

WCET. The confidence in a WCET estimate being safe increases as the program is used for a

longer time. An estimate closest to the maximum measured execution time during exhaustive

testing is said to be tight and ensures optimal resource allocation.

1.1 Traditional Ways of Estimating WCET

A tool or method or algorithm that estimates WCET is called a WCET analyzer. A WCET

analyzer is developed for a given system architecture. There are two main schools of thought

for estimating WCET- Static analysis and Measurement based analysis. The static method es-

timates WCET of a program without actually running the program on the particular hardware

architecture. The measurement based method executes the program on a simulator or a real

system architecture for large number of inputs and uses these measurements for analysis and

estimation of WCET.

1.1.1 Static WCET Analysis

In static method, instead of analyzing the program as a whole, the program is split into smaller

components. The components can be basic blocks or groups of basic blocks. The execution

time of each component, irrespective of the input, is computed based on an analytical model of

the underlying architecture developed specifically for this purpose. The component execution

times are combined appropriately, using well known techniques like integer linear programming

(ILP), tree based schema, graph algorithms, to give the overall program WCET[65]. Since

static analysis does not have runtime information and since details about the architecture

components might not be available, the analysis has to make certain conservative assumptions

about the architectural state at various points in the program which can result in a pessimistic

WCET estimate.

If static analysis is performed on a sound architectural model, they are theoretically guar-

anteed to be safe. However they are not guaranteed to be tight. The static WCET estimate
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suits hard real-time systems where emphasis is more on safety than tightness. Popular static

WCET analyzers include the commercially successful tool aiT[111] and several research tools

developed by universities such as BoundT[112], SWEET[6, 8] and Chronos[94]. Static analysis

will be described in detail in Chapter 2.

1.1.2 Measurement-Based WCET Analysis

Measurement based analysis usually involves measuring the cost of executing the parts of the

program either on a system simulator or directly on the system architecture. The measurements

can be carried out at the level of paths[66], basic blocks[29] or groups of basic blocks[55]. A

popular way of combining these costs has been through of the use of an ILP framework, tree

based schema or graph algorithms, similar to static WCET analysis to give the final estimated

WCET. Measurement based WCET analysis carried out thus are also known as hybrid WCET

analysis as they make use of both measurements and static analysis. A major concern in any

measurement based method is the coverage provided by the test input set. The set of inputs

selected should be such that all the likely paths that may contribute to WCET are covered.

Higher the path coverage, higher is the accuracy of the WCET estimate. RapiTime[102],

a commercial timing analysis tool is an example of a popular measurements based WCET

analyzer. Due to the availability of information at runtime, no conservative assumptions need

be made and the possibility of the WCET estimate being closer to the actual WCET is higher.

The other concern in measurement based WCET analyzers is that the process of measurement

and the amount of instrumentation should be such that it should not alter the very timing of

the program that is being analyzed[3].

Statistical measurement based methods generally try to fit a model over measured execution

times obtained by running the program with a large number of inputs. The curve is extrapolated

to achieve estimates of WCET depending on the probability at which the estimate is desired[38,

97, 98, 71]. It should be noted that only a statistical estimate of WCET can be derived in this

case but not the theoretical upper bound. However, if the tail of the distribution is heavy, the

extrapolated WCET can asymptotically tend to infinity, leading to a very pessimistic estimate

of WCET especially if tail end estimates are required. Further, the parameters derived from

the distribution CDF need to be themselves validated as any set of measured samples could

have missed ”the worst case input”. For this reason, both measurement based WCET analyzers
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and statistical WCET analyzers are more suited for soft real-time systems where the emphasis

is more on tightness than on safety.

The estimates obtained both by any kind of WCET analysis need to be validated before

they are used. Since actual WCET is unknown, the estimated WCET needs to be ultimately

compared with maximum observed WCET obtained through measurement on that system,

which actually forms the lower bound of the actual WCET.

1.2 Objectives of this Research

Using a purely static approach to estimate WCET is associated with certain issues. The absence

of runtime information compels us to make certain conservative assumptions about runtime

behavior which can lead to pessimistic WCET estimates. The effort to model the underlying

system architecture is a complex task and porting the model on to a different architecture is not

a trivial task. One of the major concerns in measurement based techniques is instrumentation

overhead. Deciding where to place instrumentation points and having minimum number of

instrumentation points is a challenging task[2]. The instrumentation should be nonintrusive

and should not affect the very timing of the program which is being measured. Statistical

techniques need to validate the model which is fitted over the measured execution points.

Earlier microprocessors were based on Von neumann architecture where instructions were

stored in memory. The processor would fetch instructions one by one sequentially and execute

them. Each instruction would take a certain amount of cycles to execute. Computing WCET

of a program assuming a Von Neumann architecture is straightforward. One has to simply

multiply the maximum occurrence of each instruction with the cycles it takes to execute and

do this for all the instructions in the program to obtain WCET.

However today’s microprocessors are far more complex than Von Neumann machines. Most

real-time systems and embedded microprocessors are dominated by RISC (Reduced instruction

set computing) type of machines[46] that involve a pipeline of a number of stages ranging

typically from 5 to 10. Each instruction goes through these pipeline stages before it completes

execution. Due to the presence of a pipeline, several instructions could be executing at a given

point of time. Hence in such systems, it is more meaningful to talk of the average number of

cycles an instruction can take (also known as CPI) rather than individual cycles taken by an
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instruction. The execution time of a program is a product of the number of instructions it

executes (instruction count or IC) and the average CPI of the program.

In this thesis, we propose a WCET analyzer that treats program execution time as a product

of the instruction count(IC) and cycles per instruction(CPI). This factorization uncovers an

inherent correlation between IC and CPI that can be used to improve the accuracy of WCET

estimate. For a specific class of programs, that exhibit phase behavior, we can fine tune

the accuracy of WCET estimate further by estimating WCET of the program in terms of its

individual phases. Phases also help in reducing instrumentation required. The technique is

modified to also provide a probabilistic WCET estimate, as a result, one can obtain WCET

estimates at the desired probability value depending on the criticality of the application.

We target our research towards soft real-time systems. Three representative architectures

of varying complexity are studied (Simplest which has only an instruction cache and no data

cache, Inorder complex which is an inorder pipeline and has both instruction and data cache

and complex which is an out of order pipeline and has both instruction and data cache). For

evaluation, the standard benchmarks taken from the WCET project suite[108] and embedded

benchmarks[109] are used. In addition to this, we also evaluate our technique by applying

it to DEBIE-1, a real-life space application developed by Space Systems Ltd, Finland[106].

The proposed method is evaluated by comparing the results with the static WCET analyzer,

Chronos[94] and the commercial measurement based WCET analyzer, RapiTime[102].

1.3 Our Contributions

1. Our first contribution is that we present a fundamental timing model that estimates

program WCET as a product of a maximal function of IC and maximal function of CPI.

All further enhancements presented eventually build on this model. By static structural

analysis, we compute the theoretical upper bound on IC. If adequate coverage is achieved,

we could use maximum observed instruction count in place of theoretical upper bound

on IC. CPI forms our measurement parameter. We measure average CPI of a program

using several representative test inputs. Employing several analytical and statistical

functions on these CPI samples, we estimate WCET. When using an analytical function

of maximal CPI (maximum of average CPI), Chronos[94] estimates WCET with greater
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accuracy (by 8.9%) on Simplest architecture. While on Inorder complex and complex

architectures, the WCET obtained using analytical function of maximal CPI is 38% and

51.7% more accurate than Chronos. When using a statistical function of the maximal CPI

(99th percentile CPI), Chronos estimates WCET with greater accuracy (by 36.5%) on

Simplest architecture. While on Inorder complex and complex architectures, the WCET

obtained using analytical function of maximal CPI is 10.6% and 29.3% more accurate

than Chronos.

2. It is observed that the IC and CPI values, that have been collected over runs of a program

with several inputs, are correlated. We find five kinds of correlations- direct correlation,

inverse correlation, programs where irrespective of the input, there is no variation in IC

and CPI, programs where with increasing IC, CPI saturates to a particular value and

finally, programs that show a random correlation between IC and CPI. Our second con-

tribution is that we show how this correlation helps us optimize our previous WCET

estimate which is a product of maximal IC and maximal CPI. Using the correlation,

we can estimate an optimal CPI corresponding to maximal IC and use that instead to

estimate WCET. On Simplest architecture, Chronos estimates WCET with 4.7% more

accuracy than WCET estimated using a product of maximal IC and optimal CPI. On

Inorder complex and complex architectures, the product of maximal IC and optimal CPI

is 49% and 62.3% more accurate than Chronos. Apart from increasing accuracy in es-

timated WCET, correlation information helps reduce test resources in case of programs

where IC and CPI are not found to significantly change with different inputs. Depend-

ing on the kind of correlation, benchmarks can be classified into groups such that one

benchmark from each group can be studied in detail.

3. Our third contribution is that we use phase behavior observed in many programs to

build a measurement based WCET analyzer that estimates WCET with greater accuracy

with less instrumentation. The basic timing equation is modified to estimate WCET of

a program in terms of its phases. Considering phase wise CPI makes the WCET more

accurate than considering overall program CPI. Phase behavior manifests itself in two

ways. Firstly, the variation of CPI within a phase is homogeneous and repetitive. This

behavior is seen due to the manner in which instructions execute. It is observed that
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in most programs, some instructions are executed more number of times than the rest.

This is due to the presence of programming language structures like loops. If we examine

the instructions in the pipeline belonging to a loop, we see repeatedly similar patterns of

instructions occurring over time. This results in the CPI changing in a repetitive pattern

while a loop is being executed, as the same set of instructions is being executed in every

loop iteration. As a result, there is little variation in the individual CPIs across various

iterations comprising the same loop. Secondly, CPI varies in a phaselike pattern with each

phase exhibiting a distinct pattern. This occurs in situations where programs are made up

of several sub-tasks. A sub-task can be either a loop or a procedure or even a large set of

functionally related instructions. A program proceeds to execute instructions pertaining

to each sub-task in an orderly manner. CPI varies in such a way that the coefficient of

variation of CPI within each phase is quite less compared to the coefficient of variation

of CPI across phases. Using average CPI per phase instead of average CPI of the whole

program in the timing equation increases the accuracy of WCET estimate. Hence the

problem of estimating WCET can be thus sub-divided into problems of estimating phase

WCET and then combining the individual phase WCETs, factoring in their maximum

occurrence frequency to give overall program WCET.

On Simplest architecture, phase information brings the WCET estimate very close to

Chronos (1.73% higher than Chronos). On Inorder complex and complex architectures,

using phase information the WCET estimates are 43% and 55.3% more accurate than

Chronos. Phases have important implications on the instrumentation aspect of WCET

analysis. Other standard measurement based methods employ instrumentation at the

level of basic blocks or a group of basic blocks. The homogeneity in the variation of

CPI allows us to instrument the program at the granularity of thousands of instructions

without causing a significant impact on the accuracy of WCET.

4. The homogeneity of CPI within a phase allows us to use simple probabilistic inequalities to

bound phase CPI. Using this concept, we modify the hybrid WCET analyzer to estimate

WCET probabilistically. A probabilistic WCET estimate is much more useful than an

absolute WCET estimate as depending on the criticality of the application, one can

choose the corresponding WCET estimate at the desired probability level. In this thesis,

we estimate WCET at three probability values p=0.9, 0.95, 0.99. Across all benchmarks
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considered in this thesis, on an average we have found the variation of CPI to be within

10% of the mean. Using this fact, we estimate probabilistic bounds of CPI within a phase

using a very basic probabilistic inequality the Chebyshev inequality, which gives us tight

upper bounds when variance is small. We prove that a probabilistic WCET for the whole

program can be obtained using theoretical upper bound of phase IC and probabilistically

bounded phase CPI. This forms our fourth contribution.

5. Our fifth contribution is that we introduce a PC signature, that detects phases at a much

finer level than conventional phase detection techniques. PC signatures codify paths in

a compressed manner. We describe a way to collect them using profiling. There exists

programs in which CPI variation is high at certain points, as a result, the Chebyshev

bounds computed as is, are quite large compared to the mean CPI. This results in pes-

simistic WCET estimates. The PC signatures help isolate the points of high variation

of CPI bringing down the variance of CPI within a sub-phase and hence tightening the

corresponding CPI bounds. We also describe a method to refine such sub-phases into

smaller sub-phases based on allowable CPI variance within a sub-phase that can be spec-

ified by the user. At p=0.99, using signatures, the average pessimism of WCET estimates

across all benchmarks improves by 9%, 23% and 33% compared to estimates obtained

by Chronos on Simplest, Inorder complex and complex respectively. Further refinement

based on controlling CPI variance within a sub-phase to 50%, 10%, 5% and 1% of its orig-

inal value yields 12.9%, 13.1%, 13.1%, 13.1% improvement on Simplest architecture. On

Inorder complex and complex architectures, the corresponding improvements are 38%,

40%, 41%, 43% and 46%, 47%, 50%, 52%.

Compared to RapiTime, the average pessimism of WCET obtained by our technique

based on PC signatures across all benchmarks at p=0.99 improves by 7% when programs

are instrumented at START OF SCOPES granularity. Program phase behavior helps us

to achieve this with only 10% of instrumentation points used by RapiTime. Further re-

finement based on controlling CPI variance within a sub-phase to 50%, 10% and 5% of its

original value yields an improvement of 37%, 49% and 51% respectively. Any further re-

finement yields marginal improvement. WCET analysis based on signatures takes about

3/4ths of the time taken by RapiTime using START OF SCOPES. Further refinement

based on controlling CPI variance takes 30% more time than RapiTime.
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When RapiTime instruments at FULL granularity, the average pessimism obtained by our

technique based on signatures is more pessimistic by 10.6%. However further refinement

based on controlling CPI variance of a sub-phase to 50% and 10% of its original value

yields 18% and 32% improvement. Any further refinement yields marginal improvement.

Use of program phase behavior enables us to acheive this result with only 12% of the

instrumentation points used by RapiTime. WCET analysis based on signatures takes

half the time taken by RapiTime using FULL instrumentation. Further refinement based

on controlling CPI variance takes about 3/4ths of the time taken by RapiTime.

6. We also present an implementation of this technique on a native platform. A simulation is

atleast 10 times slower than native execution. Hence gathering CPI traces takes time for

programs that execute for longer time. In such cases, we can benefit from native execution

wherein large traces can be generated within a few seconds. Since CPI is a very important

performance parameter of a system, there exists hardware support in most machines to

measure CPI with minimal intrusion. We use PAPI, the popular performance API to

access hardware performance counters. On an average, the overhead due to measurement

of CPI using PAPI is found to be 2.2%.

7. Lastly, we demonstrate that apart from requiring minimal instrumentation, phases offer

several advantages. The time to estimate WCET using the phase based technique can

be easily parallelized by analyzing different phases in parallel. Applying this technique

to Dijkstra, we found an improvement in the time taken for WCET analysis based on

refinement with respect to PC signature by a factor of {1.98, 3.68, 4.7, 5.5} with {2

threads, 4 threads, 6 threads, 8 threads} respectively. The homogeneity of CPI within a

phase can be used in estimating the worst case remaining execution time of a program

run with a specific input well before the program finishes execution. Predicting execution

time early prevents holding onto resources for a longer time and leads to better resource

utilization.

1.4 Organization of this Thesis

This thesis is organized as follows. In Chapter 2, we begin with a brief background on WCET
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analysis. This includes the various factors that affect program WCET, the desirable traits of a

WCET analyzer and the various challenges one faces in estimating WCET. This is followed by a

detailed survey of existing WCET analysis methods and sets the context of the proposed work.

In Chapter 3, we begin by describing our experimental framework in terms of the architectures

studied, the details of the benchmarks used and their input configurations. We describe our

fundamental timing model which forms the basis for all the forthcoming chapters. We also

describe how we compute the theoretical upper bound on the number of instructions executed

(IC) using integer linear programming. This bound is combined with several analytical and

statistical functions of measured CPI to give various WCET estimates.

In Chapter 4, we shall see that in many programs, there exists a correlation between overall

IC and CPI. Five classes of correlation are observed. The correlation information is used to

improve upon the WCET estimated in Chapter 3. In Chapter 5, we shall examine program

phase behavior in detail and how phase information improves worst case execution time esti-

mates in programs exhibiting phase behavior. The basic timing equation that estimates whole

program WCET described in chapter 3, is now modified to estimate phase WCET, which are

combined appropriately factoring in the maximum frequency of occurrence of phases to give us

overall program WCET.

In Chapter 6, we shall describe a probabilistic model using which we obtain probabilistic

bounds of phase CPI using Chebyshev inequality. We introduce the PC signature and describe

the method of classifying a phase into smaller sub-phases based on PC signatures. We also

describe how one can refine a sub-phase further into smaller sub-phases based on allowable CPI

variance within a sub-phase. Using probabilistic phase CPI bound, we describe a derivation of

the probabilistic WCET of a program. We estimate WCET at three different probability values

p=0.9, 0.95, 0.99. In Chapter 7, we describe the implementation of a phase based WCET on a

native machine using performance API or PAPI, that allows us to access hardware performance

counters lodged within the processor to obtain CPI measurement with least intrusion.

In Chapter 8, we describe other applications of phases in timing analysis. The first advan-

tage is that the process of timing analysis in itself can be parallelized as each phase can be

analyzed in parallel. Secondly, the homogeneity of phase CPI can be used to predict well in

advance, the worst case remaining execution time of a run of a particular (program, input)

pair. This information can be used in preventing hoarding of resources for a longer time. We
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summarize our work in Chapter 9 and indicate a few key directions in which this work can be

extended.



Chapter 2

Background and Literature Survey

In this chapter, we first present a brief background on worst case execution time (WCET)

analysis and the challenges in WCET estimation and several aspects with respect to its usage.

Then we shall review various approaches to WCET analysis and solutions that have been

proposed to deal with the issues present in each one of them. We review measurement based

WCET analyzers in greater detail as the thesis also proposes a measurement based WCET

analysis method.

2.1 Background

When a given program is run with the worst case input, the program executes for the theoretical

upper limit of execution time or the worst case execution time (WCET). If the worst case input

were to be known apriori, estimating WCET is trivial and involves running the program with

that worst case input. In general, it is difficult to guess the worst case input as it depends on

both structural properties of the program and the underlying system architecture. Hence the

standard method of evaluating any WCET analyzer has been as follows. Lets term the WCET

estimate made by a WCET analyzer as ’W’. The program is executed with an exhaustive set

of inputs that satisfy standard criteria such as MC/DC coverage criteria commonly used in

real-time and embedded system testing[47] and cover the widest possible range of data. In

some programs the likely worst case inputs are easy to determine, for example, bubble sort

executes maximum instructions if the input elements are in reverse sorted order. Such inputs

are also included into the test input set. The observed maximum execution time in cycles, ’M’

13
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is noted. Ideally M should be equal to W. If W >= M, the estimate is said to be safe. If W

< M, it is an unsafe estimate. If W is much greater than M, the WCET estimate is said to

be pessimistic. The closer W is to M, the more accurate the WCET estimate is said to be. In

the coming sections we shall review literature that discusses several aspects of test input set

generation.

2.1.1 Desirable Features of a WCET Analyzer

Typically a WCET analyzer is evaluated only with respect to the accuracy of the estimate it

produces. However, there are several other desirable features of a WCET analyzer that are

beneficial to the user and they are enumerated as follows:

1. Accuracy: It is important that an estimate made by a WCET analyzer is accurate. If

a WCET estimate is too pessimistic, this results in over-provisioning of resources. In a

system where there are multiple tasks dependent on the timing of each other, a pessimistic

WCET estimate of one task has a cascading effect on the component dependent on it.

Accurate estimates are also called as tight estimates in literature.

2. Safety: A safe estimate is a necessity in hard real-time systems. If a component within

a hard real-time system is designed with the help of an unsafe estimate, the possibility

of a deadline miss increases which can result in catastrophic consequences to life and

property. However in case of soft real-time systems, where a few deadline misses can

be tolerated without compromising on the functionality of the system, tightness assumes

more priority than safety.

3. Non-Intrusive Instrumentation: A measurement based WCET analyzer typically instru-

ments the program inorder to measure the time taken by its components and creates a

trace which will be analyzed further to estimate WCET. In such WCET analyzers, it is

important that the process of instrumentation and the number of instrumentation points

are both non-intrusive, so that it does not affect the very timing of the program which is

being analyzed.

4. Time taken to estimate WCET: The need for fast WCET analysis depends on the ap-

plication domain, where the WCET analyzer is going to be used. In systems where the

architecture is already finalized, the emphasis is on the accuracy of the WCET estimate
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rather than the time taken to come up with an estimate. However if the target system is

yet to be finalized, quick WCET estimates are required to find the best architecture to

run the program on, analysis time takes on more importance than accuracy.

5. Retargertability: If a WCET analyzer can be modified with ease to analyze programs for

another architecture then the WCET analyzer is said to be retargetable. Retargetability

is a desirable feature in systems that are in the design phase and the final architecture is

yet to be decided and in architecture exploration studies. Such systems can benefit from

retargetable WCET analyzers which can quickly provide WCET estimates on a range

of architectures, so that the designer can weigh the trade-offs and make a well informed

decision.

6. Scalability: A static WCET analyzer is said to be scale well if the analysis time is

preferably a sub linear or or logarithmic function or linear or atleast quadratic function

of the size of the code being analyzed. A measurements based WCET analyzer is said to

scale well if the analysis time if preferably a sub linear or logarithmic or linear or atleast

quadratic function of the execution length of the program and the trace size.

7. Computing other related information: Apart from stating only the WCET, the analyzer

can provide several other valuable information regarding the program as it studies the

program in depth anyway. Information such as the bottle necks lying in the code, the

WCET of individual functions, the longest path that contributes to the WCET, the list

of critical variables or functions that heavily influence the WCET of the program can

help the designer in improving his program significantly. In certain class of applications,

it is desirable to be able to compute complementary statistics such as BCET, ACET with

ease. The difference between the program WCET and its BCET is termed as program

jitter. In industrial applications, there has been a lot of interest in knowing the program

jitter apart from just its WCET[34].

There are many other considerations to be kept in mind while designing a WCET analyzer[35].

The dependence on the availability of the program source code is one factor. If the WCET

analyzer doesn’t need the program source code, the program binary has to be read by a de-

coder and a basic control flow graph of the program has to be constructed for the purpose of

WCET analysis. Introducing annotations becomes easier with the availability of source code
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than rather just the binary. If the WCET analyzer needs program debug information, then

it is said to have a dependency on the compiler. Many a times, the library code is often not

available at the source level. In such cases, the WCET analyzer should be able to work with

the library code as a black box with the provision of assigning pre-determined estimates for

such code.

2.1.2 Challenges in WCET analysis

There are several challenges in structural analysis and architecture modeling while building an

accurate WCET analyzer.

1. Program Structure

WCET analysis requires certain conditions to be satisfied regarding program structure.

It requires all the loops to be bounded and all the recursive routines to have a maximum

depth. Failing which, the program is said to be unbounded in time. Most static tools

require the user to annotate the loop bounds manually. However there are some industry

standard tools like Absint[111] that can automatically derive loop bounds for many pro-

grams with simple loops. In some situations, the number of times a loop iterates depends

on many factors such as input values, satisfaction of a particular condition or dynamically

computed values. In these cases it is impossible to arrive at a loop bound. Hence deriving

loop bounds in general, with the least manual intervention still remains a great challenge

for WCET analyzers today. WCET analyzers typically cannot analyze code that contains

dynamic data structures, since they are created on the fly during program execution and

are difficult to model statically.

2. Infeasible Paths

An infeasible path is a path in the program control flow graph that can never be traversed

in any valid execution sequence of the program. Such paths have to be excluded during

WCET analysis as they tend to inflate the estimated WCET. In addition to genuine

infeasible paths, there might be certain portions of code like exception/error handling

code which might not be visited during normal operation and hence need not occur in

the worst case and which one might want to exclude from WCET analysis. The WCET

analyzer should support excluding analysis of parts of code. More about this will be
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discussed in coming sections.

3. Context Sensitivity

An application program may have several procedures, some of them being called in more

than one context. If the procedure takes a large amount of time in one context than

the other, ignoring context sensitivity would again inflate the estimated WCET. Because

the WCET analyzer would always assign an upper bound on the execution time of the

procedure regardless of the context. Accounting for context sensitivity would distinguish

the procedure calls occurring in different contexts during the analysis thus avoiding the

problem of overestimation. Either procedure inlining or cloning techniques are employed

to deal with contexts. Procedure call strings have also been used to deal with context

sensitivity during WCET analysis[73]. More about will be discussed in coming sections.

Another kind of context sensitivity exists in program loops. A program loop can be

thought of as a series of non recursive subroutine calls of the same procedure, each

call representing a different iteration. Since the program behavior can be different in

different iterations, assigning the worst case behavior for all the iterations would inflate

the WCET estimate. Hence this warrants separate analyses per iteration which requires

loop unrolling to be performed in most of the cases[73]. A concept called VIVU or virtual

inlining virtual unrolling is performed to mitigate the overhead of code expansion[18].

Healy et al[20] describes methods to detect whether branches are going to fall through

or jump by analyzing assignments to variables and registers. Using this information the

timing analyzer in [20] is able to detect in some programs that the longest path is taken

in only half the time during loop execution and not every iteration.

4. Program Modes

A program is said to execute in different modes if it executes different paths based on the

value of certain input variables. A typical examples is the fast fourier transform popularly

known as the FFT (section 3.2 of chapter 3). It has two primary modes of operation,

the normal FFT and the inverse FFT. The inverse FFT executes an additional amount

of code compared to the normal FFT. A mode specific WCET is more accurate than one

that does not consider modes.
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5. Architecture modeling

Modeling the complexities of the underlying architecture statically is a great challenge

for a static WCET analyzer. Typically vendors avoid publishing processor specifications

in great detail as they want to retain some flexibility as unpublished specifications can

be subject to future change, if needed[74]. Hence there is a possibility of error being

introduced during translation from documentation to the model used for static analysis.

Once the abstract processor model is developed, it is non-trivial to verify the correctness

of the model. The workings of components like caches depend highly on the contents of

program variables. Determining the exact range of values of a variable statically is almost

impossible. A coarser range might be easier to derive but might result in a pessimistic

WCET estimate[65].

6. Timing Anomalies

Modern architectures comprise of several components that may interact each other in

non-intuitive ways. Intuitively, it would be assumed that a locally faster execution en-

tails a decrease of the overall program WCET. A timing anomaly occurs when a locally

faster execution instead increases the overall program WCET[81, 36]. Since verifying the

absence of timing anomalies is provably hard, timing analyzers are forced to consider all

possible scenarios, that is, to follow execution through several successor states whenever a

state with a nondeterministic choice between successor states is detected. This may lead

to a state explosion. A model-checking-based automated timing anomaly identification

method has been proposed [44] for a simplified processor. However, the scalability of this

method for complex processors is not obvious.

2.2 Literature Review on WCET Analysis

In static and measurement based methods, the problem of estimating whole program WCET

is divided into smaller problems of estimating WCET of smaller program components, which

we term as units of analysis. Thus WCET analysis is comprised of three following steps.� Structural analysis

The structure of a program is studied by building a control flow graph out of the program

binary. Depending on the method, the unit of analysis could be a simple basic block[111,
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29] or a collection of basic blocks like segments[55] or scopes[6]. It could also be the

individual paths in the program[66]. Loops in the program are identified and bounds are

ascertained by analysis or can be provided by the user in the form of annotations. Paths

that can never be executed in any valid execution (infeasible paths) could be singled out

from analysis.� Low Level Analysis

Structural analysis only depends on the program and is totally independent of the un-

derlying architecture on which the program is run. Inorder to estimate WCET, the effect

of the underlying architecture has to be accounted for. Hence in this step, the cost of

executing the analysis unit determined in the previous step is estimated either through

architectural modeling or direct measurement. Architecture modeling involves statically

estimating the cost of executing the analysis units taking into account, the effects of

caches, pipelines etc. Alternatively, the time taken by an analysis unit can be measured

either directly on the target hardware using either software calls or special hardware[73].

If the final system is not available, a simulator could be used.� Final Estimate Calculation

The costs of the analysis units thus computed have to be combined in accordance with

the program structure to give us the overall program WCET. There are multiple ways

of obtaining the combined WCET estimate. The tree-based approach [4] traverses the

abstract syntax tree of a program at source code level in a bottom-up manner and com-

putes upper timing bounds for connected code constructs. The computation of the timing

bounds is steered by predefined combination rules which state how the execution times

of parent constructs are derived based on the execution times of their child constructs.

After the computation, the current construct is collapsed and its WCET is propagated

to its parent constructs and hence ultimately to the root of the program to give the final

WCET estimate.

The path-based approach [66, 6] models each possible path in the control flow graph

explicitly. For each of these paths, the cost of executing the path is computed. The

length of the longest path together with the cost of executing the instructions appearing

in the path together contributes to the execution of the path. That path which has the
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maximum execution time is the worst case path.

The implicit path enumeration technique (IPET) [95] does not explicitly enumerate pro-

gram paths but rather implicitly considers them in its solution. This is accomplished by

converting the problem of determining the bounds to one of solving a set of integer linear

programming (ILP) problems. The CFG is transformed into a set of linear constraints.

The equations warrant that the traversal counts of all incoming edges of v are equal to

the traversal counts of all outgoing edges of v. The problem to be solved is to maximize

the overall flow through the CFG. The objective equation to be maximized is a sum of

terms where each term is a product of frequency of execution of the analysis unit (variable

which is to be maximized) and the cost of executing the analysis unit on the target.

2.2.1 Static WCET Analyzers

Static WCET analyzers analyze the timing properties of the program without actually run-

ning them on the target system. For this reason, it has to develop an abstract model of the

system and analyze the effect of executing each instruction on the developed model. Once the

cost of executing the components of the program on the given architecture, are derived, the

final WCET estimate of the whole program can be evaluated using well known techniques like

IPET[111], tree based schema[4] or explicit path enumeration[6]. We now discuss the steps

involved in deriving the architectural cost at the component level.

1. Value Analysis

Caches are one of the most important components in the processor introduced to overcome

the delays in fetching instructions and data from main memory. In order to capture the im-

pact of the cache on the program timing, the variables in the program need to be mapped to

a possible range of values which is the function of the step value analysis[16]. Measurement

techniques work with real program data and hence need not carry out value analysis. But a

static analyzer is expected to work for all valid inputs. Although the exact values of variables

are available only at runtime, manyatimes the range of values can be determined in well writ-

ten code statically[65]. Value analysis also helps in determining loop bounds and identifying

infeasible paths in the program[33].
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2. Control Flow Analysis

Static WCET analyzers work on the program binary representation directly and hence need

to gather the control flow structure of the program themselves. For this reason, a control flow

graph or the CFG is constructed. The nodes of the CFG are termed as basic blocks. The set

of straight line sequence of instructions until a control flow instruction such as a branch or

a procedure call or a return is encountered, forms a basic block. Hence more the number of

branching edges in the CFG, more complex is the program control flow. The CFG forms the

fundamental structure that will be used to derive the overall WCET estimate for the whole

program. In order to identify the longest path the program could possibly take, one has to

first build a control flow representation. Control flow analysis determines information about the

possible flow of control through the task to increase the precision of the subsequent analyzes[65].

Often, value analysis precedes control flow analysis and assists control flow analysis by providing

annotations regarding infeasible paths and loop bounds.

3. Architectural modeling

The execution time of an individual instruction, even a memory access depends on the

execution history. To find precise execution-time bounds for a given task, it is necessary to

analyze what the occupancy state of these processor components for all paths leading to the

task’s instructions is. Processor-behavior analysis determines invariants about these occupancy

states for the given task[65]. Information about the processor states is derived by analyzing

potential execution histories leading to this instruction. Different states in which the instruction

can be executed may lead to widely varying execution times with disastrous effects on precision.

For instance, if a loop iterates 100 times, but the worst case of the body, ebody, only really occurs

during one of these iterations and the others are considerably faster (say twice as fast), the

over-approximation is 99 * 0.5 *ebody[65]. Precision can be gained by regarding execution in

classes of execution histories separately, which correspond to flow contexts. These flow contexts

essentially express by which paths through loops and calls control can arrive at the instruction.

Wherever information about the processors execution state is missing a conservative assumption

has to be made or all possibilities have to be explored.

Most approaches use Data Flow Analysis, a static program-analysis technique based on the

theory of Abstract Interpretation [21]. These methods are used to compute invariants, one per

flow context, about the processors execution states at each program point[17]. If there is one
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invariant for each program point, then it holds for all execution paths leading to this program

point. Different ways to reach a basic block may lead to different invariants at the blocks

program points. Thus, several invariants could be computed. Each holds for a set of execution

paths, and the sets together form a partition of the set of all execution paths leading to this

program point. Each set of such paths corresponds to what sometimes is called a calling context,

context for short. The invariants express static knowledge about the contents of caches, the

occupancy of functional units and processor queues, and of states of branch-prediction units.

Knowledge about cache contents is then used to classify memory accesses as definite cache hits

(or definite cache misses). Knowledge about the occupancy of pipeline queues and functional

units is used to exclude pipeline stalls.

The different components of modern architectures like caches, pipelines, branch predictors,

interacting together, can cause timing anomalies that either have a constructive influence or a

destructive influence on the timing aspect of the overall program[81, 36]. Hence conservatively

assuming a local worst case would not work in the presence of timing anomalies.

4. Final Estimate Calculation

Having determined the cost of executing components of a program, the final estimate is

derived by combining them in a meaningful way to come up with an upper bound for the

WCET. This bound will never be crossed by any execution of the program. The components

differ depending on the different mechanisms used. For example, structure based methods

evaluate the cost at the statement level. These statements are then combined according to the

syntax rules and the cost of the program is determined in a bottom up fashion. Heptane[10]

uses structure based analysis and incorporates tree based schema to combine the estimates of

smaller units. Heptane models the architecture, specifically the I-cache, branch predictor and

the pipeline in such a way that it is easily retargetable. However it doesn’t support infeasible

path detection which can cause a slight pessimistic estimate. Heptane doesn’t model the data

cache.

The components could be program paths. Each path could be analyzed separately and a

bound could be calculated, wherein the upper bound would be the maximum of the bounds

of all the paths. Paths are used in the research prototype tool developed by the FSU, North

carolina and the Furman universities[24, 63]. The tool can also be used to obtain parametric

bounds in terms of program parameters rather than an absolute numeric bound for a given
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problem size. Modeling of data cache is limited in that, only a certain kind of access patterns

are allowed. The mechanism can have problems in scaling to large systems. The parametric

WCET for a program, for a given size can be got by substituting the corresponding program

variables in the parametric equation[67, 23]. Having parametric bounds avoids high pessimism

by using the actual values with which the program is going to run rather than some hypothetical

value. Further, one can get WCET estimates for a range of input values without having to

rework the entire WCET analysis.

AbsInt[111], a commercial static WCET analyzer makes use of the implicit path enumer-

ation technique framework to derive the final estimate. The costs of each basic block on the

target system are derived by abstract interpretation[21](Interpreting each instruction of the

program by carrying out value analysis of the variables in use for each instruction). The mod-

eling of in order and out of order pipelines are supported in addition to modeling of instruction

and data caches[15].

Chronos[94] is an open source static WCET analyzer that uses IPET to estimate WCET.

It models both instruction cache and data cache apart from a multilevel unified L2 cache,

along with both inorder and out of order pipelines apart from dynamic branch prediction. The

input to Chronos is a program written in C and the configuration of the target processor. The

frontend of the tool performs data flow analysis of loops to derive bounds. For complex loops,

the user is required to manually annotate loop bound information. The user may also provide

annotations to compute infeasible paths although it is done automatically in Chronos. The

binary is disassembled and a CFG is created. Chronos performs processor behavior analysis on

the CFG. The core of the analyzer determines upper bounds of execution times of each basic

block under various execution contexts such as correctly predicted or mispredicted jump of the

preceding basic blocks and cache hits/misses within the basic block[94].

Chronos employs integer linear programming (ILP) to model branch prediction, instruction

cache as well as their interactions. The analysis of branch prediction is generic and parame-

terizable with respect to commonly used dynamic branch prediction schemes. Using address

analysis techniques, the presence of data in the cache is statically predicted at every point

in the program using abstract interpretation techniques[17, 76]. Using these information, the

cost of executing each basic block is statically determined. Finally using IPET, the WCET is

estimated factoring in the infeasible path information and various flow constraints of CFG.
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Bound-T[112], another commercial static WCET analyzer concentrates mainly on program

path analysis and does not model cache, complex pipeline or branch prediction[72]. In path

analysis, Bound-T focuses on inferring loop bounds for which it uses the well known Omega

calculator[93].

SWEET[8, 37] uses a higher abstraction of the CFG namely the scope graph[6]. A scope

can be informally defined as a group of basic blocks having variables in common. A scope can

represent a statement, a loop, or even a small routine. A node in the scope graph represents

multiple related basic blocks. Edges between nodes in different scopes in the original control

flow now figure in the scope graph. The edges between the related basic blocks in the same

scope are contained within the scope. Scope based WCET evaluation reduces the complexity

of IPET by focussing only on the scopes and constructing the linear equations at the scope

level instead of the usual basic block level. Further since scopes are clustered by considering

control flows across scopes such that related scopes exist in the same cluster, the accuracy is

maintained at a good level.

Flow facts[8], that are a set of rules denoting control flow information like the loop bounds,

infeasible path information etc carry and communicate flow analyses between scopes. SWEET

uses program slicing to analyze only those parts of the program that may affect the program

flow. This is useful to incorporate modes if the program mode is known apriori. Loops are un-

rolled and each iteration is analyzed separately thereby making the analysis context sensitive.

The architecture modeling is carried out separately by memory analysis that involves determin-

ing the memory addresses possibly accessed by each instruction. Pipelines are accounted for by

simulating object code sequences through a trace-driven cycle-accurate CPU model. The final

estimation in SWEET can proceed in either of the three ways-A fast path based technique or

a global IPET technique or a hybrid clustered technique involving scope graphs. SWEET can

do automatic flow analysis provided the program is compiled with the research compiler that

SWEET is integrated with. Data caches are not modeled in the tool. The pipeline structure

is assumed to be in-order without any associated timing anomalies.

The prototype static analyzer from TU Vienna[60] performs WCET analysis on programs

written in special version of C, called as the wcetC language. wcetC is C extended to allow

users to make annotations regarding infeasible paths. The compiler generates the object code

which is analyzed to derive the WCET bound. IPET is used here as the basic mechanism.
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Each methodology has the share of its own merits and demerits. Incorporating additional

flow constraints is difficult in structure based methods while it is simple in the case of IPET

and also path based approaches. However, path based approaches cannot efficiently model flow

information extending across loop nesting levels. With the introduction of every consecutive

branch condition, the number of paths can grow exponentially leading us to resort to heuristic

search methods. With an increase in the number of flow facts, the number of constraints can

also increase. Clustered WCET techniques can be employed to maintain the accuracy at the

same time reducing the computational complexity of WCET analysis.

Cinderella[96] is an ILP-based research prototype developed at Princeton University. The

main distinguishing feature of this tool is that it performs both program path analysis and

micro-architectural modeling by solving an ILP problem which renders less scalability to this

formulation[65]. Also, Cinderella mostly concentrates on program path analysis and cache

modeling; it does not analyze timing effects of complex pipelines and branch prediction.

Alternate methods such as symbolic execution exist which combine both analysis and archi-

tectural modeling both in one step by simulating the program on the abstract model without

any input. The disadvantage is that simulation is orders of magnitude slower than execution

and one has to consider possibly large set of states in the absence of input informa- tion. The

prototype tool from the Chalmers university of Technology employs the method of symbolic

execution[80].

2.2.2 Measurement Based WCET Analyzers

Measurement based tools work by measuring the components of the program on the actual

target hardware. The maximum of the observed measurements of each of the components

are then combined to derive the WCET of the whole program. The process of measuring is

equivalent to the step of architectural modeling in static analysis. The WCET derived by a

measurement based tool cannot be called as an upper bound as it is not guaranteed to be

safe. The main reasons are unknown worst case architectural state for each instruction and

no knowledge of worst case input. If the inputs that are used to carry out the measurements

exclude the worst case input, the resulting estimate is clearly not safe. Estimates can also be

unsafe because only a subset of all the possible contexts (initial processor states) can be used

before measuring each program component. This could be remedied by testing exhaustively.
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But it is well known that testing all the paths of a program is a hard problem. To come up with

a worst case initial processor state is not easy for complicated processors especially if timing

anomalies are present. And the empty state need not imply the worst case initial state always.

Static methods on the other hand are equipped in dealing with the absence of information and

hence can analyze large state sets.

The method used for measuring the components of the program should be accurate and

specially non-intrusive as it will affect the very timing of the program it wants to estimate.

For this reason, logical analyzers or oscilloscopes could be used. However, the issue with these

devices is that it is very difficult to map measurements to program paths. Most of the measure-

ment based tools first capture the time of the various components by collecting an execution

trace that contains timestamps for the execution of every component[73, 3]. This is followed

by a mapping of these times to the paths in the program. Using this and the control flow

information, the worst case path and hence the worst case execution time is estimated. In our

work, we use hardware performance counters that form a part of current day processors to

track the time of the program in terms of cycles per instruction. We shall review the various

measurement based WCET analyzers in detail in this section.

Program Segments

The hybrid timing analysis tool described in Zolda et al[55] combines static program anal-

ysis techniques and execution time measurements to calculate an estimate of the WCET. The

unit of analysis is a program segment that is chosen to be small enough to have limited number

of paths to make test generation easier and big enough to weed out any infeasible paths and

have lesser instrumentation points. The timing analyzer is designed to be adaptable to the

resources that the user is willing to invest. The final WCET estimate is obtained using IPET

that uses maximum execution times of program segments. Function calls are either inlined or

treated as a black box. Automatic test-data generation is used to derive the required input

data for the execution-time measurements. Since not every basic block gets a timestamp during

measurement, the measurements are coarse. The tool has been designed with a special focus

on analyzing automatically generated code, e.g., code generated from Matlab/Simulink mod-

els. The technique which we propose in this thesis is also a hybrid technique. We specifically

target programs that exhibit phase behavior. Within each phase, the behavior of architectural
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parameters like CPI is observed to be homogeneous and varies closely around the mean. So we

factorize execution time as a product of instruction count (IC) and CPI. We present various

functions to calculate worst case IC and worst case CPI. Phases are composed of hundreds to

thousands of instructions and form our analysis unit. Phases are bound to static code regions

and are demarcated by call loop boundaries. We use code structural analysis[39] which is de-

tailed in Chapter 5 to detect phases.

Hybrid Clustered Technique

Apart from fast path and global IPET approach, SWEET uses a hybrid clustered technique

which handles complex flows with low computational complexity but still generate safe and tight

WCET estimate[6]. The cluster based technique achieves global precision at local efficiency

and also considers possible interaction of these flow facts, provided flow fact units are used

to construct units where all included flow facts are either directly or indirectly dependent.

The technique is demand driven, WCET of a program region is calculated only when it is

needed. To carry out low level timing analysis, pipeline timing analysis is performed on the

scope graph that uses a cycle accurate simulator of the target to generate times. Additional

annotations can give information about cache misses and so on. A mix of path based or IPET

depending on the characteristics of the cluster. With addition of new flow facts, computation

time increases linearly for path based analysis and non-linearly in case of IPET. Path based

is not very accurate. IPET based analysis is very accurate but less scalable compared to path

based technique[6].

The technique that we propose in this thesis has been implemented using IPET. Instead

of scopes, we plug in phases. The objective function maximizes the number of instructions

executed in a phase as we measure CPI of phases and compute worst case CPI using several

functions. Our technique can be easily adapted to use path based approaches or tree based

schema to compute a theoretical bound on IC.

Approximate WCET estimate

The technique presented in Corti et al[52] is also a hybrid technique that uses graph longest

path search algorithm to estimate WCET. The nodes of the graph are basic blocks. The weight

of an edge represents the cost of executing the preceding basic block in processor cycles. This
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cost is computed by constructing an analytical equation that plugs in the values of various

architectural parameters such as cache misses, stalls in the pipeline et cetera, that determine

the actual cost of execution. These parameters are measured using hardware performance mon-

itors. The technique yields only approximate estimates as event counting is not precise as they

cannot be attributed to specific instructions, more so for out of order architectures. Moreover

many events are not disjoint, hardware performance monitors do not report their intersection.

The proposed technique measures only CPI of a phase at many points in the program using

hardware performance counters. We exploit program phase behavior to accurately capture the

time of a phase with less instrumentation. Since CPI of a phase varies closely to the mean, it

accurately characterizes the time of a phase.

Hybrid Technique Based on Timing Schema

Colin et al [9] propose a hybrid scheme that uses simplescalar[113] to measure time of each

basic block and use timing schema to compute WCET bottom up. They experiment with

various architectures as it is easy to configure parameters in Simplescalar. The work identifies

that the cache and the branch predictor are the two factors that influence the accuracy of the

resultant WCET estimate, the most. They also look at the number of tests that need to be

performed before the results start converging[9]. We share many of the observations in this

work in our experiments. We also observe that, with the architecture becoming more complex,

the possibility of overestimation in WCET increases. Measurement approaches work well with

programs that show less variability across inputs. For such programs, it is very easy to ob-

tain tight bounds on CPI and hence the resulting WCET estimate is guaranteed to be accurate.

Instrumentation Point Graphs

Betts et al [2] observe that when instrumentation points exist in only a few basic blocks

(sparse instrumentation), these points are not sufficient to ensure coverage and lead to overly

pessimistic estimates. Hence Betts advocates the use of an instrumentation point graph or IPG

constructed from CFGs whose edges contain path information between instrumentation points

or ipoints. The ipoints are such that they are path reconstructible. The ipoints are measured

and trace is generated. The trace is then parsed and using either an ITree which is based on

tree based schema and is specially designed for dealing with IPGs or the conventional IPET
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applied to IPG, the final WCET is estimated. ITree is senstive to location of ipoints especially

in loops. It can so happen that ipoints placed in certain locations can produce more pessimistic

estimates than others. IPET is insensitive to location of ipoints. In both cases the common

factor is that the ipoints are sparse. The limited memory available for trace buffers (hardware

support for instrumentation) is one of the main motivations for this work. Context information

is also easily integrated into the IPG as it models the transitions between basic blocks. The call

graph along with IPG is used for trace analysis. Loop bounds are extracted automatically. For

detecting infeasible paths, additional information has to be integrated into the analysis. The

WCET calculation for procedures that are near leaves of call graphs have good precision but

overestimation accumulates as the analysis moves upto the root. Hence if a procedure has too

many calls that have high call depth the pessimism will be very high. Addition of frequency

information to the graph helps tightens the estimate.

The work that we propose in this thesis shares the same motivation of having to deal with

sparse instrumentation. We exhibit that the homogeneity and repeatability of the manner in

which CPI changes in a phase can be used to reduce the number of instrumentation points

within a phase without affecting the accuracy of WCET estimate. A technique which is less

intrusive is highly desirable in the context of measurement based WCET analysis. Our tech-

nique integrates infeasible path analysis while computing worst case IC. Due to the phase

property, instrumentation points can be placed arbitrarily anywhere within a phase unlike the

technique proposed in Betts[2] where ipoint placement influences accuracy of WCET estimate.

Our WCET estimate is not affected by the location of the procedure in a call graph. The

technique performs uniformly for all procedures.

In [3], Betts et al describe a mechanism by which hybrid WCET analysis can still be

performed at the source level when the timestamped trace has been collected at the object

level by state-of-the-art hardware. This allows existing, commercial tools, such as RapiTime,

to operate without the need for intrusive instrumentation and thus without the probe effect.

Object level tracing eliminates need for software level instrumentation seen exceedingly in

embedded processors that support hardware debugging. Hardware trace support usually can

monitor only jumps as the debugger must keep pace with the rate at which trace data is

produced otherwise there could buffer overflows and blackouts, as a result part of trace can be

lost.
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Inorder to achieve the goal stated in [3], two things need to be carried out. Firstly the

analysis needs to have the ability for each inserted ipoint to use an address as its identifier.

This can be done using global assembly labels which are generated for each inserted ipoint

using a macro as described in [3]. The resulting addresses of the labels are then passed back

to the hybrid measurement based analysis tool so that it can replace the original identifiers

of ipoints. With this small step, the measurement based tool is able to parse a trace in

(address, timestamp) format and therefore perform WCET analysis. The second issue is that

hardware debug interfaces only record a sequence of branch destinations, and not every address

which corresponds to an ipoint label. The solution is to analyse the disassembly for branch

instructions and then interpolate the missing instructions from the trace, recording only those

that correspond to ipoint addresses. Evidently, the technique is limited to processors that

provide tracing facilities. Optimising compilers often unroll loops [3], in effect replicating the

body of a loop a particular number of times and adjusting the control logic as necessary. This

would generate multiple copies of a global label, which is illegal assembly, and consequently such

optimisations have to be disabled. Tracing at the object-level typically results in very rapid

generation of data. For a processor running at 200MHz, with an average of one branch every

10 instructions and using 64 bits to record each branch timestamp, would generate 160MB in

one second.

Hence it is observed that on the one hand, source-level instrumentation provides greater

flexibility and is often the most convenient, but it is handicapped by the probe effect. On the

other hand, less intrusive instrumentation normally demands some type of hardware support.

This forms one of the main issues addressed by this thesis. For programs that display phase

behavior, our work describes mechanisms using which we can make use of homogeneity and

repeatability seen in the variation of CPI within a phase to have sparse instrumentation points

within a phase at the same time, accurately characterizes the time of a phase accurately. With

sparse instrumentation, we can afford using source level instrumentation that introduces only

1-2% of instrumentation overhead thereby not affecting the timing of the program. In chapter

5, we shall describe more about program phases and how they help us in building a less intru-

sive measurement based WCET analyzer.
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Independent Paths for ARM programs

The technique proposed in Liangliang et al[51] is specifically targeted towards simple ARM

architectures. The analysis first removes all infeasible paths in the CFG and partitions a CFG

into a set of program segments which is different from segments considered in [55]. A segment

in this work is defined as a sequence of contiguous basic blocks. A new directed graph is created

whose nodes represent segments. The set of independent paths or basis paths are calculated.

The speciality of independent paths is that they are fewer in number compared to the total set

of paths possible. Using linear combinations of independent paths of the directed graph, a set

of feasible paths can be generated that gives complete coverage in terms of the program paths

considered. Their timing measurements and execution counts of program segments are derived

from a limited number of measurements of an instrumented version of the program. After

the timing measurement of the feasible paths are linearly expressed by the execution times

of program segments, a system of equations is derived as a constraint problem, from which

we can obtain the execution times of program segments. By assigning the execution times

of program segments to weights of edges in the directed graph, the WCET estimate can be

calculated on the basis of graph-theoretical techniques. If there are acceleration features such

as caches in the architecture, this equation will compute a bloated value. Hence data caches

are not considered in [51]. Our technique can work with instruction and data caches seamlessly.

SymTA/P (SYMbolic Timing Analysis for Processors)

SymTA/P tool from TU Braunschweig, Germany, performs symbolic analysis on the ab-

stract syntax tree to identify a single feasible path (SFP) which is a sequence of basic blocks

where the execution is invariant of input data values[91, 92]. An SFP can reach beyond basic

block boundaries in for example, a fast fourier transform program (FFT) or a finite impulse

response filter program (FIR). The result of SFP analysis is a CFG with nodes containing a

single feasible path or basic blocks that are a part of multiple feasible paths. Each SFP is rep-

resented as a node and is instrumented and measured. As the safe initial state is not known, an

additional time delay is added to cover up a potential underestimation during measurements.

The memory access trace for each node is generated and annotated to the corresponding node

in the CFG. A data flow analysis is used to propagate information about the cache lines that are

available at each node. Pipeline effects are not modeled directly. But a conservative overhead
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corresponding to starting with an empty pipeline is assumed. The cost of execution of each

node is given by the measured time and the statically analyzed cache behavior. Loop bounds

have to be specified by the user if it determines control flow. A combination of symbolic execu-

tion and ILP is used to bound the worst case data cache behavior for input dependent memory

accesses[65].

The measurements are more accurate if the path lengths between measurement points

are longer. In simple programs such as FIR, FFT, an SFP can span multiple basic blocks

resulting in fewer instrumentation points. We use phase behavior to identify repeated execution

sequences to mark phases and can find such sequences in programs composed of complex

structures too. Further we present a technique to refine a phase into sub-phases based on

paths taken to execute to isolate points of high CPI variation within a phase. Phases are

composed of thousands of instructions and likewise reduce the number of instrumentation

points. In SymTA/P, if many basic blocks are measured individually, the added time delays to

account for pipeline effects would lead to an overestimation of WCET[65]. If the architecture

is based on an out of order pipeline, a simple added time delay might render estimates unsafe

due to the presence of timing anomalies. The same holds for a simple added time delay due

to unknown initial architectural state. In our work, the pipeline effects, cache effects, branch

predictor effects and all other components of the architecture that can influence time is taken

into account by considering a single parameter that covers them all, which is the CPI. Unknown

worst case initial state is modeled in the proposed technique by running the test inputs multiple

times to obtain measurements of the same input with multiple starting states[9].

Context Sensitivity and Measurement Based Analysis

In the IPET model, where the execution time for each basic block is determined either by

architectural model or by measurement, accommodating context sensitivity requires additional

efforts, the execution time of basic block can vary depending on its context. Zolda[56] observes

that backward dependency is the more prominent case, where the execution time of a block

depends on the concrete execution history. This is easily exemplified by the distinction of

execution times of a block in the presence of a cold versus a warm instruction cache: In a

simple setting, a certain block might be absent from the instruction cache during the first

iteration of a loop, but present during all subsequent iterations. A distinction of execution
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times of the block can then be based on whether the loop body is entered via the back edge,

or from outside. In a different work[54], Zolda et al considers the objective function as a sum

of terms. Each term is a product of the frequency of the basic block (variable) and cost of

executing the block on hardware. Depending on the past execution context, the frequency

variable is split into different other variables associated with a different cost that is dependent

on its execution history. For lower cost paths, there might be other inputs that take higher

times along those paths, hence can introduce optimism. For this reason, model checking is used

to increase coverage for each path.

Stattelmann[73] investigates the influence of the execution history on the precision of mea-

surement. By partitioning the analyzed programs into easily traceable segments and by pre-

cisely controlling run-time measurements with on-chip tracing facilities, the new method is

able to preserve information about the execution context of measured execution times. Recent

developments in debug hardware technology allow the creation of cycle-accurate traces with a

fully programmable on-chip event logic which is used in [73] to gather accurate traces. The

method works on the interprocedural control flow graph (ICFG) of a program executable and

requires measurement hardware that can be controlled by complex trigger conditions. The

approach in [73] was motivated by the limited size of trace buffer memory which is available

in current hardware for on-chip execution time measurements. Due to bandwidth constraints

these traces only store certain instructions, for example taken branches. Additionally, times-

tamps for these instructions are often only created when a partial trace is transferred from a

small on-chip buffer to the large external memory. Hence deriving the execution time of every

single instruction is difficult.

The ICFG is created and partitioned into program segments in such a way that every

possible run through the segments can be measured with the available trace buffer memory.

Information gathered during the partitioning phase is used to generate trace automata that

will control the measurements. After the measurements have been taken, the context-sensitive

timing information for each basic block of the program can be extracted and annotated to the

ICFG. Further computations then yield the worst-case path through the ICFG and an estimate

of the worst-case execution time. Virtual inlining virtual unrolling applies function inlining and

loop unrolling on the level of the ICFG. Thus the ICFG can contain several copies of the same

basic block for which different execution times can be annotated.
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A call string is used to model a routine’s execution history. Call strings can be seen as

an abstraction of the call stack that would occur during an execution of the program. In this

work, a call string will be represented as a sequence of call string elements. The intuition

behind this representation of an execution context is that whenever a routine is called, the call

string is extended with another element to describe the context of the function body. Therefore

extending the call string works similar to extending the call stack during program execution.

Since the execution history of a routine can be very complex, its call string representation might

become very long. In order to achieve a more compact representation of execution contexts, the

maximal length of call strings will be bounded by a constant. For call strings which describe

a valid execution but exceed the maximal length, only the last k call string elements will be

used.

Additional precision is gained by extracting loops from their parent routine and treating

them like recursive routines. This allows a more precise classification of the execution history

than a simple calling context when searching for the WCET path through the program, since

varying execution times in different loop iterations can be represented independently from the

parent routine. As the context in which a trace is generated is preserved while creating the

measurements, basic block execution times from the trace are only annotated to those nodes

with matching context. In case of virtual inlining, this means that execution times are only

annotated to those nodes in the ICFG at the correct call site, but not to the nodes in other

contexts. The design of the method allows an easy integration of static analyses to make the

measurement phase more efficient. Cache analysis has been adapted to classify the instruction

cache behavior of different execution contexts[73]. Nonetheless, the prototype implementation

reported some WCET estimates which were smaller than the maximal execution time observed

during the end-to-end measurements. One reason for this is that the measurement hardware

sometimes did not start the traces immediately after they were triggered. As a result of

these delays, some basic blocks were never completely covered by the measurements and thus

the execution time was underestimated. The accuracy of WCET estimates will improve with

exhaustive measurement and better coverage.

Predicated WCET Analysis

Marref et al[5] consider all different execution times of a basic block possible and express

them as a outcome of executing some other basic blocks in the past using constraint logic
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programming (CLP). The cost of execution of basic blocks is dependent on the satisfaction of

certain conditions. For each basic block, at the most execution time can be constrained by five

other blocks. In programs where more than five blocks determine execution time of a basic

block, estimates may not be accurate. The work in [5] models the effect of only instruction

caches and do not consider infeasible paths, which can be added if needed. The work proposed

in this thesis can work with instruction and data caches, inorder and out of order pipelines and

any kind of branch prediction scheme.

Our work deals with context sensitivity in the following way. If a procedure can be called

in two different contexts, we perform procedure cloning and treat the two calls separately. We

also distinguish loop iterations and avoid assigning a blanket value for all iterations together

leading to a bloated estimate. We shall describe further details on this in Chapter 6.

Probabilistic WCET Analyzers

pWCET: Based on Probabilistic Hard Real Time Systems

The work by Bernat et al[29] was one of the first attempts to estimate WCET proba-

bilistically. Instead of an absolute WCET that can occur very rarely, soft real time systems

might benefit from a probabilistic WCET estimate associated with a degree of probability.

Depending on the criticality of the application, WCET can estimated with the appropriate

probability required. Bernat et al[29] apply timing schema and combine the worst case effects

seen in basic blocks probabilistically using three different operators that are determined by

the availability of dependence information among basic blocks. They define an execution time

profile (ETP) for a basic block which is the range of different execution times a basic block

might take to execute on the target. The ETPs of basic blocks are combined bottom up and

carried upward to yield the overall combined effect of all basic blocks of the program. If the

basic blocks are known to be independent, simple convolution on the ETPs are carried out.

If there is a dependency between the basic blocks, a joint execution profile(JEP) is calculated

based on the two dependent basic blocks. If the dependence cannot be ascertained, a worst

JEP (biased convolution) which is a modified version of JEP that is consistent with the two

basic blocks and that is safe, is used to combine the worst case effects probabilistically. De-

pending on the number of traces generated for each basic block, the time to compute joint

profiles grows very quickly. Simple convolution is observed to yield optimistic estimates while
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biased convolution yields very pessimistic estimates. The thesis also proposes a probabilis-

tic WCET analysis method that probabilistically bounds phase CPI and uses these bounds

to compute a probabilistic WCET estimate for the program. We shall compare our technique

with RapiTime[102] which is based on the work by Bernat et al[29] in more detail in Chapter 6.

Hybrid WCET Analysis Based on Game Theory

Seshia et al[66] take a game-theoretic approach to analyzing quantitative properties that is

based on performing systematic measurements to automatically learn a model of the environ-

ment. The problem of estimating WCET is modeled as a game between the algorithm (player)

and the environment of the program (adversary), where the player seeks to accurately predict

the property of interest while the adversary sets environment states and parameters to thwart

the player. Over several rounds, the player or algorithm learns enough about the environment

to be able to accurately predict path lengths with high probability, where the probability in-

creases with the number of rounds. To solve this problem, [66] employs a randomized strategy

that repeatedly tests the program along a linear-sized set of program paths called basis paths,

using the resulting measurements to infer a weighted-graph model of the environment, from

which quantitative properties can be predicted. Test cases are automatically generated using

satisfiability modulo theories (SMT) solving. It is proved that their algorithm can, under cer-

tain assumptions and with arbitrarily high probability, accurately predict properties such as

worst-case execution time or estimate the distribution of execution times. Based on this idea, a

tool GAMETIME has been developed[66]. GAMETIME is measurement based but uses certain

static characteristics for loop bound analysis and using symbolic execution and satisfiability

solvers to compute input to derive the program down a specific path of interest. This happens

to be the first work that uses game theory in the context of timing analysis. GAMETIME

inlines all functions and unrolls all loops to a safe upper bound and uses a binary vector to

represent each path.

GAMETIME operates in four stages. First it builds the program CFG. Second, it computes

the basis paths and also ensures feasibility of the paths using integer linear programming and

SMT solving. This is a slightly time consuming phase. Third, using constraint based test

generation, it generates a set of inputs to program that will drive the program’s execution down

that path. Following this, for each input, GAMETIME creates a different program embedding
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the data within the program. Fourth, it predicts the estimated weight vector or longest path

using an algorithm that works on a representative set of basis paths called as barycentric

spanner as described in [66]. The number of simulations performed for measurement is equal to

the number of basis paths. In particular, [66] can predict the longest path, and its corresponding

length. Given the predicted longest path, its feasibility can be checked with an SMT solver. If it

is feasible, a test case is computed for that path, but if it is not feasible, the next longest path is

checked. The process is repeated until a feasible longest path is predicted. The predicted longest

path can be executed (or simulated) several times to calculate the desired timing estimate.

GAMETIME also gives probabilistic WCET estimates. The test cases that drive execution

through basis paths are valuable for hard and soft real time testing. GAMETIME can also be

integrated with a static analysis tool instead of measurement if a tool that models the desired

architecture accurately is available. One of the unique aspects of GAMETIME is the ability

to predict the execution time profile of a program and the distribution of execution times over

program paths by only measuring times for a linear number of basis paths and is described in

detail in [66].

GAMETIME also assumes that the timings of a program can only depend on control flow

and does not consider instances where even data can determine control flow. This aspect is

considered as future work in [66]. However, our technique works seamlessly with any uniproces-

sor architecture and is not dependent on the presence / absence of any particular component.

GAMETIME works on program paths, the analysis unit of our technique is a phase. One thing

that is common between our work and GAMETIME and that is we do not assume any prior

distribution of observed data. We use a simple probabilistic inequality that only requires mean

and variance to be finite to obtain probabilistic bounds on phase CPI.

Role of Testing in Measurement Based WCET Analysis

Testing is an integral part of WCET analysis. Static methods carry out WCET analysis by

considering any valid input by assigning abstract values to the variables. However, it evaluates

the obtained WCET estimate by comparing it with the maximum observed value by running

the program exhaustively with a good test input set that has adequately exercised the program.

Testing is important in the case of measurement based WCET analyzers as measurements are

used directly inorder to obtain the WCET estimate. If the test input set has not adequately
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covered the program, the resultant estimate can be unsafe.

Practical WCET Analysis Approach Based on Testing

Lundqvist et al[82] observe that the execution time of a single program path can vary even

when testing with the same input data. The reason is that the number of cache misses depends

on the initial state of the cache. This initial state can be hard to control and observe which

is fundamental in creating reliable tests. The work in [82] proposes to handle this situation by

adding a safety margin to the WCET estimate for single path programs determined in three

possible ways - constant bound, dynamic cache foot print, static cache foot print. Another

reason for uncertainty is that the execution of certain program paths can trigger conflict misses

that leads to a large nonintuitive increase in the execution time. These program paths might

not appear to be interesting from a manual inspection point of view but may still be the paths

that cause the longest execution time due to the extra conflict misses. The tester should be

assisted in finding untested dangerous program paths. If the onus is on the user to provide in-

formation about such paths, there is a chance that the user overlooks certain cases that might

perform worst on complex architectures say with respect to caches. The work in [82] gives

certain recommendations using the assistance of the linker to identify potentially conflicting

regions, so that it can be given control to place functions in an appropriate way to reduce con-

flicts. The kind of dangerous paths highlighted in [82] figure as phases with a high variation in

CPI. In chapter 6, we shall describe how we deal with phases that exhibit high variation in CPI.

Less Optimism in Measurement Based Analysis

Bünte et al[78] uses a combination of genetic algorithms and model checking to heuristically

optimize the set of measurements in terms of safety. In other work[90], genetic algorithms are

used to find higher end to end execution times. In contrast, the work in [78] aims to maximize

local WCET estimates of basic blocks. Genetic algorithms are used to provide inputs that will

increase maximum observed execution time of all basic blocks jointly. Model checking generates

test suites that satisfies basic block coverage. The initial seed population is 200 inputs. Those

inputs that satisfy basic block coverage are kept alive and pursued. We work around this prob-

lem by computing a theoretical upper bound on instruction count that assures us maximum

coverage of basic blocks for any valid execution, to circumvent the problem of inadequate test
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input coverage. If the test input set provides adequate coverage, we can use maximum observed

instruction count in place of theoretical upper bound on IC. The thesis uses a genetic algorithm

to generate test inputs that maximizes end to end execution times.

Improving Confidence in Measurements Based Timing Analysis (MBTA)

Bünte et al[79] introduces extended pair coverage to evaluate quality of new MBTA test

suites. This coverage criteria is quite effective for exercising the worst case temporal behavior

of a program while requiring only a tractable number of test vectors. Enhanced pair coverage

is better both with respect to hardware coverage and scalability. Since [79] considers segments

and each segment can be a basic block, considering them pair wise instead of considering them

in an isolated way, includes some amount of context information and results in more accurate

WCET estimates. The thesis presents several ways of estimating WCET for programs exhibit-

ing phase behavior. In our case the analysis unit is a phase in which most activity is clustered

and contained within a phase. Hence the phase abstraction is a better abstraction than basic

blocks in this respect.

Verifying Timing Constraints of Real Time Systems By Evolutionary Testing

Wegener et al[90] proposes a combination of evolutionary testing, random testing and sys-

temic testing. Each of these techniques when performed in isolation might not be successful in

capturing the complete range of possible inputs. Random testing can miss out on certain in-

puts that clearly exercise the program the most. A simple example is the Bubble sort program.

Random inputs might fail to come up with the reverse sorted vector which is observed to be the

worst case input for the program. Such cases are better caught with systemic testing. Similarly

evolutionary techniques have the risk of getting stuck at certain local maximal cases but might

fail to capture the overall worst case input[90]. The thesis uses a similar mix of test inputs.

For simple programs, if the worst case input can be identified, it is included in the test input

set. Together with genetic algorithms, we also use random input generation methods along

with test harnesses that are already available for many programs developed by the designers.

Multicriteria Optimization

Khan et al[85] show that test criteria that generates inputs based on only execution time

is very limited in finding all range of inputs. Using hardware metrics like instruction and
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data cache misses, branch predictor misses can be useful in finding a complete range of test

input. The reason is that some programs can be memory intensive in which data cache misses

might have more influence. In some control flow intensive programs, instruction cache and

branch predictor misses might influence execution time. In some other programs, loops may

be highly influenced by values of data variables. In certain other programs, multiple of these

parameters can be of equal importance. Hence multiple search criteria are employed to build

the test input set. Sometimes these very criteria can conflict with each other. For example

in janne complex (section 3.2 of chapter 3), the loops are highly influenced by the values of

variables and the inner loop entry is difficult due to the way the program is designed. This

may lead to higher cache misses whenever the inner loop is entered thus creating an illusion of

higher fitness inputs. Hence the criteria should be carefully evaluated before finalizing the test

input set. Some amount of pre-analysis on the program will help the optimum mix of criteria

to be considered.

Khan et al[85] give a list of recommendations to decide which criteria is to be used de-

pending on the kind of programs. For single path programs, execution time is to be used as

the criterion. If the program input space is large, data cache misses and execution time are

used as criteria. If the program consists of a large number of conditions or loops, a mix of

instruction cache misses and execution time is used as criteria. If the basic blocks of a program

are large, execution time is used as the sole criteria for test input generation, which is also the

default criterion. In chapter 4, we shall see that we present similar information in the form of

a correlation between instruction count(IC) and CPI. For certain single path programs, who

do not exhibit a significant variation in CPI, extensive testing is not required. For single path

programs, who exhibit a variation in CPI, architectural parameters are said to influence the

WCET estimate more than program structure. In certain programs, we shall see, CPI variation

is stable but IC varies a lot across inputs. For such programs, the program structure is said to

have more influence on WCET estimate. For other programs, we shall see that both IC and

CPI vary, as a result both structural analysis and architectural parameters equally influence

the WCET estimate.
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Deriving Worst Case Input

Ermedahl et al[7] study the problem of worst case execution time analysis from the other

end. They advocate a combination of input sensitive worst case static WCET analysis and

systemic search over the value space of input variables to derive the input value combination

that causes WCET and also present methods to speed up search. Measurement based WCET

analyzers can then estimate WCET with more accuracy using worst case inputs than those

obtained by using all inputs. Such worst case inputs forces program to run for long execution

times. The complexity of systemic search over the value space of input variables gives a

best running time proportional to log2 of size of input space. The work in [7] assumes the

availability of an input sensitive WCET analyzer that can take constraints on input variables

into account while calculating a WCET estimate. The algorithm systematically divides input

space into smaller input space partitions each with a subset of the input value space. Then it

calculates WCET estimates for each partition of program input value space. In each iteration,

the partition with the largest WCET estimate is selected and divided into two or more smaller

portions for which WCET calculations are made. The process continues until selected partition

holds only one input value combination which is then returned. This combination is the desired

WCET input value combination.

For a given program, there can be several qualifying combinations. There might be situa-

tions when the algorithm needs to back track. This happens when WCET of both the smaller

partitions is smaller than the WCET estimate found higher up in the tree. Hence in the worst

case, each value space partition has to get its WCET estimated. The work in [7] also uses a

set of heuristics to speed up analysis. All partitions that produce smaller WCET values can be

pruned away from further analysis. If there is no significant difference between best case exe-

cution time and worst case execution time, very likely, the program is insensitive to its inputs

with respect to execution time and the search process can be terminated much earlier. We

share a similar observation in chapter 4, that some programs do not exhibit any variation in IC

and CPI irrespective of the input presented to them. Such programs need not be exhaustively

tested with respect to WCET analysis. Exhaustive measurements could replace static analysis

in [7], if it is more economical in the situation.
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Role of Static Analysis in Measurement Based WCET Analysis

Schaefer et al[74] presents a new approach to enhance measurement based WCET analysis by

deploying static analysis to ensure test coverage at the basic block level and reduce pessimism

of WCET. In addition to test inputs that exercise the programs and generate execution times,

static analysis is also carried out. If the difference between static WCET estimate and the

maximum observed cycles is large, testing is repeated with a larger test input set. Deverge

et al[43] explores issues to be addressed inorder for measurement based approaches to be safe

and use of compiler techniques to reduce timing variability of program segments and to make

the execution time of program segments independent of each other. The key assumption made

in [43] is that execution of the same program path with different data yields the same timing,

and hardware modified accordingly to make this possible. Some of the techniques that can

help achieve this are cache conscious data placement, cache locking, static branch prediction,

to account for variable latency of segments, add difference between BCET and WCET of all

operations of the program path (also known as jitter), avoiding usage of instructions that take

variable latency, usage of more predictable instructions (Eg: add instead of mul).

The results in [43] show that with such hardware control, the variability of execution time

across executions reduce and the overall WCET estimate is much tighter. Our technique also

would benefit from hardware control as advocated in [43]. If we were to run our technique on

such an architecture, CPI would be very stable leading to tight CPI-IC clusters as we shall see

in Chapter 4 which will result in tight WCET estimate. Alternatively, applying phase based

WCET analysis, very tight bounds on CPI can be obtained if variance is small and this will

also result in tight WCET estimates.

Most research done in probabilistic schedulability analysis assumes a known distribution of

execution times for each task of a real time application. It is a non trivial task to determine

the actual distribution with high confidence. Methods based on measurement do not exhaus-

tively test all paths. David et al[50] uses static analysis to obtain probabilistic distributions of

execution times. Given the source code of a task and for any execution path, their objective is

to compute on the one hand the probability to go through this path and on the other hand, its

associated execution time. Two sets of variables are considered. The first set of variables are

global external environment variables and the second set of variables are the internal program
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variables. Both these variables are treated as random variables. Each such variable is associ-

ated with probability functions such as, fE(x) is the probability that the random variable P

takes the value x. The work in [50] assumes that the external variables are independent of each

other. A set of formulae to compute probabilistic execution times of basic blocks, compound

statements along with the conditions on the satisfaction of which, these will be executed, are

defined. These formulae are applied bottom up upwards the root of the tree thereby comput-

ing probabilities for executing paths consisting of these basic blocks. The values are plotted

and compared with the set of values obtained using stochastic simulation of the source code

execution. At a given node of a tree, an if-condition produces 2 leaves and a loop that iterates

for k times, produces k leaves. Hence complexity can be exponential and depends on relation

between I and E (internal and external variables) and the domain width of external variables.

Probabilistic evaluation can get exponential. In certain cases, complexity can be reduced by

using specific probabilistic algebras.

The method in [50] does not take into account hardware considerations yet; the execu-

tion time of any instruction is intentionally assumed to be constant and context independent.

Furthermore, it assumes no optimization mechanism in the compilation process. Assumption

of mutual independence of external variables is also controversial. Several WCET analyzers

place constraints on the level of compiler optimizations as they can interfere with analysis in

unpredictable ways. Code optimizations can introduce additional control flow decisions that

are not covered by test data suite providing a cause for WCET underestimation. Kirner et

al[61] describes compiler support for measurement based timing analysis that can provide opti-

mizations while preserving code coverage achieved by the input test suite at source code level.

They work with a table that indicates with the help of a flag for each code optimization and

each code coverage metrics, whether the corresponding metric is preserved by performing code

optimization. Additional compiler optimizations that indicate to the compiler that coverage

has to be preserved is implemented in [61]. By introducing a coverage preserving mode for

the compiler, [61] guarantees that if a concrete structural code coverage has been achieved in

the original code, it will also be fulfilled in the transformed code. We could also benefit from

a similar compiler and benefit from generating test data automatically and ensuring better

coverage provided by test inputs.
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Keim et al[59] describes an approach to measure the execution time distribution by a

hardware simulator and a path-based timing analysis approach to derive a static estimation

of this same distribution. The technique can find a soft WCET for loops having any number

of paths. Probability distributions are continuous functions but this is quantized by creating

an array of buckets in which one bucket represents one possible execution time. 100 buckets

store percentiles of execution time. The last bucket containing the highest value contains soft

WCET. Two kinds of data are experimented with. Fair data where each path is given equal

preference. Unfair data where certain paths are favored more than others. The work in [59]

outlines an algorithm that statically generate distribution of execution times into an array.

For an example code that has two paths within a loop, the technique in [59] uses binomial

probability to populate the distribution array. For some programs results indicate that soft

WCET is more or less as pessimistic as the hard WCET. This can be prevented if the analysis

has some prior knowledge of the probability of a certain branch to be taken.

2.2.3 Statistical WCET Analyzers

It can be understood that measurements cannot be exhaustive always and hence measurement

based estimates are only associated with a probability of success. This raises the need for

statistical modeling where computation time is represented as by a probabilistic estimation

and WCET estimates are associated with a level of confidence. For statistical techniques, data

has to be collected and collated using mathematical formulae or a suitable model. The model

is used to generalize the behavior of a system beyond the existing data. Typical methods

use a particular probability distribution and an associated math function assigning probability

values to a set of events. For each distribution there will be a corresponding density function

representing density of data samples against magnitude of data. Random data samples tend

to be bell shaped if a gaussian distribution is assumed. According to central limit theorem a

random sample of n data items that are independent and identically distributed (IID) follows

gaussian distribution as the sample size increases. But this is suitable if the values concerned are

close to the mean but WCET analysis is much closer to near extreme values. The distribution

that accurately model the maximum values are selected. Such distributions are known as

extreme value distributions. Typical examples are Gumbel, Frehet and Weibull. Edgar et al[71]

proposes to use one such extreme value distribution and fits it over a large set of measured end
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to end execution times and calculates the parameters to extrapolate the execution time at the

desired probability. In chapter 3, we plot CPI samples collected over a large number of runs

and use percentiles to estimate worst case CPI. In Chapter 6, we exploit the homogeneity of

CPI within a phase and describe a model to bound CPI within a phase probabilistically.

The Gumbel and other extreme value theory (EVT) distributions are intended to model

random variables that are the maximum (or minimum) of a large number of other random

variables. Hansen et al[38] hence groups sample execution times into blocks and fit only block

maxima values to gumbel distribution, calculate parameters for the probability distribution

so that an estimate of WCET can be obtained by extrapolation at the required probability.

Chi-squared test is used to ensure sample data is correctly fitted to the distribution. There are

no data dependent loops in any of the tasks measured. Huge traces are collected by running

tasks by two different teams in experiments performed in [38]. This trace is divided into two

parts- estimation part and validation part. However, in [38] there are no data dependent loops

in any of the tasks measured.

Griffin et al[22] considers EVT that has been the most commonly used model to obtain

worst case execution time estimates and how statistical models sacrifice realism inorder to

provide generality and precision and how the sacrifice can compromise safety of the model.

Gumbel distribution is examined specifically in its need for IID data. The issues concerned

with statistical techniques are generality: which is the degree to which the model is applicable to

general situations, realism: how accurately the model represents the real world and precision:

the degree to which the error can be bounded. Firstly, Gumbel distribution assumes the

execution times can take any arbitrary value which is not true in the real world, as a program

can terminate only at certain execution points and not at any point. EVT assumes data

samples are IID. However, execution times of programs neither are independent nor identically

distributed state-changing programs. Several reasons exist for this, namely, the presence of

an onchip cache, global state variables shared by more than one instance of the program

running, each program run has the potential to change the world, each mode has its own

distribution, each path could have a different distribution thus leading to explosion in the

number of measurements and tests to be performed. An example is bubble sort where with

every iteration, the timing changes as the array gets more and more sorted. Hence results of

applying gumbel distribution are poor for this program[22].
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Griffin et al[22] gives several suggestions to work around this problem. One of the sugges-

tions is to add an error to prediction, break dependence among several runs by periodically

resetting the system or at least a part of it. Every path will have different set of hazards lead-

ing to a different probability distribution. Hence proving IID is hard. A solution is to ensure

sufficient MC/DC coverage and each path has sufficient samples to form a distribution. Avoid

interaction of programs with each other, as this too can violate IID. One way to make IID as-

sumption hold would be to use external measurements such as number of instructions executed,

cache misses to create a categorization scheme. If the chosen measurements lead to categories

whose members are sampled from the same or similar distributions, the IID assumption should

hold. WCET can then apply statistical analysis to each category and pick the maximum. We

also carry out a similar categorization where we split time into instructions executed and CPI

and estimate WCET by estimating maximum IC and CPI.

Lu et al[98] uses bootstrapping sampling theory and generates traces and also satisfies

requirements given by statistics and probability theory. The work in [98] is comprised of a

novel sampling mechanism (which tackles some of the problems raised when statistics is used

in WCET analysis[22]) and a statistical inference about computation of a WCET estimate

of the program under analysis, with a certain predictable probability. The novel sampling

mechanism is a simple random sampling technique with bootstrapping to collect qualified and

robust analysis samples (that is, timing traces), which can be used by to estimate statistical

WCET. Samples collected plainly using non IID program using simple random sampling are

termed as SRS ET (execution time) samples. In [98], a program is executed n times using SRS

technique, each time there are m non IID SRS et samples. Among each m, the maximum is

chosen as a new sample to construct a new set which will be IID. This sample set is termed as

IID SRS ET samples. Bootstrapping selects randomly with replacement samples out of n IID

SRS ET samples to create N bootstrap ET samples. Using N bootstrap ET samples and EVT

statistical WCET is estimated. In [97], Lu et al tries to fit IID SRS ET samples into a normal

distribution. If it cannot be done, bootstrapping is carried out. Our work neither assumes any

probability distribution of CPI samples nor tries to fit these samples into any distribution. We

use Chebyshev inequality that is applicable to any distribution, to compute bounds on CPI.

The precision of our results will definitely improve if information regarding true probability

distribution of CPI samples is available.
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2.2.4 New Trends in WCET Analysis

Conventionally WCET analysis has been limited to simple real time and embedded architec-

tures. Recently there has been a lot of interest in WCET analysis being carried out for different

processor architectures like the multicore, multithreaded and distributed systems[75]. The pro-

gram analysis portions of a compiler and a WCET analyzer have several aspects in common.

This has led to studies that look at the possibility of the WCET analyzer and the compiler to

work together in a closely integrated manner. Since the compiler knows enough of the program

to help resolve issues like targets of function pointers, it can go a long way in passing on this

information to the WCET analyzer and help improve its precision. Similarly the WCET an-

alyzer can offer hints regarding the temporal properties of the program regions and variables

and help guide some of the compiler optimizations[35]. Several of the analyses made by the

WCET analyzer regarding the code properties could help a program energy analyzer (WCEE)

to estimate the worst case energy estimation of the program[72].

If the program can be transformed in some way to another program which has a lesser

degree of path complexity[32], the WCET analysis time would be faster. The WCET analyzer

works fastest for straight line code, code which has only one path of execution. Traditional

compiler optimizations always work for bettering the average case execution time. However

recently there has been focus on developing optimizations that can decrease the worst case

execution time of the program. These could be using a mix of powerful instructions on the

worst case path and use less powerful instructions on the non critical path that can effectively

reduce the code size[69], developing customized static branch prediction schemes[27], placing

of basic blocks along the worst case path in such a way so as to avoid penalties regarding

jumps[89], optimally allocating variables to scratch pad allocation memory[86] etc. There have

been efforts also at the architecture level to make the design much simpler enough, to make

WCET analysis more predictable[1, 19].

2.3 Chapter Summary

In this chapter, we described the basic process of WCET analysis and various challenges in

estimating WCET and issues concerning usability and applicability of WCET analysis. We

also presented a survey of various WCET analysis techniques by classifying it into different
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categories and briefly discussed the work in each category and also touched upon briefly the

recent trends in the field of WCET analysis.



Chapter 3

Preliminaries: Base Timing Model

and Experimental Setup

In this chapter, we present our basic timing model that considers a program as one single

unit and estimates its WCET in terms of whole program instruction count(IC) and cycles per

instruction(CPI). As the thesis progresses, we shall break the program into phases and apply

the same formulation at the phase level and estimate program WCET in terms of its phases.

We also describe our experimental setup that will be used throughout the thesis which includes

the simulators, benchmarks and test input formation procedures.

The unit of analysis used by existing timing analysis methods is cycles. We propose to

use cycles per instruction or CPI instead. Most processors of today are pipeline based. Hence

CPI is a commonly quoted performance metric in today’s processors. A processor with low

CPI is said to have higher performance. Moreover, most of these processors are embedded

with performance counters that enable accurate measurement of CPI with the least intrusion.

When we speak of time in terms of CPI, execution time of a program then becomes a product

of number of instructions executed or instruction count, IC and cycles per instruction, CPI.

WCET is hence formulated as a product of worst case IC, WIC and worst case CPI, WCPI as

shown in Eq(3.1).

WCET = WIC × WCPI (3.1)

The worst case number of instructions, WIC, is the maximum number of instructions that a

program can execute. If the test input set covers the program adequately, we can use maximum

49
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observed instruction count as WIC. However, if there is low confidence on the coverage aspect

of the test input set, we compute the theoretical upper bound on IC for the program using

static structural analysis and use it as WIC. The worst case CPI, WCPI depends on the worst

case input, often unknown a priori. Hence one has to depend on certain functions of CPI

samples obtained by measurement over fixed number of instructions termed as intervals. Over

the CPI samples thus collected, different functions are defined. These functions of CPI are

then combined with the worst case instruction count, WIC to give the estimate of program

WCET. In this chapter, we shall evaluate various combinations to decide which one of them is

best suited for purposes of WCET estimation.

3.1 Worst Case IC (WIC)

WIC has two clear candidates as we saw earlier, the maximum observed instruction count and

the theoretical upper bound on instruction count. Maximum observed instruction count is

available upon direct measurement of the program by running it on all inputs in the test input

set. However, if it is expensive to obtain inputs that achieve adequate coverage, we obtain a

theoretical upper bound on IC, also known as SWIC (static WIC). Now, we shall describe how

SWIC can be derived.

3.1.1 Derivation of SWIC.

Several static WCET analyzers including Chronos use integer linear programming (ILP) to

estimate static worst case execution time. The theoretical upper bound on execution time (ET)

is derived by maximizing a linear objective equation which is essentially a sum of products.

The product term consists of a constant term and a variable term. The constant term denotes

the maximum cost of execution of a basic block on a given architecture. The variable term

denotes the frequency of execution of the basic block. This product is summed over all basic

blocks of the program and maximized to obtain WCET.

We use a similar formulation to estimate the theoretical upper bound on IC, SWIC. The

constant term in our case is the number of instructions that comprise the basic block. The

variable term remains the same and represents the frequency of execution of the basic block.

The basic blocks are the components of the control flow graph (CFG) which is constructed from
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the program binary. Each basic block, B is associated with an integer variable NB that indicates

B ’s execution count and an integer constant WB that indicates the number of instructions in

basic block B. The linear objective function is given by,

Maximize(Σ∀B,NB ∗ WB) (3.2)

The linear constraints on NB are developed from the flow equations based on the control flow

graph. Thus for basic block B,

ΣB′→B(EB′→B) = NB = ΣB→B”(EB→B”) (3.3)

Where, EB′→B (EB→B”) is an (integer linear programming) ILP variable denoting the number

of times control flows through the control flow graph edge B′ → B ( B → B” ). Additional

linear constraints are also provided to capture loop bounds as follows. The parameter EB is

bounded by the maximum number of times the loop can iterate, L, if it happens to reside inside

a loop else it takes the value 1 by default.

Ei→j <= L (3.4)

In order to simplify our analysis, we assume availability of loop iteration bounds for all the

loops in the CFG. Any instances of recursion are converted to iteration whenever possible.

If infeasible paths are known a priori, they can be indicated in terms of additional linear

constraints as follows. If an edge Ei→j cannot execute with an edge Ep→q together in any

execution, we can specify the following constraint,

Ei→j + Ep→q = 1 (3.5)

IPET is one of the mechanisms by which, SWIC can be derived. However, SWIC can

also be derived using enumerating paths explicitly by create a directed graph out of the CFG.

With each node representing a basic block and edges representing control flow, the weights of

edges representing the number of instructions in the preceding basic block, one can use graph

theoretical algorithms to find the longest path between the source and the sink node to give

SWIC. Similarly, tree based schema can be used to derive SWIC bottom up. For a straight
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sequence of basic blocks, the upper bound on IC is just the sum of the number of instructions

of each basic block. For an if-then-else statement, the upper bound on IC is the maximum of

the number of instructions that can get executed in either the if set of statements or the else

set of statements. For a loop, the upper bound on IC is the maximum number of instructions

that can get executed in each iteration multiplied by the loop bound.

Implementation

ChronosV3.0 [94] uses an ILP based framework to compute WCET for a program by construct-

ing a linear objective equation. Inorder to compute SWIC, we modify ChronosV3.0 in the

following ways. We disable code that carries out microarchitectural modeling and set the cost

of executing every basic block on a given architecture as 1 unit. We set the constant factor

of the variables corresponding to each basic block as the number of instructions in that basic

block. We retain code that carries out infeasible path analysis and forms constraints based on

CFG structure. Executing the modified version of ChronosV3.0, gives us a set of ILP equations

along with only the structural constraints imposed by the graph. Solving the ILP equation gives

us SWIC. Before we propose and evaluate possible candidates for worst case CPI, we describe

our experimental setup and architectures targeted as CPI is the measured quantity and is hence

associated with an architecture.

3.2 Experimental Framework

In this section, we describe the basic framework used for all our experiments carried out in the

thesis.

3.2.1 Benchmarks

The Mälardalen WCET research group maintains a large number of WCET benchmarks[108],

used to evaluate and compare different types of WCET analysis tools and methods. Several of

these benchmarks are used in the WCET Tool Challenge[64], an event that occurs once every

2 years, involving numerous WCET tool developers around the world. These benchmarks have

been developed from various sources like research groups and tool vendors from around the

world. We select 18 benchmarks from this suite and they are,
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algorithm.� Cyclic Redundancy Check (Crc): Performs cyclic redundancy check on a character

array.� Count (Cnt): Counts positive and negative numbers in a N X N matrix.� Edn: Implements Jpegdct algorithm together with other signal processing algorithms.� Finite Impulse Response filter (Fir): Performs the finite impulse response filter

algorithm on a sample of N items.� Insertion Sort (Ins): Sorts a set of numbers using the insertion sort algorithm.� JANNE COMPLEX (Jan): Program with a complex nested loop whose inner MAX

iterations depend on the outer loop.� Lms: Adaptive signal enhancement on an array of N coefficients.� L U Decomposition (Lud): L U Decomposition algorithm on a N X N matrix.� Matrix inversion (Minv): Matrix inversion on a N X N matrix.� Matrix multiplication (Mat): Matrix multiplication of two N X N matrices.� N-dimensional search (Ndes): Search for an element in a N X N X N vector using

linear search algorithm.� Extended petrinet simulator (Nsch): Simulate an extended petrinet for N iterations.

Three benchmarks are taken from Mibench embedded benchmark suite[109]. They are,� Bitcount (Bit): Performs bit operations on an array of numbers having various distri-

butions.� Dijkstra Algorithm (Dij): Finds M shortest paths in a graph of N vertices using

Dijkstra’s algorithm.
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The last benchmark is taken from Antoine Colin[9].� Bezier curve drawing (Bez): Bezier draws a set of N lines of 4 reference points on a

800 X 600 image.

In the thesis, we present estimation of WCET with increasing levels of accuracy in each

chapter. In Chapter 6, we shall describe design and implementation of a probabilistic WCET

analyzer and present ways to tune the acccuracy of the estimate. To evaluate this analyzer, we

choose an additional real world benchmark DEBIE-1[106] (DEBris In Orbit Evaluator) used

for monitoring space debris and metereoids in near earth orbit. Details of this benchamark are

described in the evaluation section of Chapter 6.

3.2.2 Input Set Formation

The proposed method is a hybrid WCET estimation method which involves measurements.

Hence selection of inputs used to obtain measurements of CPI is important. Ideally, inputs

should be selected such that they exercise all paths in a program for any measurement based

or hybrid WCET estimation method. But the presence of complex if-conditions in a program

can exponentially increase the number of paths possible, making enumeration of these paths

and execution of a program along all paths, a computationally hard problem. We hence make

use of MC/DC (Modified condition/Decision coverage) criteria[47], used in testing of real-

time avionics systems to approximate complete path coverage. This criterion is also used

to select inputs in other well known hybrid WCET estimation methods like Adam Betts’s

instrumentation point graphs[2]. Many of the benchmarks are memory intensive and are largely

dependent on the distribution of data. Hence in addition to structural coverage, we also form

test inputs that cover all possible distributions of data.

Structural Coverage

Inorder to satisfy MC/DC criterion during testing, all of the following conditions must be true

atleast once.� Each decision has tried every possible outcome.
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Major clause: x<XSIZE x>0 y<YSIZE y>0

TRUE TRUE TRUE TRUE

FALSE TRUE TRUE TRUE

Table 3.1: Truth values of major clause: x<XSIZE and minor clauses: x>0, y<YSIZE and
y>0.� Each condition in a decision has taken on every possible outcome.� Each entry and exit point has been invoked.� Each condition in a decision has been shown to affect the outcome of the decision inde-

pendently.

Most of the inputs for the benchmarks are vectors of either numbers or characters. Hence

they can be generated automatically with ease. For simple programs with small number of

conditions, random input generation is sufficient to ensure that inputs satisfy the MC/DC

criterion. For complicated programs involving hundreds of conditions, we use genetic algorithms

to generate data that are fit enough to satisfy MC/DC criterion. The condition clauses present

in a benchmark are analyzed. If the condition contains only a single clause, benchmark inputs

that result in the clause being TRUE and FALSE are generated. If the condition contains

multiple clauses, each clause is considered as a major clause at a time. The remaining clauses

are considered as minor clauses[47]. If the benchmark input demonstrates the effect of the

major clause independently of the minor clauses, the input is considered fit. The structure

of the condition determines the truth values of the minor clauses inorder for them to have no

impact on the final truth value of the condition. Consider the benchmark, bezier that has the

following condition clause, containing four logical conditions.

if((x < XSIZE) && (x > 0) && (y < YSIZE) && (y > 0))

Considering, (x < XSIZE) as the major clause, the truth values for the minor clauses to

demonstrate the effect of the major clause independently is shown in Table 3.1

Similarly every other condition is deemed as a major clause and truth tables are generated

for the other remaining minor clauses. Appropriate data values that cause the conditions to

evaluate to TRUE or FALSE are determined. In most of the cases this results in a range of

values that the data can take inorder to satisfy these truth values. It should be noted that there

might be minor and major clauses in a benchmark whose truth values can never be attained
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together. Hence in some programs, we cannot always guarantee 100% coverage of MC/DC

criterion as it depends on the inherent structural makeup of the program.

To begin with, a set of 500 inputs are randomly generated for each benchmark. The fitness

of these inputs are determined by examining the truth values of clauses obtained by applying

these inputs. Inputs that are unfit are left out of consideration. Genetic computing requires that

fit inputs are selected and mutated to produce newer inputs that continue fit. The mutation

is done in such a way that their fitness is not affected. The inputs are crossed to produce new

inputs. The crossover operation depends on the structure of program inputs. This process

continues until we have 500 fit inputs or we reach a million iterations.

For some programs, both random input generation and genetic algorithms might not suc-

ceed in finding the complete range of test inputs. If the program structure is simple, we

systematically analyze the program manually and form inputs that satisfy condition coverage.

Data Coverage

If a program is highly data dependent, merely covering it based on control flow would not

suffice. Hence we need to test such a program with all kinds of data. Random data generation

is clearly the simplest choice and is carried out. However, we are interested in generating data

that most likely exercises the program for a long time and is a likely candidate to drive the

worst case path. Hence we apply genetic algorithms with the fitness criteria centered around

the execution time of the program. If an input makes the program execute for a long time

(greater than the observed mean execution time over all inputs till now), it is considered as

a fit candidate. Two pairs of fit inputs are mutated and crossed over at fixed points and the

offspring is evaluated for fitness. Again, for some programs, random input generation and

genetic algorithms might not capture the worst case candidate inputs. For such programs,

manual intervention is necessary to craft special inputs. The most common example is Bubble

sort that sorts an array of numbers. The worst case input for this program has been observed

to be an array that is reverse sorted. This is detected using a systemic analysis on the program.

3.2.3 Simulation Tools

The proposed method is a hybrid WCET estimation method that uses measured CPI inorder to

estimate WCET. Hence we need to measure CPI of the programs on the target architecture. For
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simplest Issue, decode and commit width=1, RUU size=8,
Perfect data cache, Perfect branch prediction
Inorder-issue, Instruction cache 8KB direct mapped

inorder complex Issue, decode and commit width=1, RUU size=8,
2 level branch predictor, Fetch Queue size=4,
In-order issue, L1 Instruction cache 8KB direct mapped
L1 Data cache 8KB 2-way set associative,
L2 Unified 64KB 8-way associative cache

complex Issue and decode width=4, commit width=1, RUU size=8,
2 level branch predictor, Fetch Queue size=4,
Out-of-order issue, L1 Instruction cache 8KB direct mapped
L1 Data cache 8KB 2-way set associative,
L2 Unified 64KB 8-way set associative cache

Table 3.2: Architectural configurations used for experimentation.

this purpose, we choose the cycle accurate simulator, Simplescalar V3.0 [113], which is a highly

tweakable and reliable tool used by most architectural studies for over a decade. Another reason

for this choice is that Simplescalar V3.0 is used by Chronos, a popular static WCET analysis

tool that is publicly available, with which we evaluate our WCET analyzer. Simplescalar V3.0

works with PISA binaries and is designed based on the MIPS R10K pipeline. The simulator

allows users to tweak parameters of the instruction and data cache, branch predictor, pipeline

and instruction and data TLB. In Chapter 6, we present a probabilistic WCET analyzer which

we will compare with a commercial probabilistic WCET analyzer, RapiTime on ARM archi-

tecture. For that purpose, we use a cycle accurate ARM simulator SimIt-ARM-2.1 [114] which

will be discussed in Chapter 6.

3.2.4 Architectures

We perform our experiments on three different architectures as shown in Table 3.2. The

three SimplescalarV3.0 based architectures are designed on the lines of architectures used for

evaluation in previous WCET Tool challenge studies[64]. The presence of a data cache in

embedded processors introduce variability and unpredictability in the system. Hence we begin

with a simplest architecture with a perfect data cache and a perfect branch predictor. We

increase the complexity by introducing a 2 level branch predictor and a data cache at L1 and

a unified cache at L2 to form inorder complex. We increase the complexity further by making

the pipeline out-of-order and superscalar to form complex.
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3.3 Candidates for Worst Case CPI (WCPI)

Once we have obtained worst case IC, WIC, for a given program, we need to multiply it by the

appropriate worst case CPI, WCPI of that program, inorder to estimate WCET. We have seen

that worst case IC can either be obtained by static analysis of the program or by measurement.

Inorder to compute WCPI, we collect CPI samples by measuring CPI over fixed number of

instructions termed as a interval. An interval is a contiguous slice of dynamic instructions

executed. For our experiment, we choose a default interval size of 1000. For benchmarks that

execute totally a few thousands of instructions, we choose a much smaller interval size (of about

a 100 instructions). We run the benchmarks with the set of test inputs generated as described

in the previous sections to generate a CPI sample set, each corresponding to a particular input,

i, indicated by CPIi. We repeat the process for all architectures under consideration. Various

functions are defined on these CPI samples to estimate worst case CPI as follows. We shall

refer to the following four possible candidates for worst case CPI as analytical CPI candidates:

1. Maximum of maximum CPI observed across all n test inputs with mi intervals for each

input, i:

Max Max(CPI) = Maximum(Max(CPI1),Max(CPI2), ...,Max(CPIn)) (3.6)

Max(CPIi) = Maximum(CPIi,1, CPIi,2, ..., CPIi,mi
), ∀i ∈ {1, .., n} (3.7)

Max(CPIi) is the peak CPI observed at any point during execution of the program with

input i. Hence Max Max(CPI) represents the highest peak CPI observed at any point

during execution of the program with any input.

2. Average of maximum CPI observed across all n test inputs:

Avg Max(CPI) =
Σ(Max(CPIi))

n
, ∀i ∈ {1, .., n} (3.8)

Max(CPIi) is computed using Eq(3.7). Avg Max(CPI) represents the average of all peak

CPI observed across n test inputs.

3. Maximum of average CPI observed across all n test inputs with mi intervals for each
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input, i:

Max Avg(CPI) = Maximum(Avg(CPI1), Avg(CPI2), ..., Avg(CPIn)) (3.9)

Avg(CPIi) =
Σ(CPIi,1)

mi
∀i ∈ {1, ..,mi} (3.10)

Avg(CPIi) is the average CPI observed during execution of the program with input i,

which is the same as overall CPI observed when the program is executed with input i.

Max Avg(CPI) is the maximum of average CPI observed across n test inputs.

4. Average of average CPI observed across all n test inputs:

Avg Avg(CPI) =
Σ(Avg(CPIi))

n
(3.11)

Avg(CPIi) is computed using Eq(3.10). Avg Avg(CPI) represents the overall average of

the average CPI observed across n test inputs.
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Figure 3.1: CPI distribution seen across 500 runs of Bit on Complex architecture with analytical
candidates superimposed.
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Figure 3.2: CPI distribution seen across 500 runs of Bub on Inorder complex architecture with
analytical candidates superimposed.

Amongst these four possible candidates, we need to find out the one that most accurately

represents worst case CPI. For this purpose, we look at the distribution of CPI values by

creating histograms of the CPI samples obtained as mentioned above. Figures 3.1, 3.2 and

3.3 show some of the distributions of programs on various architectures. These figures also

superimpose the above mentioned candidates, Max Max(CPI), Max Avg(CPI), Avg Max(CPI)

and Avg Avg(CPI) to give an idea about their location of occurrence in the distribution. From

the figures, it is clear that Max Max(CPI) and Avg Max(CPI) represent values that occur very

rarely and are located at the tail end of the distribution. The same trend is observed in other

programs on all architectures. Considering Max Max(CPI) and Avg Max(CPI) as worst case

CPI would imply that we expect every interval of the program to exhibit high CPI, which is

not true. Further, we shall see in upcoming chapters, that programs are composed of phases,

each phase having a different average CPI. Hence considering the tail end CPI values would

imply using a high blanket CPI value for all phases which will only overestimate actual worst

case CPI. Since we do not consider phases yet, Max Avg(CPI) and Avg Avg(CPI) appear to

be more suitable than Max Max(CPI) and Avg Max(CPI).
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Figure 3.3: CPI distribution seen across 500 runs of Nsch on Simplest architecture with ana-
lytical candidates superimposed.

Alternatively, we can use statistical parameters such as 90th percentile, 95th percentile and

99th percentile CPI values of the distribution as candidates for worst case CPI. We shall term

these as statistical candidates. A 90th percentile value is computed by dividing the distribution

of CPI samples into a hundred groups of equal frequencies such that 90 percent of the values

lie below the 90th percentile and ten percent of values lie above it[31]. To compute percentile

values, we use the prctile function of Matlab V7.1 [110]. To give an idea of the location of

these parameters on the distributions, we plot these parameters on the distributions as shown

in Figures 3.4, 3.5 and 3.6. We can infer from the figures that percentile values are highly

dependent on the distribution. In Figure 3.6, the 90th percentile CPI value is greater than

Max Avg(CPI), whereas in Figure 3.5, it is much smaller than Max Avg(CPI).

To give an overall picture of pessimism that results in the usage of these various candidates,

we compare these candidates with CPI that occurs when the benchmark is run with that

input which is observed to be worst among the set of test inputs, referred to as WCPI. The

comparisons for Simplest, Inorder complex and Complex can be found in Figures 3.7, 3.8 and

3.9 respectively.



Chapter 3. Preliminaries: Base Timing Model and Experimental Setup 62

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
x 10

4

CPI Values

N
u

m
b

e
r 

o
f 

S
a

m
p

le
s

−>90per

−>95per
−>99per

−>MaxAvg

−>AvgAvg

−>Mean

Figure 3.4: CPI distribution seen across 500 runs of Bit on Complex architecture with statistical
candidates superimposed.

From these figures, we can infer that on an average, Max Avg(CPI) comes very close to

90th percentile CPI value. While Max Avg(CPI) is dependent on trend of CPI observed across

inputs, the 90th percentile CPI value is dependent on the actual distribution. Hence the

percentile values are highly sensitive to the choice of inputs used to form the test input set.

Using the 99th percentile CPI value would still make WCET very pessimistic as can be seen by

comparing it with WCPI. Avg Avg(CPI) just about manages to touch WCPI. Max Avg(CPI) is

slightly more than WCPI in all cases. Max Avg(CPI) and Avg Avg(CPI) need only two values

per input to compute- Cycles elapsed and instructions executed. But to compute the 90th

percentile CPI value, we need all CPI samples collected over 1000 instruction intervals. Next,

we shall evaluate pessimism in WCET estimate using analytical candidates Max Avg(CPI),

Avg Avg(CPI) and statistical candidates 90th and 99th percentile CPI values.

With two possible candidates for WIC- SWIC and MIC and two possible analytical can-

didates for WCPI- Max Avg(CPI) and Avg Avg(CPI), we can have a total of four possible

combinations of IC and CPI and hence four possible WCET estimates obtained by evaluating

the following equations:
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Figure 3.5: CPI distribution seen across 500 runs of Bub on Inorder complex architecture with
statistical candidates superimposed.

1. WCET1 = SWIC × Max Avg(CPI)

2. WCET2 = SWIC × Avg Avg(CPI)

3. WCET3 = MIC × Max Avg(CPI)

4. WCET4 = MIC × Avg Avg(CPI)

For simple straight line programs, SWIC is equivalent to MIC. For programs with more com-

plex if conditions, SWIC might be much larger than MIC. As a result, WCET1 and WCET2

are more pessimistic than WCET3 and WCET4 for such programs. For programs that display

stable CPI behavior across inputs, Max Avg(CPI) is not very distant from Avg Avg(CPI).

For programs which display more varied CPI behavior across inputs, Max Avg(CPI) >>

Avg Avg(CPI). As a result, WCET1 is more pessimistic than WCET2 and WCET3 is more

pessimistic than WCET4 for such programs. WCET1 is the most safest estimate of all four es-

timates. WCET4 is the most optimistic estimate of all and hence can be unsafe. Theoretically,

WCET1 and WCET2 are not guaranteed to be safe as they are computed using measured CPI
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Figure 3.6: CPI distribution seen across 500 runs of Nsch on Simplest architecture with statis-
tical candidates superimposed.

values and so are WCET3 and WCET4, that are computed using measured CPI and IC values.

Likewise, we compute WCET using statistical candidates - 90per(CPI) (90th percentile CPI

value) and 99per(CPI) (99th percentile CPI value) to obtain four more possible combinations

of IC and CPI as follows. We shall evaluate the resulting pessimism in these WCET estimates

in the next section.

1. WCET5 = SWIC × 90per(CPI)

2. WCET6 = SWIC × 99per(CPI)

3. WCET7 = MIC × 90per(CPI)

4. WCET8 = MIC × 99per(CPI)
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Figure 3.7: Comparison of various CPI candidates with WCPI on Simplest architecture.
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Figure 3.8: Comparison of various CPI candidates with WCPI on Inorder complex architecture.
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3.4 Evaluation

3.4.1 SWIC versus MIC

In this section, we shall compare the theoretical upper bound IC value of every benchmark

with the corresponding maximum measured IC value. It should be noted that the number of

instructions executed is determined by the ISA which is the same for all PISA architectures

considered in this paper- Simplest, Inorder complex and Complex. Figure 3.10 plots the ratio

of computed SWIC to observed MIC for all benchmarks on PISA architectures. These ratios

quantify the structural complexity of the benchmark to some extent. Edn, Lms and Mat are

straight-line programs. Hence they execute the same number of instructions for any valid input.

The structure of programs, Bs, Cnt and Ndes is such that, it is easy to guess the algorithmic

worst case input. Hence we can guess inputs that execute SWIC number of instructions causing

SWIC/MIC to be 1 for such programs. However, even after exercising the algorithmic worst

case inputs for programs like Ins, MIC is lesser than SWIC. Ins contains a triangular loop nest

which is not obvious by the usage of while loop. Hence the analysis assumes both inner and

outer loop iterate for the same number of times which is not true. This can be remedied by

adding manual annotations specifying a lower bound owing to the triangular loop nest. The

worst case inputs for structurally complex programs such as Dij, Lud, Minv and Nsch are not

known. Hence for these programs, one cannot isolate the cause for a high SWIC/MIC ratio to

in-adequate coverage or structural complexity.

3.4.2 Time for SWIC Computation

In this section, we shall evaluate the time taken to compute SWIC for all benchmarks. As

SWIC is computed by solving an ILP problem built by modeling the program structure in

the form of flow constraints, computation of SWIC takes longer time for complex programs

that are either large in size or consist of complex if -conditions. Figure 3.11 describes the time

taken for computation of SWIC in seconds for all benchmarks. The X-axis plots benchmarks

arranged in the increasing order of their structural constraints, constants and variables figuring

in the ILP equation. We can observe that for most programs, SWIC is computed within a few

seconds. Amongst all programs, computation of SWIC takes longest time (105 seconds) for

Nsch which is a structurally complex program with hundreds of if -conditions. The number of
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Figure 3.10: Comparison of SWIC to MIC for all benchmarks on PISA architecture.

structural constraints is 29260. As we described in section 3.1.1, SWIC can also be computed

using alternate methods such as graph theoretical algorithms or tree based schema.

3.4.3 Max Avg(CPI) versus Avg Avg(CPI)

In this section, we shall compare for every benchmark on every architecture, ratio of Max Avg(CPI)

to Avg Avg(CPI), observed across all inputs (Figure 3.12).1 Benchmarks that exhibit a high

ratio are said to exhibit highly varied CPI behavior across inputs. Some of the straight-line

benchmarks like Crc, Edn, Fft, Lms and Mat exhibit the same CPI irrespective of input and

this holds true across architectures. Hence the ratio of Max(CPI) to Avg(CPI) for these pro-

grams is 1. For benchmarks Bs, Cnt and Fir that have very few if conditions, the ratio of

observed Max(CPI) and Avg(CPI) is less than 1.02. The closeness between observed Max(CPI)

and Avg(CPI) across inputs implies that CPI behavior is uniform across inputs. This justifies

our factorization of execution time into IC and CPI and also the use of overall program CPI in

estimating WCET. For programs which display stable CPI behavior during the program run

1In the figure, Max Avg(CPI) is referred to as Max(CPI) and Avg Avg(CPI) as Avg(CPI) for ease of notation
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Figure 3.11: Time taken to compute SWIC on PISA architecture. Benchmarks are ordered
with respect to structural complexity.

and also across runs with different inputs, the basic timing model presented in this chapter

gives accurate WCET estimates.

A greater difference between Max(CPI) and Avg(CPI) implies CPI varies across inputs.

Examples are Bub, Ins, Janne, Lud, Minv, Nsch and Ndes. One of the causes is the variation in

the number of instructions executed across different inputs due to the presence of if conditions.

Sometimes if a program execution with input i finishes earlier than input j, the average CPI

observed with input i will be higher than input j. Hence Max(CPI) can pick those CPIs

corresponding to executions that terminated sooner causing WCET estimates to be pessimistic

compared to maximum observed cycles. In the next chapter, we shall see how we remedy this

by making use of correlation between IC and CPI to optimize our timing model.

3.4.4 Comparison with Chronos

In this section, we shall compare the estimates of WCET obtained by our proposed method that

uses eight combinations out of {SWIC, MIC}, analytical candidates of CPI, {Max Avg(CPI),
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Figure 3.12: Ratio of maximum CPI to average CPI observed across inputs on all PISA archi-
tectures.

Avg avg(CPI)} and statistical candidates of CPI {90per(CPI), 99per(CPI)} with the corre-

sponding estimate given by Chronos[94]. We describe more details on Chronos and it’s usage

in the Appendix. The WCET estimate on Simplest architecture is obtained using ChronosV3.0

and that on Inorder complex and Complex is obtained using ChronosV4.0 [94]. Chronos is a

static WCET analyzer. We shall compare our results with Chronos in terms of pessimism in

the WCET estimate and safety.

Figures 3.13, 3.14 and 3.15 plot the pessimism observed in WCET estimate using the

four formulae proposed in this chapter using analytical CPI candidates along with the corre-

sponding pessimism observed in WCET estimated by Chronos for PISA architectures Simplest,

Inorder complex and Complex respectively. The WCET estimate which has a pessimism of 1

is said to be most accurate. WCET estimates that have a pessimism greater than 1 are safe

estimates as indicated in the figures. WCET estimates obtained using SWIC are closer to

estimates obtained by Chronos as they are computed by static structural analysis of the bench-

mark. Some estimates obtained using MIC in the proposed method are observed to be unsafe.
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Figure 3.13: Pessimism of proposed method and Chronos on Simplest architecture using ana-
lytical CPI candidates.

Since the proposed method is measurement based, unless 100% coverage is assured, it is diffi-

cult to guarantee a safe WCET estimate. Chronos being a static WCET analyzer, produces a

WCET estimate that is always safe. However, the proposed method gives safer estimates with

SWIC than MIC. If safety is not a concern, but tightness is, MIC may be used.

Figures 3.16, 3.17 and 3.18 plot the pessimism observed in WCET estimate using statis-

tical candidates. It can be observed that the pessimism in WCET estimates computed using

statistical candidates is more compared to ones computed using analytical candidates. The

prime reason being analytical candidates are average values and statistical candidates are tail

end values. Table 5.2 describes the average pessimism in WCET estimates obtained using both

analytical and statistical candidates of CPI and pessimism obtained using Chronos, observed

for all PISA architectures. It can be observed that the average pessimism in WCET estimates

obtained using SWIC and Max Avg(CPI) is around twice the maximum observed cycles. The

average pessimism in WCET obtained using SWIC and 99per(CPI) is around thrice the max-

imum observed cycles. The model proposed in this chapter is very basic as it considers the

whole program as a single unit. The model will be refined further in the coming chapters to
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Figure 3.14: Pessimism of proposed method and Chronos on Inorder complex architecture using
analytical CPI candidates.

give tighter estimates.

Sensitivity to Architecture

In this section, we shall evaluate the influence of the underlying architecture on the resultant

WCET estimate. Figures 3.19 and 3.20 plot for each benchmark, the variation in pessimism

of WCET estimates over PISA architectures Simplest, Inorder complex and Complex obtained

using the proposed method and Chronos respectively. For plotting Figure 3.19, we use a

combination of SWIC and Max Avg(CPI). The proposed method gives WCET estimates for

all benchmarks on all architectures. The pessimism observed in WCET estimate obtained by

the proposed method for benchmarks Bub, Dij, Ins, Lud, Minv, Ndes changes with change in

architecture complexity, the pessimism in all other remaining benchmarks remains more or less

the same across architectures. For most benchmarks, the pessimism in WCET estimate is found

to increase with increasing architecture complexity in case of Chronos. ChronosV4.0 does not

run to completion for the following programs Bs, Fft, Minv, Nsch on both Inorder complex and

Complex architectures and Crc, Edn on the Complex architecture. In this respect, we can say
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Figure 3.15: Pessimism of proposed method and Chronos on Complex architecture using ana-
lytical CPI candidates.

that the proposed method is more tolerant to changes in architecture.



Chapter 3. Preliminaries: Base Timing Model and Experimental Setup 74

0

1

2

3

4

5

6

7

8

9

10

P
es

si
m

is
m

 in
 W

C
E

T 
E

st
im

at
e

 

 

B
ez  B

it
 B

s
 B

ub
 C

nt
 C

rc  D
ij

 E
dn  F

ft
 F

ir
 In

s
 J

an
 L

m
s

 L
ud

 M
at

M
in

v
N

sc
h

N
de

s
 A

V
G

Safe

SWIC*90per(CPI)/M
SWIC*99per(CPI)/M
MIC*90per(CPI)/M
MIC*99per(CPI)/M
Chronos/M

Figure 3.16: Pessimism of proposed method and Chronos on Simplest architecture using sta-
tistical CPI candidates.

WCET Simplest Inorder complex Complex
SWIC×Max Avg(CPI)

M
1.89824 1.95765 2.02981

SWIC×Avg Avg(CPI)
M

1.54734 1.64062 1.55611
MIC×Max Avg(CPI)

M
1.19725 1.17536 1.19929

MIC×Avg Avg(CPI)
M

0.983739 0.99387 0.976724
SWIC×90per(CPI)

M
1.79203 1.88219 1.8945

SWIC×99per(CPI)
M

2.72016 2.81922 2.96792
MIC×90per(CPI)

M
1.10422 1.15887 1.1689

MIC×99per(CPI)
M

1.98565 1.91699 2.04842
Chronos

M
1.7308 3.15256 4.1998

Table 3.3: Average pessimism of WCET on all PISA architectures using the proposed method
and Chronos.
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Figure 3.17: Pessimism of proposed method and Chronos on Inorder complex architecture using
statistical CPI candidates.
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Figure 3.18: Pessimism of proposed method and Chronos on Complex architecture using sta-
tistical CPI candidates.

Figure 3.19: Variation in pessimism of WCET estimates obtained by proposed method over
PISA architectures.
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Figure 3.20: Variation in pessimism of WCET estimates obtained by Chronos over PISA ar-
chitectures.
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3.5 Related Work

Corti et al [52] presents a hybrid measurement based WCET analysis technique that uses graph

longest path search algorithm to estimate WCET. The nodes of the graph are basic blocks.

The weight of an edge represents the cost of executing the preceding basic block in processor

cycles which is computed in terms of CPI. CPI is broken down into busy cycles, stall cycles

and cycles taken by cache misses. These components are further broken down so that they

can be represented by available hardware performance counters. The equation is evaluated

by plugging in the values of the hardware performance counters. The CPI along with the

number of instructions in the basic block gives the cost of executing the basic block. The

technique yields only approximate estimates as event counting is not precise as events cannot

be attributed to specific instructions more so for out of order architectures. Moreover many

events are not disjoint, hardware performance monitors do not report their intersection. Our

technique uses only one parameter that has to be measured which is the CPI. So we do not

face the problem of mapping events to instructions as we measure average CPI over intervals

of 1000 instructions. We estimate WCET as a product of maximum IC and maximum CPI.

Compared to other statistical methods that use extreme value theory to fit a curve on

measured end to end execution times[38, 97, 98], we plot measured CPI samples collected

over a large number of runs and calculate percentile values to approximate worst case CPI.

Our estimates are only approximate and can be further improved. The reasons are- firstly

we assume that the samples we have is exhaustive which might not be true. Percentiles only

determine the relative standing of a value in a population, a more accurate measure would be

the probability of a particular unknown CPI being greater than the mean. This aspect will

be explored in Chapter 6. Factorization of execution time into components such as number

of instructions, cache misses et cetera, has been suggested by Griffin et al[22] in the context

of statistical WCET analysis. Post factorization, it is easier to collect independently and

identically distributed samples from each of the components and estimate WCET by applying

statistical analysis to each component and picking the maximum. Our work builds on such

a factorization of execution time into IC and CPI. We shall see in coming chapters, that this

factorization has many benefits to offer with respect to timing analysis.
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3.6 Summary

This chapter proposes a basic formula to estimate WCET of a program in terms of whole

program instruction count (IC) and cycles per instruction (CPI). Both static (theoretical upper

bound on IC) and dynamic estimates (maximum observed IC) of worst case IC, WIC are

examined along with various analytical and statistical candidates for worst case CPI, WCPI

are examined. If adequate coverage by test inputs is assured, maximum observed instruction

count (MIC) may be used as WIC. If coverage is an issue, the theoretical upper bound on IC,

SWIC, may be used as WIC. Among the analytical candidates, Max Avg(CPI) is the most

suitable choice for WCPI. If a softer estimate is desired, Avg Avg(CPI) may be used. Among

the statistical candidates, the 99th percentile CPI value can render pessimism in the resultant

WCET estimate. The 90th percentile CPI comes closest to the Max Avg(CPI) value, but it is

very much dependent on the CPI distribution and hence inputs that form the test input set.

In the next chapter, we shall see that in many programs, correlation exists between instruction

count(IC) and cycles per instruction(CPI) for a given program on a given architecture. We

shall use this correlation to obtain an improvised WCET estimate.



Chapter 4

Relative Roles of IC and CPI in

WCET Estimation

The previous chapter introduced the basic framework to estimate program WCET as a product

of worst case instruction count and worst case cycles per instruction, considering the program

as a whole. Two candidates for worst case IC- theoretical upper bound on IC (SWIC) and

maximum observed instruction count (MIC) were proposed and evaluated. Several analytical

and statistical candidates for worst case CPI were also put forth and evaluated.

Considering maximal values for both IC and CPI is understandable if IC and CPI are

totally independent variables. However, we shall see in this chapter that in many programs,

there exists a relation between measured IC and CPI values such that, CPI = f(IC). Note that

such a functional relationship is derived from measurements and hence reliable. This implies

that CPI can be predicted for any given IC. If there are multiple CPI points for a given IC, we

consider the maximum CPI to determine the functional relation.

Hence, estimated execution time,

ÊT = IC × f(IC) (4.1)

Since we are interested in determining Max ÊT , assuming f(IC) to be continuous and

differentiable, this occurs at IC=ICmax obtained by solving the equation,

d(ÊT )

d(IC)
= 0 (4.2)

80
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thereby setting, d(IC∗f(IC))
d(IC) =0, we get,

Max ÊT = ICmax ∗ f(ICmax) (4.3)

Since SWIC is a theoretical upper bound on IC, we consider SWIC as a candidate for ICmax.

Hence estimated execution time based on SWIC is computed as,

ÊT = SWIC ∗ f(SWIC) (4.4)

However there may be a function f(IC) such that Max ÊT computed by Eq(5) is greater

than that computed by Eq(6) in which case Max ÊT can be taken as ̂WCET . If ICmax cor-

responds to one of the measured points then this estimate coincides with measured maximum

cycles, M. If there is no functional relationship between IC and CPI then ̂WCET is estimated

as the maximum of

a) SWIC * Maximum of measured CPI and

b) Measured maximum cycles, M

4.1 Relationship between IC and CPI

In this section, we shall study how IC and CPI co-vary for each benchmark on the architectures

considered in this work. The benchmarks are run with a large number of inputs generated

that satisfy structural coverage and cover the whole range of possible data as described in

the previous chapter. In addition to such inputs, we include inputs that execute maximum

number of instructions which is easy to derive for some well known benchmarks. For example,

bub(Bubble sort) executes maximum number of instructions when the input array is reverse

sorted. Execution of the benchmarks with the test input set generates IC and CPI vectors

that consist of observed instruction counts, observed average CPI for each test input. These

IC and CPI vectors are analyzed by generating scatter plots of IC versus CPI and computing

the covariance between IC and CPI.
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4.1.1 Scatter Plots of IC versus CPI

After obtaining the IC and CPI vectors for each (benchmark, architecture) pair, we generate

a scatter plot of IC versus CPI. Each co-ordinate point on the scatter plot is defined as an

ordered pair (xi, yi) with the X-axis representing IC and Y-axis representing CPI. The input

which causes the program to execute the maximum number of cycles, represented by an (ic,

cpi) value is depicted as a ’⊲’ and is superimposed upon the scatter plot. Distinctive patterns

in the scatter plot signify a definite relationship between IC and CPI which are considered as

two independent variables at present. Absence of any predominant pattern indicates that IC

and CPI do not have any predictable relation. Inputs for which IC and CPI are very close

appear to lie on the same point in the scatter plot. Some of the interesting patterns are shown

in the following figures.
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Figure 4.1: Scatter plot of CPI versus IC for bez on inorder complex architecture.

In case of benchmark bez, on inorder complex architecture, we see that CPI is inversely

related to IC as shown in Figure 4.1. Statistical WCET analysis techniques[59] suggest the

90th or the 95th percentile point as a representative WCET. This implicitly assumes that 90%

or 95% of the inputs lie below the input that takes the longest time. However it can be seen

that there are inputs that can cause the program to execute longer lying outside this set as

illustrated by the symbol ’⊲’ in Figure 4.1. CPI and IC are inversely related for benchmarks
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like Bs, Cnt, minv. In case of benchmark ndes, CPI rapidly decreases with increase in IC at

first but eventually saturates as shown in Figure 4.2 on inorder complex architecture. ndes

shows a similar trend on other architectures as well. Considering only the maximal points in

Figure 4.3 that plots correlation for Bub on inorder complex architecture, CPI changes very

slowly with increase in IC.
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Figure 4.2: Scatter plot of CPI versus IC for ndes on inorder complex architecture.

Programs such as nsch exhibit a direct relationship between IC and CPI on complex ar-

chitecture (Figure 4.4). With increasing IC, CPI is also observed to increase. nsch behaves

similarly on other architectures considered in this thesis. Another benchmark that exhibits

positive correlation is lud on simplest architecture (Figure 4.5).

Some benchmarks are observed to exhibit negligible correlation between IC and CPI ir-

respective of the inputs presented. The scatter plot for such benchmarks reduces to a single

dense point as in the case of Fft on inorder complex architecture, shown in Figure 4.6. Such

independence on input is observed in other benchmarks like Crc, Edn, Fir Lms and Mat.

Certain benchmarks like ins(Insertion Sort) exhibit a near-constant CPI with increasing IC.

Figure 4.7 shows the scatter plot for ins on complex architecture. A similar trend is observed

in dij (Dijkstra) (Figure 4.9). However there are benchmarks where the relationship between

IC and CPI is not clear. In the scatter plot of such benchmarks, IC and CPI may appear to

be directly related at some points while at other points they may be inversely related or not
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Figure 4.3: Scatter plot of CPI versus IC for bub on inorder complex architecture.

related at all. An example is lud on inorder complex architecture(Figure 4.8).

4.1.2 Quantifying Cross Correlation by Covariance Matrix

Let A and B be two random vectors with the corresponding mean values, µ={µa, µb}. The

dispersion of Ai(Bi) around its mean µa(µb) is measured by its variance that form the diagonal

elements of the covariance matrix. For ease of notation, lets denote variance of elements of

A and B by σ11 and σ22 respectively. The cross variance σ12(=σ21) represents the mutual

dependency between A and B. In our case A denotes the IC vector and B denotes the CPI

vector. µa represents the mean IC or average instruction count observed across all inputs. Hence

σ11 denotes variance in IC. µb denotes the global average CPI observed across all inputs(termed

as Average Average(CPI) in the previous chapter). Hence σ22 denotes variance in CPI. The

instruction count values are orders of magnitude greater than the corresponding CPI values.

Hence we normalize IC and CPI vectors with respect to their respective measured maximum

values before computing the covariance matrix. The elements of the covariance matrix for all

the programs when run on PISA architectures simplest, inorder complex and complex are shown

in Table 4.1 respectively. The σ11 column values (variance in IC) for all PISA architectures are

the same as the instruction set for all PISA architectures considered is identical.

We observe that the covariance matrix quantifies the scatter plots in terms of individual
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Figure 4.4: Scatter plot of CPI versus IC for nsch on complex architecture.

variance in IC, CPI and the cross correlation between IC and CPI. Benchmarks that exhibit

inverse relation between IC and CPI in the scatter plot have negative values for σ12(σ21).

Benchmarks that show a direct relationship between IC and CPI have positive values. Bench-

marks that have very less σ11, σ12(σ21), σ22 values exhibit a narrow cluster in the scatter plot.

Zero values in the covariance matrix indicates absence of any variance across inputs. For ex-

ample, edn, mat, fft, lms, fir and crc has all its variances and cross correlation values as zeroes

and hence appears as a dense dot in the scatter plot. The benchmarks are grouped accordingly

based on the covariance matrix values and scatter plots in the tables.

We also observe from the covariance matrix values that the σ11 values(variance in CPI) are

much lesser than the corresponding σ22 values (variance in IC). The reason is average CPI is

relatively more stable compared to IC. Depending on program structural complexity, instruc-

tion count(IC) can vary widely across inputs. But CPI is more dependent on the underlying

architecture and is generally found to vary in small degrees in comparison to IC.
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Figure 4.5: Scatter plot of CPI versus IC for lud on simple architecture.
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Figure 4.6: Scatter plot of CPI versus IC for fft on inorder complex architecture.
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Figure 4.7: Scatter plot of CPI versus IC for ins on complex architecture.
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Figure 4.8: Scatter plot of CPI versus IC for lud on inorder complex architecture.
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Figure 4.9: Scatter plot of CPI versus IC for Dijkstra on inorder complex architecture.

Benchmark σ11 σ22 σ12(σ21)
sim inc com sim inc com

Class I : Negligible variance in IC and CPI

crc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
edn 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
fft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
fir 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
lms 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
mat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Class II : Negative correlation

bez 2.0699 1.0043 1.0052 1.0313 -1.4418 -1.4424 -1.4610
bit 1.5748 0.0496 0.0530 0.0144 -0.2627 -0.2757 -0.1444
bs 0.0071 0.0055 0.0037 0.0040 -0.0044 -0.0030 -0.0026
bub 7.9896 0.4027 0.9193 1.1373 -1.1594 -2.0284 -2.0952
cnt 0.1430 0.0046 0.0386 0.0729 -0.0256 -0.0722 -0.0935
minv 1.6859 0.0030 0.0975 0.1391 -0.0697 -0.3945 -0.4711

Class III : Near-constant CPI with increasing IC

dij 61.5444 45.0631 33.3215 35.9115 -47.3924 -41.5692 -43.2699
ins 18.2686 0.0809 0.5083 1.1672 -0.6416 -1.6774 -2.4700
jan 62.9813 34.0591 34.0359 30.5467 -41.0942 -41.0786 -38.9158
ndes 93.0716 24.0540 9.9804 10.7526 -38.9250 -25.0814 -26.0349

Class IV : Positive correlation

lud 41.4837 9.4686 14.2630
nsch 33.8862 32.4919 15.5365 16.8486 32.7998 22.7565 23.5978

Class V : Mixed correlation

lud 41.4837 3.2984 4.6620 0.6662 13.4533

Table 4.1: Elements of Covariance Matrix for PISA architectures- simplest, inorder complex
and complex. Grouping is based on values of covariance matrix and scatter plots.
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4.2 Implications of IC-CPI Relationship

We began by assuming that the two parameters IC and CPI are random independent variables.

We sought to find out whether the two variables are related in any way by analyzing scatter

plots. By looking at the scatter plots and the covariance matrix values, it is clear that in most

cases, there exists a definite relationship between IC and CPI. Based on this relationship, we

classify benchmarks as follows.

4.2.1 Benchmark Classification� Class I: Negligible Variance and Cross-correlation:

Many benchmarks such as Crc, Edn, Fir, Fft, Lms, Mat show very little variance in both

IC as well as CPI irrespective of input and architecture as we have seen. These bench-

marks are composed of straight line code with negligible number of simple if-conditions

leading to a highly predictable instruction execution pattern. They access the same set

of data in a repetitive manner which might be the reason for negligible variance in IC

and CPI across all inputs. Their scatter plots are composed of a small dense region which

covers all the inputs. For such benchmarks, one need not carry out extensive testing for

gathering experimental data required for measurement based WCET analysis techniques.

Estimating WCET for such benchmarks is trivial and involves computing the product of

IC and CPI corresponding to the single point in the scatter plot.� Class II: Negative Cross-correlation:

Benchmarks such as Bez, Bit, Bs, Cnt, Jan, Minv, Ndes show an inverse relationship

between IC and CPI for all architectures considered in the thesis. These benchmarks

are composed of a small number of if-conditions and loops that repeatedly work on the

same set of data in a well-defined sequence causing a lot of hits in the data cache thereby

bringing down the overall execution time. This could be the reason program cycles do

not increase in the same rate as the rate of increase of in IC leading to a curve of negative

slope. The inverse relationship makes it easy to estimate WCET for such benchmarks.� Class III: Near-constant CPI with increasing IC:

Benchmarks such as Dij, Ins, Jan and Ndes exhibit near constant CPI with increase in

IC. The same constant CPI along with the theoretical upper bound of IC, SWIC, is used
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to estimate WCET for such benchmarks.� Class IV: Positive Cross-correlation:

Benchmarks such as Nsch, exhibit a high degree of positive cross correlation between IC

and CPI. Nsch is dominated by complex if-conditions difficult to predict. Hence with

execution of more instructions, more branch prediction misses might lead to increase in

CPI. Lud(simplest) exhibits a positive cross-correlation which seems to saturate with

increase in IC. Such benchmarks need to be investigated further as there might be always

an input that can cause a greater CPI and IC value which will result in a higher WCET.

Such benchmarks are good candidates for WCET benchmarks and would need extensive

testing for experimental data collection in measurement based WCET analysis techniques.� Class V: Mixed Cross-correlation:

In the case of lud on inorder complex and complex architectures, initially, there appears

to be an inverse relationship between IC and CPI. However with increase in IC, the

relationship appears to be direct and later saturates before becoming inverse again as

IC tends to maximum measured IC. The actual magnitude of cross-correlation can be

positive or negative. Such benchmarks have to be investigated further to ascertain the

relationship between IC and CPI. These benchmarks also need extensive testing for exper-

imental data collection in measurement based WCET analysis techniques. These are also

ideal candidates for WCET benchmarks. Programs which display a random correlation

between IC and CPI may also be treated as belonging to this class.

4.2.2 Optimized WCET Estimation

In the previous chapter, we formulated program WCET as a product of maximal IC and

maximal CPI. We treated IC and CPI as two independent random variables. During the

course of this chapter, we saw that they are indeed correlated in most cases. This correlation

gives us an opportunity to improve upon our original formulation of WCET estimation. For

maximal IC, we use the theoretical upper bound on IC, SWIC, as it cannot be surpassed by

any input. Instead of using maximal CPI, we fit a curve to the points in the scatter plot and

predict CPI as a function of SWIC using the curve. The product of SWIC and f(SWIC) gives

us a precise WCET.
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In the following scatter plots, we continue to use a ’⊲’ to indicate (IC, CPI) that caused the

program to run for maximum number of cycles. A vertical dashed line is drawn at IC=SWIC. A

horizontal dashed line is drawn at CPI used to estimate WCET by the proposed method and is

denoted by f(SWIC) in the scatter plot. The point (SWIC, f(SWIC)) is denoted by a square. Al-

though Chronos estimates execution time in terms of whole program cycles, for comparison pur-

poses, we compute the inherent CPI that has been used by Chronos as Cycles estimated by chronos
SWIC

,

which is indicated by a horizontal dashed line indicated by CPI=CPIchronos. If CPIchronos is

lesser than f(SWIC), Chronos has performed better than the proposed method. On the other

hand if it is greater than f(SWIC), the proposed method better than Chronos. The estimated

WCET is validated by comparing it with measured maximum cycles, M. The product of SWIC

and f(SWIC) is the WCET estimated by the proposed method, ̂WCET . We compare ̂WCET

with the estimate made by the static WCET analyzer Chronos. The results are described in

Table 4.2. We now demonstrate the derivation of f(SWIC) using a few examples.
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y = − 2.1367e−008*x + 5.7077

f(SWIC)=3.203

CPI
chronos

=3.312

Figure 4.10: Computing f(SWIC) for bez on inorder complex architecture.

In Figure 4.10, we revisit the scatter plot for Bez on inorder complex architecture. The

points suggest a linear relationship between IC and CPI. The negative slope indicates a negative
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correlation. Hence we fit the points using a straight line as shown. The optimum CPI derived

using the functional relationship, f(SWIC) is also depicted. The inherent CPI used by Chronos

is also indicated, which is observed to be 3.4% higher than f(SWIC).
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y = 5.3236e−005*x + 1.9207

f(SWIC)=11.726

IC=SWIC

Chronos: out of
memory

Figure 4.11: Computing f(SWIC) for nsch on complex architecture.

In Figure 4.11, we revisit the scatter plot for nsch on complex architecture. The points

suggest a linear relationship between IC and CPI. The positive slope indicates a direct corre-

lation. Hence we fit the points using a straight line as shown. The optimum CPI, f(SWIC) is

almost twice the CPI corresponding to the input that executes for maximum number of cycles.

The inherent CPI corresponding to Chronos is unknown as Chronos runs out of memory while

analyzing nsch on complex architecture. Another interesting case occurs in benchmark lud on

the inorder complex architecture where at some points in the scatter plot, the IC and CPI are

directly related while in the other parts they appear to be inversely correlated. In this case, we

choose the maximal CPI point leaving out inputs that quickly terminate the program as shown

in Figure 4.12. We notice that the resultant f(SWIC) is 23.8% pessimistic than CPIchronos.

Considering, Fft (Figure 4.6) again, which shows the scatter plot on inorder complex ar-

chitecture, the IC and CPI values are concentrated around a dense cluster irrespective of the
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Figure 4.12: Computing f(SWIC) for Lud on inorder complex architecture.

input. The difference between the theoretical upper bound on number of instructions executed,

SWIC and the maximum number of instructions observed, MIC is very small in the case of Fft

as it is composed of a very simple structure. Hence f(SWIC) is the same as the CPI observed

for the input that caused the program to execute for the maximum number of cycles. WCET

is estimated as the product of f(SWIC) and SWIC. Chronos does not complete analysis of Fft

on inorder complex architecture due to memory issues.

As a final example, we revisit the scatter plot for Ins on complex architecture. The CPI

value saturates quite early and is unchanged with increase in IC. Hence we extrapolate and use

the same CPI value for SWIC as shown in Figure 4.13. The inherent CPI used by Chronos is

observed to be close to 5 times f(SWIC). f(SWIC) is likewise computed for rest of the programs

and are compared with WCET estimates made by the static WCET analyzer Chronos. The

results are tabulated in Table 4.2.

For each architecture, the WCET estimate derived by using the functional relationship

between IC and CPI is validated first by comparing with the maximum observed cycles, M. The

improvement in accuracy is noted by comparing the estimate with that obtained by Chronos.
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The class of the benchmarks are also indicated alongside. It can be observed that in most cases

the resultant WCET estimate is safe. The unsafe estimates occur in cases of benchmarks that

exhibit a negative correlation between IC and CPI. For these benchmarks, the estimate is short

of M by less than 0.2%.

In case of most benchmarks, the resultant WCET estimate is more accurate compared to

estimates obtained by Chronos. Benchmarks that exhibit either mixed relationship or a direct

correlation between IC and CPI lead to pessimistic WCET estimates. For Lud that exhibit

a mixed relationship, the resultant WCET estimate is 23% and 20% pessimistic compared to

Chronos on inorder complex and complex respectively. Another example is Nsch that exhibits a

positive relationship between IC and CPI, the resultant WCET estimate is twice that compared

to Chronos.

In the case of Dij, in spite of CPI saturating with increasing IC, the resultant WCET

estimate is pessimistic compared to Chronos by 20% and 19% on inorder complex and com-

plex respectively. Similarly, even though Minv exhibits a negative correlation between IC and

CPI, the resultant estimate is 6% more pessimistic compared to Chronos on simplest architec-

ture. An overestimation of SWIC could be the possible reason for the pessimism for classes of

benchmarks that exhibit a negative or near-constant correlation between CPI and IC.

Figures 4.14, 4.15 and 4.16 compare the CPI derived on the basis of IC-CPI relationship

with worst case CPI considered in the previous chapter, Max Avg(CPI), which is the maximum

of average CPI observed across inputs on simplest, inorder complex, complex architectures

respectively. For comparison purpose, we also plot the inherent CPI used by Chronos alongside

the bars. In the case of simplest architecture (Figure 4.14), there is no major difference between

f(SWIC) and Max Avg(CPI) and CPI chronos. That is because the architecture is very simple

and has no data cache and branch predictor. Nsch is the only benchmark where f(SWIC) is

more pessimistic than Max Avg(CPI) due to the steep slope of IC-CPI curve and this trend

is consistent across architectures. If we look at the other architectures, we find that for most

benchmarks, f(SWIC) improves upon Max Avg(CPI) and CPI chronos.

In contrast to other WCET analysis methods, who work with execution time of program

components in terms of cycles[29, 6, 66, 55], we factorize execution time into instruction count

and CPI. We shall now see that Chronos estimates IC and CPI pessimistically for some pro-

grams as it considers execution time as one whole parameter. Splitting the WCET into two
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Figure 4.13: Computing f(SWIC) for Ins on complex architecture.

factors such as IC, CPI, gives us a fair idea as to which component is responsible for pes-

simism in WCET estimate. Depending on whether WCET is more sensitive to IC or CPI,

additional efforts can be directed to either structural analysis or architectural modeling. Fig-

ures 4.17, 4.18 and 4.19 plot the factors responsible for a pessimistic estimate. Estimates

that are accurate are close to 1. Overestimation in IC is plotted as the ratio of SWIC to

maximum observed instruction count. Overestimation in CPI is derived as a ratio of overesti-

mation in cycles to the overestimation in IC. It is interesting to see that in some benchmarks

like Matmul(inorder complex, complex ), Lms(inorder complex, complex ), Fir(inorder complex,

complex , Cnt(inorder complex,complex ),Bub(inorder complex, complex, Ndes(complex ), over-

estimation in CPI is responsible for pessimism in WCET. For benchmarks Nsch, Minv, Lud,

Ins, Dij, overestimation in both IC and CPI are responsible for pessimism in WCET. This

result is inline with our observation that estimating WCET as a whole can make use of pes-

simistic IC and pessimistic CPI.

We summarize the results as follows.

1. Estimating WCET as a product of SWIC and f(SWIC) is found to be much optimal than
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Benchmark simplest inorder complex complex Class

dWCET
M

dWCET
Chronos

dWCET
M

dWCET
Chronos

dWCET
M

dWCET
Chronos

Bez 0.998778 0.966540 0.998803 0.806836 0.998821 0.761281 II
Bit 1.079158 0.796427 1.108225 0.817879 1.068661 0.766020 II
Bs 0.997989 1.149622 0.997479 N/A1 0.997362 N/A1 II
Bub 1.212706 1.043051 1.204614 0.449837 1.476607 0.484224 II
Cnt 0.999971 1.003278 1.001646 0.176184 0.994585 0.153073 II
Crc 0.999979 0.965672 1.040777 1.013983 1.040783 N/A1 I
Dij 3.432624 1.006663 3.432698 1.206713 3.432723 1.194388 III
Edn 1.000025 0.991075 0.999976 0.780132 0.999970 N/A1 I
Fft 1.010519 0.977760 1.010434 N/A2 1.010571 N/A2 I
Fir 1.086121 0.977863 1.086142 0.581876 1.086089 0.485524 I
Ins 3.325180 1.000067 3.325181 0.338777 3.325374 0.252605 III
Jan 1.000048 1.002281 1.000000 1.002312 0.999953 1.002116 III
Lms 0.999979 0.971079 1.000010 0.549564 0.999991 0.457846 I
Lud 5.831052 1.238244 5.864458 1.202899 V
Lud 5.780452 0.949420 IV
Mat 1.000022 1.000031 0.999993 0.162041 1.887018 0.387059 I
Min 1.793374 1.064778 2.123263 N/A1 2.185113 N/A1 II
Nsch 6.058287 2.000649 4.925038 N/A2 5.013082 N/A2 IV
Ndes 0.999991 1.013494 1.000007 0.303941 1.000022 0.254355 III

Table 4.2: Improvement in accuracy of WCET due to application of relationship between IC
and CPI on simplest, inorder complex, complex architectures. N/A1 implies chronos gives a
segmentation fault. N/A2 implies chronos goes out of memory.

the product of maximal IC and CPI in most cases. The IC-CPI relationship is based on

actual measurements and hence reliable. However, it is important to ensure that the test

input set covers the program structurally and tests with all possible range of data values.

2. For benchmarks exhibiting negative correlation between IC and CPI, the estimate can

be unsafe, if the slope of the curve is very steep and the difference between SWIC and

MIC is large. If the slope is very less, CPI almost saturates with increasing IC. Amongst

cases of negative correlation considered in this thesis, we found that in the worst case,

the resulting WCET estimate was unsafe by less than 0.2%.

3. Similarly, for benchmarks exhibiting positive correlation between IC and CPI, the esti-

mate can be pessimistic, if the slope of the curve is too steep and the difference between

SWIC and MIC is large. We saw an instance of this occurring in the case of Nsch.

4. For benchmarks wherein the IC-CPI relationship is not very clear, we fall back on our

original proposal of estimating WCET as a product of maximal IC and CPI. Hence points

3,4 form limitations of our proposed approach.

5. Our proposal of estimating WCET as a product of SWIC and f(SWIC) is ideal for two
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Figure 4.14: f(SWIC) versus Max Avg(CPI) and CPIchronos on simplest architecture.

class of benchmarks. One is where, the measured IC and CPI is the same irrespective of

the input. The other is where, CPI saturates with increase in IC.
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Figure 4.15: f(SWIC) versus Max Avg(CPI) and CPIchronos on inorder complex architecture.

Figure 4.16: f(SWIC) versus Max Avg(CPI) and CPIchronos on complex architecture.
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Figure 4.17: Factors responsible for overestimation of WCET by Chronos on simplest archi-
tecture.

Figure 4.18: Factors responsible for overestimation of WCET by Chronos on inorder complex
architecture.
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Figure 4.19: Factors responsible for overestimation of WCET by Chronos on complex architec-
ture.
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4.3 Related Work

There has been prior research in the study of factors influencing WCET. Colin et al[9] ascertain

the influence of cache, branch predictor, pipeline etc on overall estimated WCET. Among

various architectural components it identifies data and instruction caches and their properties

like size, organization etc to be having the highest influence on WCET. In this work however,

we investigate the relationship between IC and CPI of a program and how it influences WCET

estimation. Bünte et al[77] describe the desirable features of a WCET benchmarking suite

tool-set in the context of measurement based analysis. These features are at the program

structure level. Our work tries to characterize the benchmarks in terms of variability in IC

and CPI and how they correlate to each other. Benchmarks that exhibit more variability in

IC and CPI across different inputs are more interesting and challenging for a WCET analyzer

than benchmarks that display constant behavior in IC and CPI across inputs.

Deverge et al[43] suggests making hardware modifications to make a program execute for

more or less the same time with different data thereby reducing the variability in timing. Some

of the things that can be implemented to this effect are cache conscious data placement, cache

locking, static branch prediction, to account for variable latency of segments, add difference

between BCET and WCET of all operations of the program path (also known as jitter), avoiding

usage of instructions that take variable latency, usage of more predictable instructions (Eg: add

instead of mul) etc. This would amount to bringing a program to class I if the program has no

if conditions or if both branches of the if condition execute the same number of instructions

or to class III, if only the hardware timing can be controlled but not the variability in the

number of instructions executed. For both these classes, the proposed technique is proven to

give accurate WCET estimates. Statistical WCET analyzers[38, 97, 98, 71] fit models based

on extreme value theory to end to end measurement based execution times and extrapolate the

curve to give an estimate of WCET at the desired probability. This work however, fits a curve

to the scatter plot of end to end measured IC versus CPI values. The curve is extrapolated

upto the value corresponding to the theoretical upper bound on IC and used to obtain the

corresponding CPI value. The product of these values gives us the optimal WCET.
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4.4 Conclusions

In this chapter, we saw that program instruction count, IC and cycles per instruction, CPI,

although seeming to be independent variables are actually correlated in most cases. Five

predominant classes of benchmarks were seen to emerge based on the IC-CPI relationship.

Based on this relationship, the optimal worst case CPI was derived by fitting a curve to the

points in the scatter plot of IC versus CPI and extrapolating the curve up to SWIC and

noting f(SWIC). The product of SWIC and f(SWIC) gives a much more precise WCET in

three cases. The first case was when a negative correlation was present between CPI and IC.

The second case, when IC and CPI did not change significantly irrespective of the input. The

third case was when with increasing IC, CPI reached a saturation value. It was found that

other static WCET analyzers could estimate both IC and CPI pessimistically and this can be

avoided by factoring cycles into IC and CPI. The IC-CPI relationship also helps in benchmark

classification. During this process, we found that for some simple benchmarks, irrespective of

the input presented, the observed IC and CPI was the same. This has important ramifications

in testing and input selection for evaluation of WCET analyzers. In the next chapter, we shall

see a critical implication of considering CPI as our measurement parameter.



Chapter 5

Implications of Program Phase

Behavior on Timing Analysis

The thesis begins by proposing a timing model that estimates WCET of a program considering

it as a single unit. Execution time is factorized as a product of instruction count, IC and cycles

per instruction, CPI and WCET is computed as a product of maximum IC and maximum

CPI. In the previous chapters, we evaluated several candidates for maximum IC and CPI

using analytical, statistical functions and also the fact that in many programs, there exists a

correlation between IC and CPI which helps optimize the WCET estimate beyond the product

of maximal IC and maximal CPI. Estimating WCET as a product of maximal CPI and IC

is observed to be most accurate when CPI is most stable and is centered around the mean

throughout execution. This kind of behavior is observed in small programs wherein execution

centers around a single loop kernel. The CPI variation of one such benchmark, Ins is as

shown in Figure 5.1. The axes are plotted by sampling CPI and program counter address

(masking it’s most significant bits), for every 1000 instructions executed. The execution of Ins

is centered around the loop that sorts elements of the input vector. Such programs are termed

as single-phase programs. But this seldom is always the case.

Some programs are composed of a small number of distinct phases of computation, where

each phase represents a single simple task. Such programs are termed multi-phase programs.

Benchmark Bitcount is one example (Figure 5.2). In such programs, variation in CPI is

103



Chapter 5. Implications of Program Phase Behavior on Timing Analysis 104

markedly distinct across phases. The corresponding PC graph indicates that each phase corre-

sponds to a different region of execution. This trend of repetitive, predictable and homogeneous

CPI variation observed in the dynamic execution of programs is termed as program phase be-

havior and this trend is observed simultaneously in other architectural parameters like cache

misses, branch predictor misses etc. Program phase behavior has been extensively used for ar-

chitectural simulation effort reduction[28], power and energy optimizations[25], adaptive system

reconfiguration[42], memory footprint optimizations[14] etc.

Figure 5.1: Variation of CPI and program counter address values with respect to time for a
single run of Insertion sort PISA binary.

The theme of this chapter is to show that program phase behavior has important implica-

tions in measurement based WCET analysis. An important requirement in measurement-based

WCET analyzers is that the process of measurement itself should be least intrusive in-order to

avoid causing any impact on the accuracy of estimated WCET. Achieving an accurate estimate
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with less instrumentation is a non-trivial task[2]. We propose the use of phases to estimate

WCET with minimal instrumentation without compromising on the accuracy of the estimate.

Figure 5.2: Variation of CPI and program counter address values with respect to time for a
single run of Bitcount PISA binary.

A phase is defined as a set of non-overlapping intervals where each interval is a contiguous

sequence of instructions from a program’s dynamic execution stream. An important charac-

teristic of a phase is that it exhibits similar CPI behavior irrespective of temporal adjacency.

Moreover the coefficient of variation(COV) of CPI within a phase is very less as compared to the

COV of CPI across phases. We build on these observations and measure CPI at the phase level

to effectively characterize timing of program phases and hence the whole program. Accounting

for phase behavior helps alleviate instrumentation overhead compared to other measurement

based approaches as phases are typically composed of thousands of instructions.
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5.1 Phase Detection Methods

Depending on the following parameters, phase detection methods can take various forms as

shown[26].� What makes up a phase?

1. A phase can refer to a static code region.

2. A phase could be a fixed set of dynamic instructions.

3. A phase could be a set of dynamic instructions but variable in length.

4. A phase could be long range and periodically occurring.� Phase Granularity

1. A phase can correspond to program structures such as a call or a loop.

2. A phase could refer to a set of instructions.� Time of Phase Analysis

1. Phases can be detected by static structural analysis with a little help of profiling.

2. A phase can be detected by analysis of offline data traces.

3. A phase can be detected online during simulation or native execution.

4. A phase can be detected by a mixture of online and offline data.� Microarchitectural Dependence

1. A phase can be dependent on microarchitecture. When intervals are classified into

phases based on the values of microarchitecture parameters such as CPI, they are

said to be microarchitecture dependent.

2. When intervals are classified into phases based on their static location in code, they

are said to be microarchitecture independent.

The complete list of phase detection methods that are built by a combination of the above

mentioned characteristics is described in [26]. In this thesis, we divide the program static region

into phases taking into account patterns of instruction execution[39]. This method is in better
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sync with the natural period of the program and more dependable as code that is executed has

an important influence on architectural behavior(Fig. 5.2). Mapping a phase to a code region

gives us a handle to construct a timing model for that region. Further, such a classification

makes the phase pattern repeat consistently across most architectures rendering the technique

re-targetable[39].

We use code structural analysis [39] to mark phases in the binary. The CPI for every phase

is measured by running the program with a large number of inputs. Measurements are taken

using Simplescalar V3.0 [113] for PISA binaries. The worst case CPI is defined as a function

on measured CPI. The worst case number of instructions that can be executed within a phase

is determined by static analysis of the program control flow graph (CFG). The WCET of a

phase is then computed as a product of worst case CPI and worst case instruction count. The

WCET of the whole program is computed as sum of WCETs of the individual phases. The

resultant WCET will be much more precise in programs constituting of multiple phases such

as Bitcnt (Figure 5.2). If the program has only one phase, WCET is simply a product of

worst case instruction count and worst case CPI. The steps to estimate WCET using phases

are formalized in the next section.

5.2 Phase Based Timing Model

5.2.1 Single-phase programs

For a program, exhibiting predominantly a single phase, WCET is computed as,

WCET = (WIC) ∗ (WCPI) (5.1)

Where,� WIC or Worst case instruction count

The theoretical upper bound on IC that is statically determined by analyzing program

CFG (section 3.1), SWIC is used. For a softer estimate, maximum observed instruction

count, MIC is used.� WCPI or Worst case CPI

The maximum of average CPI of a program observed across a large number of inputs,
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Max Avg(CPI) as described in section 3.3 is used. The CPI within a phase is expected

to be fairly stable, hence average CPI is used in characterizing the execution time of a

phase for each input and the maximum average CPI observed across inputs is taken to be

worst case CPI. A softer estimate could be obtained by using overall average of average

CPI observed for each input, Avg Avg(CPI) as described in section 3.3.

5.2.2 Multi-phase programs

For a program, exhibiting multiple phases, WCET is computed as,

WCET = Σ(j∈1 .. p) (Tj ∗ WICj ∗ WCPIj) (5.2)

Where,� p is the number of phases occurring during program execution.� Tj is the number of times phase j occurs in the worst case.� WICj is the worst case instruction count of code region corresponding to phase j. WICj

is substituted by either SWICj or MICj .� WCPIj is the worst case CPI of phase j. WCPIj is substituted by either Max Avgj(CPI)

or Avg Avgj(CPI).

The sequence of code regions (phases) visited by a multi-phase program during its execu-

tion forms the phase sequence for that program. If a program has two phases P1 and P2,

that are executed one after the other, phase sequence for the program is P1 P2. A simple

structured program might have a single phase sequence irrespective of the input tested. A

complex structured program that has plenty of if-conditions might have more than one phase

sequence for all inputs tested. Using the above equation, Eq(5.2), we estimate WCET for each

possible phase sequence, k, separately as WCETk and finally take the maximum WCET over

all possible sequences as the program WCET as follows.

WCET = Maximum (WCET1, .....,WCETk) (5.3)
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5.3 Methodology

The overall methodology is depicted as shown in Fig. 5.3. The number of phases occurring in

the binary, p, are first identified using code structural analysis[39] by marking the instructions

that indicate phase change in the binary. Static analysis is then performed for the code region

corresponding to each phase to determine WICj and Tj. The worst case cycles per instruction

(WCPIj) for each phase j is estimated using direct measurement of the program CPI with a

large number of test inputs on the target architecture. All these values are substituted in the

timing equations Eq(5.1) and Eq(5.2) and if required, Eq(5.3), to give the program WCET. It

is worthy to note that estimation of WIC and WCPI for each phase can be done in parallel

thereby reducing the time to perform WCET analysis. We now describe each step in detail,

beginning with phase identification.

Figure 5.3: High level structure of the proposed solution.

5.3.1 Phase Identification

Code structure analysis[39] involves identifying instructions in the binary that accurately indi-

cate start of unique stable behaviors seen across different inputs. Such instructions are termed

as software phase markers and typically represent call-loop boundaries. The basic structure

of analysis is a dynamic hierarchical call-loop graph which is built by using profile information

gathered while instrumenting the application binary. A call-loop graph is a directed graph,

whose nodes represent either a procedure call or a loop. It is termed hierarchical as the edges

store hierarchical execution information along the path from call and loop nodes and are hence
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said to abstract path information in some sense. Each loop is associated with two nodes- loop

head and loop body, to differentiate between loop invocation and each iteration of the loop

respectively. Each call is associated with one node for non-recursive calls, two nodes for re-

cursive calls. In this work, we convert instances of recursion into iteration, wherever possible.

Each edge stores average number of instructions executed along that path(A), coefficient of

variation in instructions executed each time this edge was traversed (COVinstn), maximum

number of instructions executed along that path (Nmax) and total number of times the edge

was traversed(C).

The call loop graph is annotated by instrumenting the program at a number of strategic

places like calls, around loop branches, basic blocks as shown in Figure 5.4. The program is run

with a test harness which supplies a minimal set of inputs that exercise all calls and loops in

the program. The graph is constructed and the edges are annotated with C, A and COVinstn,

when the instrumented program is run. Once all the edges are thus annotated, the minimum

length of a phase, ilower, for a given program is determined. ilower depends on the average

dynamic length of a program and the number of phases desired. For a given program, we

compute ilower as a ratio of average instruction count observed across inputs to the number

of phases required (Compute Threshold in Figure 5.4). We shall see in chapter 6, that the

number of phases also influences WCET analysis time. All edges whose average instruction

count exceeds ilower are candidates for software phase markers. This is to ensure that each

phase is long enough. Those candidate edges that also show minimum COVinstn qualify as the

final software phase markers. The algorithm is outlined as shown in Figure 5.4. Each time,

such a marker edge is traversed, the amount of instructions hierarchically executed is more or

less the same. That proves our assumption that we are seeing a faithful repetition of a phase

every time we enter this path making it a valid software phase marker edge. The running time

of the phase marking algorithm is O(E+N log(N)) where N and E are the number of nodes

and edges of the call loop graph. N log(N) is due to sort of all nodes to create a total call loop

depth ordering of nodes during the first pass of the algorithm. E is for checking all edges for

satisfiability of the two conditions.

The code region corresponding to a phase p is represented by the region between the phase

marker edge of p and the phase marker edge of the following phase occurring in code. We modify

the original algorithm that identifies instructions where a phase change is likely to occur, to
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1. [ Annotate call loop graph with C, A, Cov(instns) information ]

Place instrumentation calls as follows:

- after program add ComputeVariance();

- For every loop  branch  instruction in every procedure

   Get source, target

   Loopid = GetLoopid(source, target);

   Get enclosing procedure id into encl_procid

   Before loop  branch  add CountLoopBody(loopid, encl_procid);

   After loop branch add ResetLoop(loopid);

   Before loop target add CountLoopHead(loopid, encl_procid);

- For every procedure call  get id of enclosing procedure and called   

  procedure into encl_procid and call_proc_id

- Before every procedure call add CountCalls(encl_procid, call_proc_id);

- After every procedure call add CallSum(encl_procid, call_proc_id);

- For every Basic Block add CountInst(encl_procid);

/****  

CountLoopBody(loopid, procid() : sets flag for loopid  indicating that it 

should be counted

CountLoopHead(loopid, procid) : keeps track of number of instructions 

executed in every loop invocation in a list 

CountCalls(encl_procid, call_proc_id) : pushes call_proc_id on to the stack 

CallSum(encl_procid, call_proc_id) : pops call_proc_id and records call 

hieararchical information

CountInst(encl_procid) : updates counts associated with encl_procid and for 

all loops whose flag is set to be true

ResetLoop() : reset flag for loopid indicating that it should no longer be 

counted

ComputeVariance() : for each edge, compute C, A, Cov(instns) information

******/

2. ilower = Compute_Threshold(Avg_dyn_length, max_phases);

/******

Avg_dyn_length: average number of instructions executed by the program

max_phases: Maximum phases desired

ilower: minimum phase interval 

*******/

3. For each node in call loop graph, compute max_depth(node)

[Ensure that children are processed first and then parents]

4. Place nodes in priority Queue sorted by decreasing max_depth(node)

5. For each node in the Queue

     For each incoming edge E, 

      If E.A <= ilower and E.COV < COV_Threshold 

        Add E to marker list;

/*******

COV_Threshold is decided to be a very low value of the order of 1-5% as low 

COV is necessary for accurate timing estimation

If no such edge exists, the whole program is considered as a phase

*******/

  

   

Figure 5.4: Algorithm to annotate hierarchical Call-loop graph and compute phase markers.

also number phases as they occur. A program is said to be composed of a single phase if it’s

hierarchical call loop graph contains exactly one edge that satisfies these properties and that

edge encompasses the whole program. Programs that cannot be classified into phases using

this algorithm are also viewed as single-phase programs. However such programs depict a high

degree of variance in their CPI throughout execution. Nsch (Section 3.2.1) is an example.

Fig. 5.5 depicts a part of the dynamic hierarchical call loop graph constructed for Bitcount

that is run for 1000 iterations. Bitcount has an average dynamic length of 455157 instructions.

With maximum number of phases set to 10, we obtain 45515 as ilower. By setting a minimum

COV instn as 0%, the edges that are marked with an asterisk are selected as a valid software
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Figure 5.5: Hierarchical Call-loop graph for Bitcount: C is the number of times, each edge is
traversed. A is the average number of hierarchical instructions executed each time the edge is
traversed. COVinst is the hierarchical instruction count coefficient of variation. P1, P2, P3..
are phase numbers.

phase marker edge. The phase marker edges picked by the algorithm for one input are observed

to work well for other inputs as well[39]. The number of phase marker edges defines p in

Eq.(5.2).

Code structure analysis marks phases based on instruction execution patterns. Hence we

can see that phase markers obtained by analyzing alpha binaries with ATOM[12] hold good for

MIPS R3K PISA binaries as shown in Fig. 5.6. Execution of a program thus marked produces

a phase sequence indicating the order in which instructions belonging to different phases are

executed. The phase sequence encountered for each program considered in this work is shown

in Table 5.1. Benchmarks Lud and Minv exhibit multiple phase sequences featuring repeating

phase patterns. The notation used to express the phase sequence is the same as the one used

for expressing regular expressions.

5.3.2 Implementation

We build the hierarchical call loop (HCL) graph by analyzing binaries with the ATOM instru-

mentation framework. ATOM provides a convenient way to identify procedures and branches.

ATOM works with two files- an instrumentation file, xxx inst.c and an analysis file, xxx anal.c.
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Figure 5.6: Time varying CPI graphs with phase markers of the Digital (Alpha) and a MIPS
(PISA) binary for the program Bitcount. The phase markers were selected from the call loop
profile graph from the Bitcount Alpha binary, were mapped back to source code level and then
used to mark the Bitcount MIPS PISA binary.

The user can place calls to instrumentation routines around instructions, basic blocks and pro-

cedure calls in xxx inst.c. The routines defined in xxx anal.c are invoked when program control

reaches these points.

For the purpose of phase detection, we need to count instructions executed per routine, per

loop invocation, per loop iteration. Hence we place suitable calls to instrumentation routines

around boundaries of procedures, loops and iterations respectively. The routines are coded in

such a way that information is computed hierarchically and the call graph structure is main-

tained. When control reaches the end of the program, the hierarchical call graph is traversed

starting from the main routine. Those call or loop edges that satisfy the condition of having

an average count, A, of more than ilower and a coefficient of variation of less than minimum

COVinstn are output as software phase markers along with the corresponding instruction PC



Chapter 5. Implications of Program Phase Behavior on Timing Analysis 114

Benchmark Phase Sequence

Bezier P1 P2
Bitcount P1 P2 P3 P4 P5 P6 P7

Bs P1
Bub P1
Cnt P1 P2
Crc P1 P2
Dij P1
Edn P1 P2 P3 P4 P5 P6 P7 P8
Fft P1 P2
Fir P1
Ins P1
Jan P1
Lms P1
Lud P1

P1 P2 P3
P1 P2 (P3 P4)+
P1 P2 (P3 P4)+ P5

Matmul P1 P2
Minv P1 P3 (P5 P6)+ P9 P8

P1 P2 P3 (P4 P5 P6)+ (P5 P6)+ P9 P8
P1 P2 P3 ( (P4 P5 P6)+ |(P5 P6)+)+ P7 P9 P8

Nsch P1
Ndes P1

Table 5.1: Benchmarks and their phase sequences.

value. Since these instructions correspond to call-loop boundaries, they can easily map to a

different binary like PISA or ARM. Assuming our instrumentation and analysis files are named

swphasemarker.inst.c and swphasemarker.anal.c, if test.c is our benchmark program, we first

compile it using the CC compiler as shown.

cc -Wl,-r -non shared test.c -o test.rr

Following this, we create an instrumented executable, test.trace, by running ATOM with sw-

phasemarker.inst.c and swphasemarker.anal.c as follows

atom -Wla,-lm test.rr swphasemarker.inst.c swphasemarker.anal.c -o test.trace

Running ./test.trace will give us a list of instruction PCs that serve as phase markers demar-

cating phases in our program. We create a test harness program for each benchmark that

executes the benchmark with a set of different inputs to ensure the HCL graph is complete and

has not omitted any procedure or loop.

5.3.3 Estimating WIC

Section 3.1.1 discusses estimation of WIC for the whole program in detail. In this section, we

discuss the particulars of estimation of WIC for a phase. A phase as defined and described in

the earlier sections refers to a code region demarcated by binary instructions known as phase
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markers. The phase marker instructions typically lie at call and loop boundaries. The basic

blocks that span between the start basic block corresponding to the start phase marker and the

end basic block corresponding to the end phase marker constitutes the phase CFG. We then

apply the method discussed in Section 3.1.1 on the phase CFG to estimate WIC of the phase.

5.3.4 Context Sensitivity

A program analysis is termed as context sensitive if it differentiates two instances of a procedure

occurring at two different contexts. In this work, we perform procedure cloning and treat each

call instance as a separate call. This might cause the algorithm to assign different phase numbers

to two call instances of the same procedure even if their CPI behavior is similar. If the differing

context does not impact variation in CPI, this has an effect of increasing the number of phases

but has no bearing on correctness of the subsequent timing analysis. Example: Crc has two

phases, one for each clone and average CPI for each phase is about the same despite the differing

context. Context sensitivity has also been applied to loops by distinguishing iterations[54, 73].

In this chapter, we apply context sensitivity for only procedures. In the next chapter, we shall

apply context sensitivity to loop iterations as well.

5.3.5 Infeasible Paths

An infeasible path is one which can never occur in any valid execution of the program. Weeding

out infeasible paths helps compute a much tighter WCET estimate. We follow the approach

used in Suhendra et al[87] and identify branch-branch conflict pairs and assignment-branch

conflict pairs. A branch-branch(BB) conflict pair is a set of branch induced paths that can

never occur together. Similarly an assignment-branch(AB) conflict pair is an assignment and

a branch path that can never occur together. Fig. 5.7 shows a simple example of an AB and

a BB conflict that can occur.

Infeasible paths are modeled as additional linear edge constraints and are added to our

linear system of equations as described in section 3.1 of chapter 3. Two branch edges that

figure in a BB pair, say, Ei→j and Em→n have a linear constraint as shown in (5.4). Similarly

an assignment (node) and a branch edge that figures in an AB pair have a linear constraint as
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start

 x < 10
     ?

 z >50
     ?

z=10

sum=z

sum=x

sum=sum + z

 x >20
     ?

sum=sum+x sum=sum - x

stop

int test(int x, int z) 
{
 int sum;
 if (x < 10)
    z = 10;
 else
    sum = x;
 if (z > 50) 
    sum = z;
 else
    sum = sum + z;
 if (x > 20)
    sum = sum + x;
 else
    sum = sum � x;
   
}

T F

T F

T F

(n2)(n2)

(n4)(n4)

(n1)(n1)

(n3)(n3)

(n5)(n5) (n6)(n6)

(n7)(n7)

(n8)(n8) (n9)(n9)
BB Conflicts
{n1->n2, n7->n8}

AB Conflicts
{n2, n4->n5}

Figure 5.7: Illustration of Branch-Branch (BB) conflicts, Assignment-Branch (AB) conflicts.

shown in (5.5).

BB conflict : Ei→j + Em→n = 1 (5.4)

AB conflict : NB + Ei→j = 1 (5.5)

We have used integer linear programming to estimate WIC statically. Alternatively, WIC

can also be estimated statically by viewing the CFG as a weighted directed graph with basic

blocks as nodes, WB as edge weights and computing weighted longest path in the graph or tree

based schema.

5.3.6 Estimating WCPI

This section describes estimation of worst case CPI of a phase that is carried out by measure-

ment. The CPI of a phase is measured by sampling the phase at large intervals of instructions

and averaging the samples. The samples for a phase are measured when the code region cor-

responding to that phase is executed. If the COV of CPI is very less within a phase, we can

afford to take fewer samples without affecting the accuracy of phase CPI[88], which means,

very less instrumentation is required within such a phase. Worst case CPI (WCPI) is defined

as a function of measured per-phase CPI. We reapply analytical and statistical functions now

on phase CPI to estimate WCPI of a phase.
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Analytical

In chapter 3, we saw two possible analytical candidates that could be used to compute WCPI.

One was the maximum of observed overall program CPI, Max Avg(CPI) (described in section

3.3 in chapter 3) across a large number of inputs, i. Instead of computing Max Avg(CPI) for

the whole program, we now compute phase-wise Max Avg as follows. If a program comprises

of p phases, the CPI sample set for each (phase, input) pair, CPIj,k is averaged out to yield

Avg CPIj,k. WCPIp is then computed as a maximum of the observed averages of CPI in phase

p, across a large number of inputs, i -

WCPIp = Max Avgp(CPI) = Maximum(Avg CPI1,p, Avg CPI2,p, ..., Avg CPIi,p) (5.6)

The other candidate is the overall average program CPI (Avg Avg(CPI)) across a large

number of inputs, i. Instead of computing Avg Avg(CPI) for the whole program, we now com-

pute phase-wise Avg Avg as follows. If a program comprises of p phases, WCPIp is computed

as an average of the observed average CPI in phase p, across a large number of inputs, i -

WCPIp = Avg Avgp(CPI) =
Avg CPI1,p + Avg CPI2,p + ... + Avg CPIi,p

i
(5.7)

Statistical

In chapter 3, we saw three possible statistical candidates that could be used to compute WCPI.

They were the 90th percentile CPI value, 95th percentile CPI value and the 99th percentile CPI

value. Instead of computing the tail end percentile values using CPI samples pertaining to the

whole program, we combine CPI samples across all inputs for each phase, p. We substitute the

percentile values considering phase wise CPI samples in place of WCPIp as follows. Depending

on the safety requirement, either 90perp(CPI) or 99perp(CPI) can be used.

WCPIp = 90perp(CPI1,p ∪ CPI2,p ∪ .... ∪ CPIi,p) (5.8)

WCPIp = 99perp(CPI1,p ∪ CPI2,p ∪ .... ∪ CPIi,p) (5.9)

For each phase, p, we evaluate {SWICp, MICp} to represent WICp and {Max Avgp, Avg Avgp,

90perp, 99perp} to represent WCPIp, which gives us eight combinations to estimate WCET.
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The safest analytical combination that can be used is SWICp and Max Avgp. The safest sta-

tistical combination that can be used is SWICp and 99perp. The softest and most approximate

analytical and statistical combinations that can be unsafe are {MICp, Avg Avgp} and {MICp,

90perp}. If coverage by inputs is assured, MIC could be used instead of SWIC along with safer

WCPI candidates such as Max Avgp and 99perp.

5.3.7 Warmup CPI

Warmup is an essential component of program execution that refers to the initial stage when all

the architectural structures get filled in. The warmup CPI is typically higher than the stable

program CPI. For programs executing millions of instructions, the effect of warmup can be

ignored. The dynamic instruction count of the programs considered in this work range from a

few thousand up to few millions. In this work, we consider the warmup as a special phase and

add the warmup cycles separately to our estimated program execution time.

5.4 Experimental Methodology

We perform our experiments for the same set of benchmarks as defined in section 3.2.1 All

programs are compiled to MIPS PISA binaries with -O2 -static flags. We use Simplescalar

v3.0 [113] for measuring CPI of programs across a large number of inputs. The inputs are

chosen so as to satisfy structural coverage and to cover a wide range of data values as described

in section 3.2 of chapter 3. Invalid inputs and inputs that produce very short sequence of

instructions are pruned away from calculations. We test the WCET analyzer for architectures,

described in Table 3.2 in chapter 3.

We sample benchmarks at every phase marker instruction in addition to sampling every

1K instructions within a phase to note CPI. For benchmarks of very small dynamic execu-

tion length, we sample every 100 instructions within a phase to note CPI. For each (phase,

input) pair, we compute the corresponding CPI by taking the average of CPI samples for that

input to generate CPI1, ...., CPIi for i inputs, indicated as in (Eq.(5.6) and Eq.(5.7)). We

have experimentally verified that the width of the sampling interval within a phase can be

varied arbitrarily without causing any impact on WCPI or ACPI of the phase. Here is where,

the homogeneous nature of the phase lends itself to minimal instrumentation that is tapped
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within the framework of measurement based WCET analysis. The resultant WCET estimate

is compared with the estimate made by Chronos[94].

5.4.1 Phase Detection

Figure 5.8 describes the time taken to carry out hierarchical call loop graph analysis for all

benchmarks under consideration. The time indicated in the figure includes time taken to create

the instrumented executable using ATOM. The phase detection algorithm is directly dependent

on the dynamic execution length of the program, as higher the number of instructions instru-

mented, higher will be the resulting analysis time. Hence the dynamic lengths are indicated

to give an idea about scalability of the phase detection procedure. The maximum time taken

to detect phases is about 12.65 seconds taken by Bezier which also has the highest dynamic

length compared to all other benchmarks.
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Figure 5.8: Plot of phase detection time versus program parameters.

5.4.2 Percentage COV of CPI

A good phase is said to exhibit minimum variance in CPI. The percentage COV of CPI for most

of the single-phase programs is observed to be within 10% as shown in Figures 5.9 for Simplest,

Inorder complex and Complex architectures. These programs are mostly dominated by loops
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that exhibit repetitive behavior resulting in the CPI becoming stable. It can be observed that

the architecture significantly influences the COV of CPI of phases in the case of some programs.

Bub and Nsch exhibit highly varying CPI as it is dominated by execution of branches within a

loop that results in a large COV in instructions executed and hence makes phase identification

difficult. The per-phase COV of CPI for most phases in multi-phase programs is observed to

be much lesser than the overall COV of CPI of the program considering it as a single phase.

Even if the COV of CPI of a phase continues to be high, the effect it has on the overall WCET

is reduced as a phase constitutes only a fraction of the program. Figures 5.10, 5.11 and 5.12

depict the COV of CPI of individual phases versus that of the whole program for Simplest,

Inorder complex and Complex architectures. It is this property of low variance in phase CPI

that reduces pessimism in estimated WCET using the proposed method.
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Figure 5.9: COV of CPI for single-phase programs on all architectures.

5.4.3 Accuracy of WCET Estimate

In this section, we shall evaluate the accuracy of WCET estimate obtained after detecting

phases and computing phase-wise WCET. There exist benchmarks which do not display mul-

tiple phases during execution. The CPI variation in such benchmarks is seen to be either

entirely stable (Coefficient of Variation of CPI ≤ 5%) or highly varying throughout execution
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Figure 5.10: COV of CPI of individual phases versus whole program for multi-phase programs
on Simplest architecture.

as can be observed from Figure 5.9. Examples of benchmarks with highly stable CPI behavior

comprising of a single phase are Bs, Fir, Jan and Lms. The stability holds even across archi-

tectures. Examples of benchmarks with a single phase exhibiting highly varying CPI are Bub,

Dij (Inorder complex and Complex), Ins (Inorder complex) and Nsch. For all single phase

benchmarks, we retain the equation to estimate WCET as a product of overall theoretical

upper bound on instruction count, SWIC and Max Avg(CPI) as described in Chapter 3.

Analytical

The pessimism in WCET estimated using analytical functions of measured phase-wise CPI

is depicted in Figures 5.13, 5.14 and 5.15 along with pessimism in WCET obtained using

Chronos for Simplest, Inorder complex and Complex architectures respectively. The average

pessimism in WCET obtained using all the four analytical combinations applied phase-wise

for all architectures is indicated in Table 5.2. On Simplest architecture, the safest analytical

combination of SWICp and Max Avgp(CPI) yields about the same pessimism as Chronos.

On Inorder complex and Complex architectures, the same combination improves pessimism

compared to Chronos, by 43% and 55% respectively.
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Figure 5.11: COV of CPI of individual phases versus whole program for multi-phase programs
on Inorder complex architecture.

Statistical

The pessimism in WCET estimated using statistical functions of measured phase-wise CPI is

depicted in Figures 5.16, 5.17 and 5.18 along with pessimism in WCET obtained using Chronos

for Simplest, Inorder complex and Complex architectures respectively.

The average pessimism in WCET obtained using all the four statistical combinations ap-

plied phase-wise for all architectures is indicated in Table 5.2. The estimates computed using

combination of SWIC and 99per(CPI) are very pessimistic as high end spikes get enlisted as

99th percentile CPI values, even though they occur at very few instances during program exe-

cution. For both single and multi-phase benchmarks that display similar CPI across runs with

different inputs, the WCET estimate computed using both analytical and statistical candidates

yield very accurate estimates. On an average, the combination of SWIC and 99per(CPI) is 32%

more pessimistic than Chronos. For simple architectures, Chronos yields accurate WCET es-

timates. However, on Inorder complex and Complex architectures, the combination of SWIC

and 99per(CPI) improves pessimism by 40% and 65% compared to Chronos.
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Figure 5.12: COV of CPI of individual phases versus whole program for multi-phase programs
on Complex architecture.
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Figure 5.13: Pessimism in WCET estimate using analytical CPI candidates taking into account
phase information on Simplest architecture.
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Figure 5.14: Pessimism in WCET estimate using analytical CPI candidates taking into account
phase information on Inorder complex architecture.
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Figure 5.15: Pessimism in WCET estimate using analytical CPI candidates taking into account
phase information on Complex architecture.
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Figure 5.16: Pessimism in WCET estimate using statistical CPI candidates taking into account
phase information on Simplest architecture.
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Figure 5.17: Pessimism in WCET estimate using statistical CPI candidates taking into account
phase information on Inorder complex architecture.
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Figure 5.18: Pessimism in WCET estimate using statistical CPI candidates taking into account
phase information on Complex architecture.

WCET Simplest Inorder complex Complex
Σ(SWICp×Max Avgp(CPI))

M
1.76099 1.79653 1.8748

Σ(SWICp×Avg Avgp(CPI))
M

1.49432 1.49341 1.47986
Σ(MICp×Max Avgp(CPI))

M
1.12051 1.09855 1.12196

Σ(MICp×Avg Avgp(CPI))
M

0.980906 0.934616 0.930796
Σ(SWICp×90perp(CPI))

M
1.75027 1.79559 1.8021

Σ(SWICp×99perp(CPI))
M

2.30933 2.2408 2.54154
Σ(MICp×90perp(CPI))

M
1.07082 1.12226 1.1198

Σ(MICp×99perp(CPI))
M

1.59818 1.52749 1.66775
Chronos

M
1.7308 3.15256 4.1998

Table 5.2: Average pessimism of WCET on all PISA architectures using the proposed method
and Chronos.
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5.5 Related Work

5.5.1 Worst Case Execution Time Analysis

Most existing WCET analyzers partition the program into smaller components like basic

blocks[29], scopes[6], segments[55] or paths[66] to reduce complexity of WCET analysis. Each

of these components are either statically analyzed or directly measured to compute the cost of

executing the component on the target machine. Finally these execution times are combined

using abstractions such as ILP, tree based schema or graph theoretical algorithms to give the

final WCET estimate. The proposed method partitions the programs into smaller components

based on observed instruction execution patterns. The nature of repetitive execution of in-

structions within a phase leads to a repetitive homogeneous pattern of CPI variation within a

phase. The phase change boundaries are detected by an algorithm that builds a hierarchical

call graph and annotates the graph with profile information. The phase change boundaries

known as phase markers act as primary locations of instrumentation points. The homogeneity

of a phase allows us to place instrumentation points at arbitrarily large intervals within the

phase to measure CPI accurately thereby helping build a non intrusive measurement based

WCET analyzer.

5.5.2 Phase Behavior

Phases can be detected in various ways with respect to a number of parameters as we saw in

section 5.1. Phases can be detected by collecting a trace of the program and analyzing it offline.

Phases detected based on basic block vectors is a good example of offline phase detection and is

applied in architectural simulation effort reduction[28]. Phases can also be detected online while

the program is executing. Such detection methods are generally used for dynamic configuration

of the processor to obtain performance optimizations[42]. Phases can either be associated with

instruction execution patterns or data access patterns. Phases that are based on data access

patterns are generally associated with memory related optimizations and are not relevant to the

work presented in this thesis. Phases that are associated with instruction patterns can either

be composed of fixed intervals[28] or can be of variable intervals[41]. Variable length intervals

have been shown to effectively characterize CPI of a phase more accurately as it aligns with the

natural period of the program better than fixed length intervals. With fixed length intervals,
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more samples would be needed to characterize the CPI of a phase with same accuracy as variable

length intervals[41]. Hind et al [53] formalizes program phase classification by focusing on how

to appropriately define granularity and similarity to perform phase detection. Phases can also

be associated with code regions that could be static[39] or dynamic[28]. Since we perform a

combination of structural analysis that is static and measurements that are dynamic, we need

to have a handle on the program static code. Hence only those methods that statically divide

a program into phases are relevant to us. We review some static phase classification methods

that associate phases with code regions.

Sondag et al[84] propose a static analysis that identifies likely phase transition points where

runtime characteristics are likely to change to help guide code region to core assignment in a

performance asymmetric multicore processor(AMP). Such a phase-transition point is statically

instrumented to insert a small code fragment which is termed as a phase mark in [84]. A phase

mark contains information about the phase type for the current section, code for dynamic

performance analysis, and code for making core switching decisions. At runtime, the dynamic

analysis code in the phase marks analyzes the actual characteristics of a small number of

representative sections of each phase type. These analysis results are used to determine a

suitable core assignment for the phase type such that the resources provided by the core matches

the expected resources for sections of that phase type. On determining a satisfactory assignment

for a phase type, all future phase marks for that phase type reduce to simply making appropriate

core switching decisions. The method in [84] involves block typing that looks at a combination

of instruction types in a basic block as well as a rough estimate of cache behavior (computed

based on reuse distances [48]). Information describing these two components are used to place

blocks in a two dimensional space. The blocks are then grouped using the k -means clustering

algorithm. The phases detected in [84] are very different from the phases that we detect in our

work as the application of phases in [84] is maximizing resources of the processor by optimal

code region to core assignment. Our objective is to accurately characterize CPI of a phase and

hence timing of a phase to help estimate WCET more accurately and efficiently. The phase

markers in [84] involve a lot of code executed at phase transitions, whereas phase markers in

our case are mere instructions and serve as boundaries to help collect phase-specific CPI and

compute phase-specific worst case instruction count.
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5.6 Conclusions

This chapter throws light on how program phase behavior can have important applications in

worst case timing analysis. The homogeneity of a phase allows us to model WCET of a phase

in terms of its average CPI. This chapter also serves to justify and support our hypothesis of

estimating WCET of a program in terms of its instruction count and CPI in the case of single

phase programs. While the analytical and statistical expressions described in chapter 3 applied

to the whole program, in this chapter, we modify these expressions to pertain to a phase.

Phases are detected by code structural analysis that mark instructions in the binary as the

start of a new phase. Phases obtained this way are observed to be independent of architecture

as they rely on instruction execution patterns.

We recommend to compute WCET in terms of SWICp and Max Avgp(CPI) which yields

about the same pessimism as Chronos on Simplest architecture. On Inorder complex and

Complex architectures, the average pessimism reduces by 43% and 55.35%. Since CPI varies

in a homogeneous and repetitive manner within a phase the average CPI of a phase can be

computed using CPI samples collected at arbitrarily large intervals of instructions thus reducing

the instrumentation overhead. Tail end percentile functions can be used to approximate worst

case CPI, but the percentile CPI values are found to be highly sensitive to the distribution of

CPI data and hence would depend on the mix of data provided in the test input set. Moreover,

CPI spikes that occur very rarely within a phase end up as 99th percentile CPI values causing

additional pessimism. In the next chapter we shall see how to obtain probabilistic bounds of

CPI that work with any arbitrary distribution of data and this probabilistic bound of phase

CPI is used to obtain a probabilistic bound on program WCET as well.



Chapter 6

Probabilistic Bounds of Phase CPI

and Relevance in WCET Analysis

In the previous chapter, we saw that program phase behavior has important implications on

worst case timing analysis. Based on homogeneous variation of CPI within a phase, we proposed

a model that estimates program WCET in terms of its phases. The proposed model uses

function of average CPI which results in the estimate being approximate. In this chapter,

we describe a method to compute probabilistic bounds on phase CPI which will enable us to

estimate WCET of each phase at a given probability value. We also describe how probabilistic

WCET estimates of each phase can be combined to give the probabilistic WCET estimate of

the whole program.

Probabilistic WCET estimates have two clear advantages. These estimates are more robust

and associated with real guarantees which can be confidently used in real time systems. Instead

of an absolute WCET estimate, one can estimate WCET at various probabilities, especially

useful, when tasks with different priorities exist. Bernat et al[29, 30] probabilistically combine

worst case effects of execution profiles (ETP) which are a combination of basic blocks and

execution frequency profile information (gathered by running the program with various inputs)

under three different scenarios and build the program worst case path to estimate probabilistic

WCET. Bernat et al[29] use tree based schema to combine the local timing information of

basic blocks into a global WCET. The three scenarios considered are: ETPs are independent,

the dependencies between ETPs are known and no dependency information among ETPs are

130
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known. This work forms the underlying model of the commercial measurement based WCET

tool, RapiTime[102].

In our phase based WCET analyzer, CPI samples are collected by measurement at numer-

ous points by running benchmarks with a large number of test inputs. The true probability

distribution of these CPI samples is not known. But we do know that the samples have finite

mean and variance. Hence we use Chebyshev’s inequality[68] to bound CPI of a phase within

a confidence interval for a probability, p. Applying Chebyshev inequality to benchmarks with

stable CPI behavior (coefficient of variation or CoV of CPI ≤ 0.5%) results in accurate WCET

estimates (that are within 1% of maximum observed cycles even at p=0.99).

Some benchmarks like Bubble sort (Table 2) exhibit high variation in CPI during execu-

tion(Figure 6.1). Applying Chebyshev inequality directly for such phases yields a wide con-

fidence interval for CPI leading to highly pessimistic WCET estimates, as execution time is

directly proportional to CPI. We observe that deviations in CPI actually correspond to devi-

ations in the program counter even at a granularity of a few tens of instructions. Using this

observation, we refine such phases into smaller sub-phases based on PC (program counter) sig-

natures, collected using profiling. These signatures basically encode path information of loop

iterations in a concise manner and are analyzed to isolate high deviations in CPI. Re-applying

Chebyshev inequality on CPI samples for each sub-phase gives us a tight bound on CPI thereby

resulting in an accurate WCET estimate. In some programs, where points of high CPI variation

are not solely determined by control flow, we go one step further and make provision to modify

the refinement process so as to also allow the user to control CPI variance within a sub-phase

and hence accuracy of WCET.

We evaluate this technique for all PISA architectures described in Table 3.2 in chapter 3

by comparing it with the static WCET analyzer Chronos. We use the same set of benchmarks

taken from Mälardalen WCET project and Mibench embedded benchmark suite described in

chapter 3. Since the proposed technique yields a probabilistic WCET estimate, we also compare

the results with the commercial probabilistic WCET analyzer, Rapitime. For these purposes,

we use two cycle accurate simulators Simplesim-3.0 and SimIt-ARM-2.1, used by Chronos and

RapiTime respectively, to carry out measurement of CPI on PISA and ARM platforms. We

compute bounds on CPI for unrefined and refined phases at three chosen probability values,

p=0.9, 0.95, 0.99.
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Figure 6.1: Deviation of CPI around the mean in Bubble sort on Inorder complex architecture.

We address the following questions in this chapter.

1. How do we obtain robust WCET estimates that are also accurate in the phase based

timing model?

2. How do we isolate points of high CPI variation within a phase?

3. How do we control CPI variation within a phase?

4. What is the impact of 2 and 3 on WCET accuracy?

5. How do we obtain probabilistic WCET for the whole program using probabilistic CPI

bounds of phases?

6.1 Baseline Model

The phase-based timing model that we proposed in chapter 5 estimates program WCET as a

sum of WCET of its phases. A phase corresponds to a static code region detected by code

structure analysis[39]. The unit of analysis is a hierarchical call loop(HCL) graph, created out

of the program binary. The program is executed with various inputs to ensure coverage of all
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functions and conditions. Profile data is used to annotate the HCL graph with hierarchical

information regarding number of calls, loop iteration counts, variance in instructions executed

every time each call/loop is executed. The HCL graph is analyzed to pick phase marker edges.

The code region lying between a marker edge e1 and the following marker edge e2 comprises

the phase associated with e1.

The WCET of a program is estimated as,

WCET = Σj∈{1..p}WCETj (6.1)

where p is the number of phases of the program.

WCET of the j-th phase, is estimated as,

WCETj = Tj × WICj × WCPIj (6.2)

where, Tj: Maximum number of times phase j occurs during execution1.

WICj: Worst case instruction count(IC) of phase j. WICj is either the theoretical upper bound

on IC derived using static analysis(SWICj) or the maximum observed IC of phase j (MICj).

WCPIj: Worst case CPI of phase j. CPI is measured within each phase at various points

and maximum of mean CPI across all tested inputs is taken as WCPIj. In this work, we

use probabilistically bounded CPI instead of maximum of mean CPI to obtain a more robust

WCET estimate.

A program depending on its structural complexity, can execute different code regions(phases)

on execution with different inputs thereby exhibiting multiple phase sequences across inputs.

In that case, WCET is estimated as the maximum among WCET of all possible sequences.

WCET = Max ( WCET (1), ..... ,WCET (s) ) (6.3)

6.2 Computing Probabilistic Bounds on Phase CPI

The phase based timing model defined by Eq(6.2) uses function of mean CPI values that have

no probabilistic guarantees to compute phase WCET and, in turn, program WCET. Hence the

1From now, we factor in Tj into WICj for ease of notation in this chapter.
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resultant WCET estimate is only approximate. We now describe how CPI of a phase is bounded

for a given probability, p. To bound CPI, we collect n CPI samples for each phase(static code

region) to form the sample set, Ŝi, by running the program with a large number of test inputs.

CPI is measured at intervals ranging from 100 to 1000 instruction depending on the program

dynamic execution length.

On an average over all phases of all benchmarks, CPI samples are observed to be within

10% of the sample mean(µ̂) on all architectures considered in this study. Our main objective

is to quantify the amount by which a future CPI sample can be away from µ̂ for a given

probability(p). Had we known the true probability distribution of the samples (ascertained

only if true population set, Si, built by exercising all paths within phase i is known), we could

apply an appropriate probability density function to compute the confidence interval to contain

a future CPI sample for probability p. Building Si is computationally expensive. Hence we use

Chebyshev inequality as it can be applied to any arbitrary distribution. Chebyshev inequality

only requires the random variable(CPI) to have finite mean and variance. If variance is small,

bounds obtained using Chebyshev inequality are tight.

Chebyshev’s inequality: The inequality states that p, probability of a future sample, cpix,

being greater or lesser than mean of Si (µ) by a distance of k, is as follows,

P (|cpix − µ| ≥ k) ≤
σ2

k2
(6.4)

Where, k is an arbitrary constant, µ is true mean of the distribution and σ2 is true variance

of the distribution. In the context of WCET analysis, the distance k is one of the factors in

determining the accuracy of WCET estimate. If k is much greater than the mean CPI, the

resulting WCET estimate will be much greater than the observed maximum cycles. Chebyshev

inequality is also written in the following alternate form.

P (|cpix − µ| ≥ k × σ) ≤
1

k2
(6.5)

We can use sample mean, µ̂ and square root of sample variance, σ̂ in Eq(6.4) and Eq(6.5),

provided variance of sample mean, Var(µ̂) is small.

V ar(µ̂) =
σ2

n
(6.6)
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Var(µ̂) is inversely proportional to the number of samples, n. Hence with increasing n,

Var(µ̂) decreases[68]. Since we have a large number of samples, we can confidently use µ̂ and

σ̂ in place of µ and σ to give the following equations.

P (|cpix − µ̂| ≥ k) ≤
σ̂2

k2
(6.7)

P (|cpix − µ̂| ≥ k × σ̂) ≤
1

k2
(6.8)

Applying Chebyshev inequality to Ŝi, we obtain an upper bound value, CPIi,u which will

be greater than any future CPI sample with probability p. We refer to CPIi,u associated with

a probability p as PrCPIp. Hence original timing equation, Eq(6.2) is modified to,

WCETj ≤ WICj × PrCPIp (6.9)

Example:

Inorder to compute bounded CPI associated with a particular probability, Eq(6.8) can be re-

written as follows:

P (cpix ≤ µ̂ + k × σ̂) ≤ 1 −
1

k2
(6.10)

If p is equal to 0.99, we set 1- 1
k2 to 0.99, which gives a value of 10 to k.

The program bez has two phases, P1 and P2. Assume it has the following values, µ̂1=1.15,

µ̂2=1.27, σ̂1=0.01, σ̂2=0.001, WIC1=112500, WIC2=18176352, CPI bound of phase P1 is cal-

culated as follows:

Applying Eq(6.10), bounded CPI at p=0.99 is µ̂1 + k × σ̂1

which is 1.15 + 0.01 × 10 = 1.25

Similarly, CPI bound of phase P2 is calculated as follows:

Applying Eq(6.10), bounded CPI at p=0.99 is µ̂2 + k × σ̂2

which is 1.27 + 0.001 × 10 = 1.28

According to Eq(6.9), we estimate WCET as

WCET ≤ WIC1× 1.25 + WIC2× 1.28

In the next section we shall see how the probabilistic WCET of the whole program can be

obtained in terms of probabilistic WCET of the constituent phases. Since we use a theoretically
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bounded value for WICj , which is a constant, the probabilistic guarantee associated with

PrCPIp applies to the resultant WCET of phase as well.

6.3 Estimating Probabilistic Program WCET

In the previous section, we treated phase CPI as a random variable. The CPI of a phase varies

within a small percentage around the mean. We apply Chebyshev inequality to bound a future

CPI sample with a given probability. This enables us to estimate the probabilistic WCET of

a phase. If we treat WCET as our random variable, We can carry forward the same logic and

estimate probabilistic WCET of the whole program. For ease of notation, let us term WCET

as ’W’, theoretical upper bound on IC (SWIC) as ’f’ and CPI as ’C’. The WCET of a program

with a number of phases can be formulated as in Eq.(6.9). Inorder to compute a bound on W,

using Chebyshev inequality, we need to compute mean and variance of W.

W = Σ(fi × Ci) (6.11)

Expectation(W ) or E(W ) or µw = Σ(fi × E(Ci)) (6.12)

As, fi is a constant,

E(W ) = µw = Σ(fi × µi) (6.13)

V ar(W ) = σ2
w = Σ(f2

i × V ar(Ci)) (6.14)

Ci values are not correlated with Cj values and hence assumed to be independent. The Ci and

Cj values refer to measured CPI values within phase i and j. It has been observed through

experimentation that one cannot guess CPI values of phase j with the help of phase i. Hence

they are not correlated. Therefore we can write,

V ar(W ) = σ2
w = Σ(f2

i × σ2
i ) (6.15)

Applying Chebyshev inequality on W, on the lines of Eq(6.5),

P (W − E(W ) ≥ k × σw) ≤
1

k2
(6.16)
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P (W − E(W ) ≤ k × σw) ≤ 1 −
1

k2
(6.17)

P (W ≤ E(W ) + k × σw) ≤ 1 −
1

k2
(6.18)

Considering,

W ≤ E(W ) + k ×
√

V ar(W ) (6.19)

W ≤ Σ(fi × µi) + k ×
√

Σ(f2
i × σ2

i ) (6.20)

We know that, (Σ(Xi))
2 is greater than Σ(X2

i ). Hence we can say,

W ≤ Σ(fi × µi) + k ×
√

(Σ(fi × σi))2 (6.21)

Which gives us,

W ≤ Σ(fi × µi) + k × Σ(fi × σi) (6.22)

Removing fi outside,

W ≤ Σ(fi(µi + k × σi)) (6.23)

Which essentially means, once we compute probabilistic bounds of phase CPI to estimate

probabilistic phase WCET, the sum of probabilistic phase WCET gives the probabilistic WCET

of the whole program as well. Similar to the case where we estimate probabilistic bounds on

phase CPI, we use sample mean (µ̂) and square root of sample variance (σ̂) in place of true

mean and true variance in the above equations to obtain our bounds on execution time.

Example:

Continuing with the same example that we used earlier to compute bounds on phase CPI for

two phases, we now show how to use Eq.(6.23) to estimate whole program probabilistic WCET.

Treating W as a random variable and applying Chebyshev inequality on W itself, by the above

derivation,

P (W ≤ (f1 × (µ̂1 + k × σ̂1) + f2 × (µ̂2 + k × σ̂2))) ≤ 1 −
1

k2
(6.24)

To get a bound on W, we proceed likewise as in the case of obtaining a probabilitic bound on

phase CPI. Assume p=0.99, we first obtain k to be 10. W is calculated by substituting values

for f1 (WIC1) and f2 (WIC2) and µ̂1, µ̂2, σ̂1, σ̂2, that were obtained in the previous example.

If WIC1=112500 and WIC2=18176352, we estimate W as,
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W ≤ 112500 × 1.15 + 18176352 × 1.27 + 10 × (112500 × 0.01 + 18176352*0.001)

The Chebyshev inequality described in the above equations provides both the lower and upper

bounds for phase CPI. Since we are interested in estimating WCET, we need to obtain only the

upper bound. Hence we use the one tailed version of Chebyshev inequality- Chebyshev-Cantelli

inequality to obtain probabilistic upper bound on phase CPI in this work.

Chebyshev-Cantelli inequality: The inequality states that p, probability of a future sample,

cpix, being greater than mean of Si (µ) by a distance of k is as follows,

P (cpix − µ ≥ k) ≤
σ2

σ2 + k2
(6.25)

Stated in an alternate form,

P (cpix − µ ≥ k × σ) ≤
1

1 + k2
(6.26)

The procedure to compute the CPI bound and the bound on execution time using Chebyshev

inequality, described above can be similarly adapted to use Chebyshev-Cantelli inequality.

For benchmarks that exhibit low variance in CPI, both Chebyshev and Chebyshev-Cantelli

inequality tightly bounds phase CPI. However, applying the inequality to phases with high

variance in CPI results in high PrCPIP values and hence pessimistic WCET estimates. In the

next section, we will see how such phases can be divided into smaller sub-phases to obtain

tighter CPI bounds and hence tighter WCET estimates.

6.4 Phase Refinement

Code structure analysis [39] ensures that variation in instructions executed within a phase

is much lesser than the corresponding variation across different phases. However, presence

of if-conditions in loops or calls can cause high variance in instructions executed across loop

iterations or call invocations. The if-condition of the inner-loop in Bubble sort (Figure 6.2),

when true, executes additional code compared to when the condition is false. The HCL graph

for the routine created by profiling with a set of 5 different inputs, is shown in the same

figure. Each loop is represented by a loop head node and a loop body node in the HCL graph.

The edge associated with loop head node stores information about the number of times loop
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Figure 6.2: Code structure of Bubble sort routine and the corresponding HCL graph.

head was executed(C), hierarchical average number of instructions(A) and CoV in instructions

executed(CoVinst) over different executions. Similarly the edge associated with loop body node

stores these information pertaining to a loop iteration. It can be observed that loop edges have

a very high CoVinst hence do not qualify as software markers resulting in the whole routine

being selected as a single phase [39]. Considering the entire loop as a single phase exhibits high

variation in CPI(Figure 6.1).

In such cases, we could statically mark the code region associated with each iteration and

hence each path per iteration as a different phase. But that would not work because,

a) The underlying architecture is based on a pipeline consisting of several stages. Multiple

instructions are in flight at the same time. A phase should be lengthy enough to allow at least

few instructions to completely execute to facilitate calculation of CPI of the phase.

b) Instrumenting every few instructions can hamper performance of the program that we are

trying to measure.

Hence it appears that we need to find a mid point where phases are big enough, at the same

time, small enough to obtain tight bounds on CPI.

An intuitive approach is to consider every x consecutive iterations of a loop, L, as a poten-

tial phase, which we term as a window, W. We emit dynamic execution information of every
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window, W, in the form of a triple, defined as a PC signature (Figure 6.3), storing the following

information.

PCbitmap: The bitmap is a vector of 4 integers (128 bits). The simulator hashes every

instruction PC encountered and stores it into the bitmap. 127 bits are sufficient to map PC

addresses in each phase of the benchmarks considered in this thesis.

CPI: CPI represents observed cycles per instruction while instructions belonging to W are

executed.

IC: IC represents number of instructions executed that belong to W.

Figure 6.3: Format of a single PC signature.

6.4.1 Refinement Based on PC Signature

Refinement consists of three steps: trace generation, trace compression and classification of

compressed trace into sub-phases.

Trace Generation

In order to generate a trace, we first identify the branch instruction that iterates loop L of

the phase. If L is nested with several levels, we select the innermost loop. The simulator is

modified to count x consecutive executions of the branch instruction of L. If Min(|Li|) denotes

the minimum number of instructions executed in each loop iteration i of L, number of iterations
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that make up a single window, x is defined as,

x =
⌈Phase length

Min(|Li|)

⌉
(6.27)

where, Phase length is the number of instructions that make up a phase. On a given architec-

ture, Phase length should be greater than the minimum number of instructions that have to

be executed for at least one instruction commit. A Phase length of 50 instructions suffices for

all architectures considered in this thesis (Table 3.2). With x being a ceiling value, Eq.(6.20)

might cause some windows to be composed of more than 50 instructions. x may not always

be an exact multiple of |L|. Hence the execution time of the last few iterations will have to be

added separately. If the phase has multiple loops, the same procedure is repeated for all loops

within the phase.

A loop with small |Li| will have windows comprising of a large number of iterations. If |Li|

is greater than minimum Phase length, every iteration forms a window. If |Li| is well beyond

minimum Phase length, we can use code structure analysis to break it into smaller phases. The

cycles taken by code preceding loop L of phase P, if any, is added separately.

Figure 6.4 describes necessary modifications made to Simplesim-3.0 to generate PC signa-

tures. At the end of a program run, we have a trace consisting of |L|
x

such signatures, where |L|

is the loop iteration count of L. The modified simulator code does not impact execution cycles

of the program as PC values are read off the pipeline and processed in parallel. In the worst

case, for every 50 instructions executed, a trace comprising of 6 words, is emitted out and the

4-word hash table is reset.

An integer vector that stores occurrences of each PC encountered would be more accurate

to represent path information of every window, instead of the existing bitmap. But that would

clearly not scale with x and would lead to huge traces. The bitmap is imprecise as we shall

now see with an example.

Example: In Figure 6.2, assume the inner loop executes 18 instructions when the if-condition

evaluates to true and 10 instructions when it evaluates to false. Let window size, x be 4

iterations. Consider two such windows W1 and W2. Assume in W1: if-condition is true once

and false three times. In W2, if-condition was true three times and false once. The PCbitmap

will be identical in both cases but IC(W1) = 18 × 1 + 10 × 3 = 48. IC(W2) = 18 × 3 + 10
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Figure 6.4: Simulator code to implement trace collection for each window of loop L of phase P

× 1 = 64. Hence IC serves to store extra information without bloating the trace.

Although seeming imprecise, the combination of IC and PCbitmap is observed to be sufficient

to isolate high CPI variations in most cases.

Trace Compression

Lengthy program runs can produce megabytes of trace. But they are easily compressible owing

to the repetitive nature of phases. A large number of consecutive windows have identical PC

signatures which can be compressed(Figure 6.5). We look for consecutive triples that repeat to
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Figure 6.5: Signature trace of a single run of Bubble sort and its compressed version.

compress them. The time complexity of the compression algorithm is linear to the trace size.

Trace Classification

A one-to-one correspondence is observed between <PCbitmap, IC> and CPI in the trace for

program Bubble sort (Figure 6.5), which is observed in other benchmarks as well. This happens

because CPI is largely determined by the instructions that execute [39]. Based on this, we

define a sub-phase as a unique pair of <PCbitmap, IC> values. All windows with the same

<PCbitmap, IC> value belong to one sub-phase. For each such sub-phase, new confidence

intervals are computed by applying Chebyshev-Cantelli inequality on CPI samples pertaining

to that sub-phase.

The time taken by the classification algorithm is O(m × n), where m is the number of

unique <PCbitmap, IC> pairs (sub-phases) and n is the number of entries in the compressed

trace. On an average, number of sub-phases, m, detected for benchmarks used in this thesis is

around 8 on all PISA architectures considered even if number of windows for some benchmarks

go upto a few thousands. The size of compressed trace obtained across all inputs for a program,

n, ranges from 2 MB to 2.7 GB. The average sub-phase size observed across all benchmarks is

79 resulting in an average instrumentation overhead of 1.26%.

6.4.2 Refinement Based on CPI Variance

In spite of refinement based on PC signature, certain sub-phases continue to exhibit high

variance of CPI. Hence we add another level of refinement wherein the user can control the

variance of CPI within the sub-phase. The classification will now be based on <PCbitmap,
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IC, CPI-range>. The procedure repeatedly splits the sub-phase until the CPI values fall in

the desired range giving rise to variance well within the specified limit(Figure 6.6)2. The time

complexity of Split is O(n × log(n)), where n is the number of entries in sub-phase CPI file.

The overall time complexity of the refinement procedure is O(m × n × log(n)) where m is the

number of original sub-phases.

Figure 6.6: Algorithm to refine sub-phase based on CPI variance.

6.4.3 WCET Estimation Using Sub-Phases

A phase represents a static code region. Whereas a sub-phase represents a group of consecutive

loop iterations. Every single loop iteration is included in the analysis. Sub-phases do not

overlap as each of them represent a different group of loop iterations. In order to estimate

WCET in terms of sub-phases, Eq.(6.2) has to be suitably modified. Different phases can

2The term Chebyshev bounds used in Figure 6.6 refers to Chebyshev-Cantelli bounds
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occur on execution with different inputs[11]. The same holds for sub-phases. The set of sub-

phases that occur for a particular program run with input i forms a sub-phase sequence Si.

Note that we are not interested in the exact order in which sub-phases occur. We only need

the frequency of occurrence of each sub-phase. A sub-phase sequence (Si) obtained with input

i, takes the form of an integer vector, [si.0, si.1, ... , si.sp] where sp is the total number of

sub-phases appearing across all inputs. si.j indicates the number of times sub-phase j occurs

in the execution run of program with input i. Among two sequences, Sa and Sb, obtained with

inputs a and b, such that sa.m ≥ sb.m ∀ m = {0,..,sp}, we include only Sa. The number of

unique sub-phase sequences that can occur range from 1 to upto a few hundred.

The CPI for each sub-phase possible, j, is bounded within limits for a particular proba-

bility value, p using Chebyshev-Cantelli inequality as discussed in the earlier sections to give

PrCPIj.p for a probability p. The probabilistic WCET of each sub-phase , j, for a probability

p, is bounded as

WCETj.p ≤ WICj × PrCPIj.p (6.28)

Where, WICj is the theoretical upper bound on IC of sub-phase, j. Since a sub-phase represents

x iterations of a loop, L, WICj is computed as the maximum number of instructions executed

per iteration of that loop L multiplied by x.

A phase is constituted of a number of sub-phases. The entire program is composed of a

number of phases. However, depending on program structure, we can obtain multiple sub-phase

sequences wherein each sub-phase sequence is associated with a corresponding probabilistic

WCET. Hence for each unique sub-phase sequence, Si, we calculate the weight of each sub-

phase, m, occurring in that sequence as,

wm =
si,m

Σj∈{0,..,sp}si,j

And consequently, probabilistic WCETi of the whole program for sequence Si, is bounded as

described in section 6.3 as,

WCETi ≤ Σj∈{0,..,sp} (wj × SWW × WICj × (µj + k × σj) ) (6.29)
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Where, SWW is the theoretical upper bound on the number of windows or sub-phases possible

for a given loop making up a program phase. µj and σj are the sample mean and square root

of sample variance of CPI of sub-phase j occurring in sequence i. SWW is estimated as

SWW =
|L|

x

Where, |L| denotes the loop bound of L, x denotes the number of iterations per window con-

sidered as a sub-phase.

The probabilistic WCET over all possible sub-phase sequences, s, is estimated as,

WCET = max(WCET1, ....,WCETs) (6.30)

6.4.4 Context Sensitivity

An analysis of a program fragment is said to be context sensitive if it takes into account the

context in which the fragment appears. Context sensitive analysis has been observed to improve

precision of WCET analysis significantly[73]. Context sensitive analysis is typically applied for

procedures and loops. In this thesis, we treat a procedure appearing in two different contexts as

two different procedures. Since we group iterations as sub-phases and encode path information

taken in these iterations in the form of a PC signature, we can now distinguish loop iterations

by considering them as sub-phases based on the PC bitmap and IC values. Also, it is observed

that the first iteration of a loop takes more time to execute (greater CPI) than rest of the

iterations[54, 73]. Hence we treat the first window (that includes the first iteration) of a loop

as a separate sub-phase.

6.5 Evaluation

All our experiments are performed on benchmarks taken from Mibench and Mälardalen stan-

dard WCET project benchmark suite as mentioned in Chapter 3 for Simplest, Inorder complex

and complex architectures inorder to compare the estimates with that of Chronos, the open

source static WCET analyzer. The benchmarks are compiled to MIPS PISA binaries with -O2

-static flags inorder to be compared with Chronos. Simplescalar Version 3.0 is used to obtain

CPI samples and generate traces of PC signatures with modifications described in section 6.4.1
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for comparison on PISA architectures.Input selection is done with the criterion of adequate

structural coverage of the program and with the widest possible range of data as described in

section 3.2 of chapter 3. Each (benchmark, input) pair is executed with a minimum of 500

different inputs multiple number of times to model different initial states [9] to see that atleast

one million CPI samples per phase are generated. Invalid inputs and inputs that terminate

execution early are not considered for analysis. In the next section, we shall compare our

technique with RapiTime, which is a commercial measurement based WCET analysis tool,

which also gives probabilistic WCET estimates. More details about RapiTime and it’s usage

are described in the Appendix.

6.5.1 Impact of Coefficient of Variation of CPI on Probabilistic Upper Bound

of CPI

Chebyshev-Cantelli inequality yields tight CPI bounds for phases that exhibit low CoV(CPI) as

can be seen from Figures 6.7, 6.8 and 6.9 which plot PrCPIp at p={0.9, 0.95, 0.99}, normalized

to mean CPI, for all program phases on Simplest, Inorder complex and complex respectively.

However, applying the inequality directly to phases like Mat P2 (Inorder complex and complex )

and Nsch with high CoV(CPI) results in pessimistic upper bounds of CPI, as can be seen from

Figures 6.7, 6.8 and 6.9. Hence we need to refine such phases into smaller sub-phases. This

will reduce CPI variance within a sub-phase and help yield tighter CPI bounds.

6.5.2 Impact of Refinement on Coefficient of Variation of CPI

We now compare sub-phases obtained using refinement based on unique <PCBitmap, IC>

pairs with the corresponding unrefined phase based on their coefficient of variation of CPI.

Figures 6.10, 6.11 and 6.12 group sub-phases into four categories as shown. Lms (Simplest

architecture) and Janne complex are not shown as they exhibit very low variance of CPI even

without refinement. The proportion of sub-phases falling in each of the four categories for all

architectures is summarized in Table 6.1. The results indicate that refinement based on PC

signature successfully brings down the coefficient of variation of CPI for all three architectures.

However, there are many sub-phases that continue to exhibit high CoV(CPI) post refinement

as can be observed from the figures. Such sub-phases are further refined into smaller sub-phases

based on CPI variance as outlined in Section 6.4.2.
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Figure 6.7: Ratio of probabilistic CPI upper bound to mean CPI at p={0.9, 0.95, 0.99} on
Simplest architecture.

Table 6.1: Average proportion of sub-phases falling in all four categories on all PISA architec-
tures.
Architecture 0% < Var < 25% 25% < Var < 50% 50% < Var < 75% Var > 75%
Simplest 84.85 1.5 1.62 12.03
Inorder complex 60.53 6.3 8.89 24.28
Complex 53.89 11.52 5.63 28.96

6.5.3 Accuracy of WCET

In this section, we evaluate the pessimism of WCET estimated using probabilistically bounded

CPI at three different probability values p={0.9, 0.95, 0.99} on all PISA architectures. We also

compare the pessimism of WCET at p=0.99 with the estimate made by Chronos. It is to be

noted that the estimate given by Chronos is an absolute WCET estimate, whereas the estimate

we compute in this chapter is probabilistic and depends on the probability at which we compute

it. Figure 6.13 plots the ratio of estimated WCET to maximum observed cycles (Pessimism in

the WCET estimate) observed when the proposed phases/sub-phases are used for p={0.9, 0.95,

0.99} for some of the programs. Unrefined.architecture and Refined.architecture bars represent

the pessimism observed using unrefined phases and phases refined based on PC signature

respectively for a particular architecture. The 50per-ref.architecture, 10per-ref.architecture,

5per-ref.architecture and 1per-ref.architecture bars indicate pessimism in WCET obtained using

refined sub-phases with variance of CPI limited at {50%, 10%, 5% and 1%} of CPI variance

of original sub-phase respectively on a particular architecture. Simplest, Inorder complex and
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Figure 6.8: Ratio of probabilistic CPI upper bound to mean CPI at p={0.9, 0.95, 0.99} on
Inorder complex architecture.

complex architectures are abbreviated using sim, inc and com respectively in these figures.

It can be observed in figure 6.13 that, the pessimism in WCET estimates obtained us-

ing unrefined CPI values, at the three probability values are quite apart from each other at

p = 0.99. The large difference stems out of large variance in CPI and is undesirable as it re-

sults in pessimistic WCET estimates with increasing p. The difference however decreases as

the phase is refined further and further. This trend applies for all other programs across all

three PISA architectures. On Simplest architecture, which does not have a data cache, the

difference quickly subsides either after refinement based on PC signature or the phase is re-

fined to contain samples whose variance is limited to 50% of the variance of the original phase.

On Inorder complex and Complex which have both instruction and data caches and complex

branch prediction schemes, additional levels of refinement are required for the difference in

pessimism of WCET to decrease.

Figures 6.14, 6.15 and 6.16 compare the pessimism of probabilistic WCET estimated at

p=0.99 with the estimate made by the static WCET analysis tool, Chronos, on Simplest,

Inorder complex and Complex respectively. The missing bars for Chronos for some programs on

Inorder complex and Complex architectures indicate that Chronos either gives a segmentation

fault during analysis or goes out of memory. Benchmarks like Lms(Simplest), Janne complex

exhibit very low CPI variance as it is without any refinement. As a result, the WCET estimates

are very precise (within 1% of maximum observed cycles) as shown in these figures. Benchmarks
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Figure 6.9: Ratio of probabilistic CPI upper bound to mean CPI at p={0.9, 0.95, 0.99} on
Complex architecture.

like Bezier exhibit low variance in CPI post refinement based on signature. Other benchmarks

like Bitcount, Bubble sort etc exhibit high variance in CPI when their phases are unrefined.

However, as the phases are more and more refined, the pessimism of their estimates also

improve.

Table 6.2 summarizes the reduction in pessimism due to various levels of refinement, the

average pessimism of all refined estimates and the average improvement observed in the WCET

estimate compared to that of Chronos. On all architectures, refinement based on PC signature

results in an improvement in pessimism in the range of 22-26%. The improvement is larger with

more levels of refinement. The average improvement in WCET estimate obtained by refinement

based on PC signature at p=0.99 on Simplest architecture is 9.1%. It improves to 12.9% when

the sub-phase is refined to contain samples that have half variance in CPI compared to the

original sub-phase. Subsequent improvements on further refinement are marginal. The CPI

values on Simplest architecture are more regular and hence variance quickly settles with 50-per

refinement.

The average improvement in WCET estimate obtained by refinement based on PC signature

at p=0.99 on Inorder complex architecture is 23.1%. Subsequent levels of refinement improves

the estimate further by 38.1%, 39.8%, 41.5% and 42.7%. A similar trend is observed in Com-

plex architecture, where the average improvement in WCET estimate obtained by refinement

based on PC signature at p=0.99 is 32.9%. And subsequent levels of refinement pushes the
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Figure 6.10: Simplest: Percentage breakup of sub-phases based on CoV(CPI).

improvement to 46.1%, 47%, 50.5% and 52.1%. In both architectures, CPI variation is more

scattered compared to Simplest architecture and refinement based on CPI helps control the

pessimism to a good extent.

Figure 6.17 plots the level of refinement needed to reach a point of zero CPI variance in

every sub-phase of the benchmark. Zero variance implies a constant pessimism in WCET

irrespective of the probability at which it is computed. The benchmarks falling under the black

line have accurate WCET estimates either without refinement or when refined based on PC

signatures alone and hence not considered for refinement based on CPI variance. Bubble sort,

Bitcount, Cnt, Dijkstra and many other benchmarks continue to show variance in CPI even

beyond a point when CPI variance is limited to 1% of CPI variance of the original sub-phase.

With CPI variance of a sub-phase limited to 50% of original sub-phase CPI variance, 12 out

of 18 benchmarks reach the point of maximum WCET accuracy on Simplest architecture. On

Inorder complex and Complex architecture, only 6 out of 18 benchmarks reach the point of

maximum WCET accuracy when CPI variance of a sub-phase is limited to 50% of original

sub-phase CPI variance.
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Figure 6.11: Inorder complex: Percentage breakup of sub-phases based on CoV(CPI).

6.5.4 Impact of Refinement on Number of Sub-phases

Refinement splits a phase into smaller sub-phases based on PC signature. When a sub-phase

is refined based on CPI variance, many more smaller sub-phases are generated. Figures 6.18,

6.19 and 6.20 plot the increase in number of sub-phases due to refinement based on PC signa-

ture(indicated by Refined and refinement based on CPI variance (50-per, 10-per, 5-per, 1-per).

Number of sub-phases reaches a saturation point for 95.3% of phases by the time CPI variance

of a sub-phase is limited to half the CPI variance on Simplest architecture. On Inorder complex

architecture, 55.8% of phases reach saturation point with respect to number of sub-phases when

CPI variance is limited to half the original CPI variance. On Complex architecture, the number

of phases that reach saturation point decreases to 54.8%. The reason is the increase in com-

plexity of the architecture from Simplest to Complex leading to more scattered CPI variation

within a phase.
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Figure 6.12: Complex: Percentage breakup of sub-phases based on CoV(CPI).

6.5.5 Compression

Table 6.3 compares the average sizes of trace obtained across all inputs before and after com-

pression on both architectures. The highest compression factor observed is 24.8 on Simplest

architecture as CPI patterns are more regular. The compression factor on Inorder complex and

Complex reduces to 14.6 and 14.9 respectively.

6.5.6 Impact of Refinement on Number of Samples

The process of refinement based on signature involves forming sub-phases by classifying the

CPI samples into various categories depending on their PC signatures. Refinement based on

CPI variance further forms smaller sub-phases out of the existing sub-phases by limiting the

CPI samples to a particular variance value. Naturally, the sample size reduces with every level

of refinement which is what is depicted in Figures 6.21, 6.22 and 6.23. Since variance of mean

is inversely proportional to the number of samples, a large sample set is desirable. Hence in

our experiments we select inputs which will result in atleast a million samples such that we

are left with a few thousand samples at the maximum level of refinement. The maximum
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Table 6.2: Impact of Refinement on pessimism of WCET and comparison with Chronos.
p 100-per 50-per 10-per 5-per 1-per

(Simplest)
% Reduction in pessimism compared to unrefined WCET

0.9 16.75 17.5 17.5 17.55 17.55
0.95 18.7 19.8 19.8 19.9 19.9
0.99 24.8 27.1 27.2 27.2 27.2

% Average Pessimism of all refined estimates

0.9 26.5 24.3 24.3 24.3 24.3
0.95 28.7 24.8 25.8 25.8 25.8
0.99 38 26.8 26.8 26.8 26.8

% Improvement in accuracy compared to Chronos

0.99 9.1 12.9 13.1 13.1 13.1
(Inorder complex)

% Reduction in pessimism compared to unrefined WCET

0.9 16.9 22.9 23.4 24.2 24.7
0.95 18.3 26.6 27.2 28 28.5
0.99 22 35.9 36.9 38.1 38.7

% Average Pessimism of all refined estimates

0.9 47.2 33.7 32.1 29.2 27.2
0.95 56.8 35.5 33.3 30 27.8
0.99 96.9 43.7 38.8 33.5 30.4

% Improvement in accuracy compared to Chronos

0.99 23.1 38.1 39.8 41.5 42.7
(Complex)

% Reduction in pessimism compared to unrefined WCET

0.9 17.2 23.3 23.6 25.1 25.5
0.95 21.3 28.2 28.7 30.3 30.7
0.99 26.3 38.4 39.3 41.1 41.6

% Average Pessimism of all refined estimates

0.9 52.3 36.7 36 29.2 27.3
0.99 63.6 38.9 37.8 30.3 28.1
0.99 210.7 48.9 46.2 35.2 31.9

% Improvement in accuracy compared to Chronos

0.99 32.94 46.1 47 50.5 52.1

level of refinement is defined as that point when any further refinement does not improve the

WCET accuracy. We saw about the maximum levels of refinement for all program phases in

Figure 6.17. Table 6.4 describes the initial total number of samples per unrefined phase and

the average number of samples per sub-phase of the maximum refined level.
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Figure 6.13: Pessimism in WCET estimate for all three probabilities on all PISA architectures
for Bezier, Bitcount, Bs and Bub.
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Figure 6.14: Comparison of Probabilistic WCET at p=0.99 with the corresponding estimate
by Chronos on Simplest architecture.
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Figure 6.15: Comparison of Probabilistic WCET at p=0.99 with the corresponding estimate
by Chronos on Inorder complex architecture.
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Figure 6.16: Comparison of Probabilistic WCET at p=0.99 with the corresponding estimate
by Chronos on Complex architecture.

Figure 6.17: Amount of refinement required to reach zero variance in CPI within a sub-phase
on all PISA architectures.
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Figure 6.18: Impact of refinement on number of sub-phases on Simplest architecture.

Figure 6.19: Impact of refinement on number of sub-phases on Inorder complex architecture.
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Figure 6.20: Impact of refinement on number of sub-phases on Complex architecture.

Figure 6.21: Impact of refinement on number of samples on Simplest architecture.
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Table 6.3: Average trace size across inputs before and after compression.
Phase Trace size Trace size Compression Factor

before compression after compression

Sim Inc Com Sim Inc Com Sim Inc Com

Bez P1 1.6M 1.6M 1.6M 68K 88K 88K 24:1 19:1 19:1
Bez P2 52M 52M 52M 304K 471K 444K 175:1 116:1 120:1
Bit P1 20K 20K 20K 16K 16K 16K 1.25:1 1.25:1 1.25:1
Bit P2 24K 24K 24K 12K 16K 16K 2:1 1.5:1 1.5:1
Bit P3 24K 24K 24K 16K 16K 16K 1.5:1 1.5:1 1.5:1
Bit P4 24K 24K 24K 4K 4K 4K 6:1 6:1 6:1
Bit P5 28K 28K 28K 4K 4K 4K 7:1 7:1 7:1
Bit P6 24K 24K 24K 4K 4K 4K 6:1 6:1 6:1
Bit P7 24K 24K 24K 4K 4K 4K 6:1 6:1 6:1
Bs 4K 4K 4K 4K 4K 4K 1:1 1:1 1:1
Bub 40M 42M 42M 8.8M 32M 32M 4.6:1 1.3:1 1.3:1
Cnt P1 160K 160K 160K 20K 24K 24K 8:1 6.7:1 6.7:1
Cnt P2 192K 192K 192K 20 28K 28K 9.6:1 6.8:1 6.8:1
Crc P1 16K 16K 16K 12K 16K 16K 1.3:1 1:1 1:1
Crc P2 364K 364K 364K 4K 364K 364K 91:1 1:1 1:1
Dij 2.4M 2.9M 1.4M 1.7M 2.6M 1.4M 1.4:1 1.14:1 1:1
Edn P1 4K 4K 4K 4K 4K 4K 1:1 1:1 1:1
Edn P2 4K 4K 4K 4K 4K 4K 1:1 1:1 1:1
Edn P3 28K 28K 28K 8K 8K 8K 3.5:1 3.5:1 3.5:1
Edn P4 20K 20K 20K 8K 8K 12K 2.5:1 2.5:1 1.6:1
Edn P5 4K 4K 4K 4K 4K 4K 1:1 1:1 1:1
Edn P6 4K 4K 4K 4K 4K 4K 1:1 1:1 1:1
Edn P7 4K 4K 4K 4K 4K 4K 1:1 1:1 1:1
Fft P1 788K 788K 788K 4K 788K 788K 197:1 1:1 1:1
Fft P2 2.7M 3M 3M 428K 652K 548K 6.4:1 4.7:1 5.6:1
Fir 20K 20K 20K 4K 20K 20K 5:1 1:1 1:1
Ins 23M 22M 25M 284K 420K 416K 82.9:1 53.6:1 61.5:1
Jan 1.1M 1.1M 1.1M 4K 4K 4K 281.6:1 281.6:1 281.6:1
Lms 60K 56K 56K 4K 56K 56K 15:1 1:1 1:1
Lud P1 172K 172K 172K 20K 20K 20K 8.6:1 8.6:1 8.6:1
Lud P2 12K 12K 12K 12K 12K 12K 1:1 1:1 1:1
Lud P3 212K 212K 212K 20K 24K 24K 10.6:1 8.3:1 8.3:1
Lud P4 208K 208K 208K 20K 24K 24K 10.4:1 8.7:1 8.7:1
Mat P1 696K 696K 696K 36K 48K 48K 19.3:1 14.5:1 14.5:1
Mat P2 83M 83M 83M 3.6M 5.2M 5.2M 23.6:1 16.3:1 16.3:1
Minv P1 180K 180K 180K 20K 24K 24K 9:1 7.5:1 7.5:1
Minv P2 4K 4K 4K 4K 4K 4K 1:1 1:1 1:1
Minv P3 12K 8K 12K 12K 8K 12K 1:1 1:1 1:1
Minv P4 12K 12K 12K 12K 12K 12K 1:1 1:1 1:1
Minv P5 180K 180K 180K 20K 28K 24K 9:1 6.4:1 7.5:1
Minv P6 79M 79M 79M 3.5M 5M 5M 23.1:1 16.1:1 16.1:1
Nsch 4K 4K 4K 4K 4K 4K 1:1 1:1 1:1
Ndes 120K 120K 120K 76K 76K 76K 1.6:1 1.6:1 1.6:1
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Figure 6.22: Impact of refinement on number of samples on Inorder complex architecture.

Figure 6.23: Impact of refinement on number of samples on Complex architecture.
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Table 6.4: Initial number of samples and number of inputs prior to refinement.
Phase Number of Inputs Number of samples prior Number of samples post

to refinement maximum refinement
Simplest Inorder complex Complex

Bez P1 500 2.9e+7 2.9e+7 2.9e+7 2.9e+7
Bez P2 500 5.01e+8 2.9e+7 2.9e+7 2.9e+7
Bit P1 10500 5.2e+6 8.1e+4 4.8e+4 3.6e+4
Bit P2 10500 5.2e+6 3.1e+5 1.2e+5 1.07e+5
Bit P3 10500 5.2e+6 8.1e+4 6.8e+4 2.4e+5
Bit P4 10500 5.2e+6 5.2e+6 5.2e+6 5.2e+6
Bit P5 10500 5.2e+6 5.2e+6 5.2e+6 5.2e+6
Bit P6 10500 5.2e+6 5.2e+6 6.2e+4 8.7e+5
Bit P7 10500 5.2e+6 5.2e+6 5.2e+6 5.2e+6
Bs 10500 1.5e+5 5.01e+4 3.5e+4 3.5e+4
Bub 500 5.4e+8 5.4e+7 5.3e+6 1.2e+5
Cnt P1 10500 5.4e+7 1.6e+6 1.09e+7 1.3e+7
Cnt P2 10500 5.2e+7 2.2e+6 8.3e+4 8.4e+5
Crc P1 10500 2.6e+6 2.9e+5 6.7e+4 9.8e+4
Crc P2 10500 4.1e+6 2.04e+6 1.02e+6 1.02e+6
Dij 500 1.6e+7 6.9e+5 8.3e+4 7.3e+4
Edn P1 10500 3.8e+5 3.8e+5 3.8e+5 3.8e+5
Edn P2 10500 3.8e+5 3.8e+5 3.8e+5 3.8e+5
Edn P3 10500 6.5e+5 2.1e+6 2.1e+6 1.6e+6
Edn P4 10500 7.9e+5 2.6e+5 2.6e+5 2.6e+5
Edn P5 10500 3.1e+5 3.1e+5 3.1e+5 3.1e+5
Edn P6 10500 3.1e+5 3.1e+5 3.1e+5 3.1e+5
Edn P7 10500 3.1e+5 1.03e+5 7.7e+4 1.01e+5
Fft P1 500 8.1e+6 8.1e+6 4.08e+6 4.08e+6
Fft P2 500 2.8e+7 5.7e+6 8.01e+5 2.2e+6
Fir 2000 7.9e+5 2.3e+4 2.3e+4 2.2e+4
Ins 500 4.1e+6 1.9e+6 2.12e+5 1.12e+5
Jan 500 1.2e+7 1.2e+7 1.2e+7 1.2e+7
Lms 600 4.9e+5 4.9e+5 2.5e+5 2.5e+5
Lud P1 3000 2.5e+6 1.2e+6 6.3e+5 4.9e+4
Lud P2 3000 6.09e+5 8.7e+4 6.7e+4 8.6e+4
Lud P3 3000 1.1e+7 2.5e+6 1.6e+6 1.2e+6
Lud P4 3000 1.8e+6 4.6e+5 2.6e+5 2.06e+5
Mat P1 500 1.01e+7 2.5e+6 1.4e+6 1.4e+6
Mat P2 500 7.4e+7 2.4e+7 1.3e+7 1.02e+7
Minv P1 10500 6.2e+7 3.1e+7 2.1e+7 1.6e+6
Minv P2 10500 2.8e+6 2.8e+6 2.8e+6 2.8e+6
Minv P3 10500 2.4e+6 8.02e+5 3.7e+4 1.3e+4
Minv P4 10500 1.01e+6 5.4e+5 4.4e+5 6.3e+5
Minv P5 10500 7.2e+7 1.2e+7 1.8e+7 1.2e+7
Minv P6 10500 9.6e+8 3.2e+8 5.5e+6 1.2e+6
Nsch 4302 1.3e+5 1.9e+4 1.8e+4 1.6e+4
Ndes 500 9.1e+5 3.02e+5 1.8e+5 1.03e+5
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6.6 Comparison with RapiTime

In this section, we shall compare our phase based technique with the commercial measurements

based WCET analyzer, RapiTime[102] Since both RapiTime and our techniques are measure-

ment based, the comparisons are made with respect to various parameters such as accuracy of

WCET estimate, number of instrumentation points and the time taken for estimating WCET.

RapiTime is configurable to use an ARM simulator (Simit-ARM-2.1) underneath to generate

time measurements. For our experiments we use the same simulator to generate CPI samples.

We modify the simulator as described in section 6.4.1 to generate PC signatures during exe-

cution of the program. The architectural configuration used in case of the ARM simulator is

described in Table 6.5. In the case of RapiTime, measurements may be taken by instrumenting

the program at a very fine level such as the basic block level, referred to as FULL instrumen-

tation. Alternatively measurements may also be taken at a much coarser level referred to as

START OF SCOPES. RapiTime also supports taking measurements at the level of functions

but these measurements are observed to result in inaccurate WCET estimates. Hence we use

only FULL and START OF SCOPES instrumentation levels for comparison. More particulars

regarding usage aspects of RapiTime can be found in the Appendix.

The FULL instrumentation level is finer than START OF SCOPES instrumentation level

and is observed to result in more accurate WCET estimates as we shall see. Inorder to

make a fair comparison with RapiTime on two instrumentation levels- fine(FULL) and coarse

(START OF SCOPES), we likewise obtain measurements of CPI samples at two window sizes-

w1 and w2, such that w2 = 2 × w1 and compare estimates obtained using w1 with FULL

and estimates obtained using w2 with START OF SCOPES. Since RapiTime also generates

probabilistic estimates, we generate estimates for RapiTime and our technique using the same

probability values p={0.9, 0.95 and 0.99} and compare the estimates.

6.6.1 Accuracy of WCET

We begin with comparing the accuracies of WCET obtained by phase based technique and

SimIt-ARM-2.1 L1 16KB 32-way set associative Instruction cache,
8KB 32-way set associative data cache

Table 6.5: Architectural configurations used for experimentation.
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RapiTime. The higher the pessimism in the WCET estimate (difference between WCET esti-

mate and maximum observed cycles), the lower is the accuracy of the WCET estimate. Unsafe

estimates that are lesser than observed maximum cycles are considered to be inaccurate. Fig-

ures 6.24 to 6.28 plot the pessimism of WCET using phase based technique at two window

sizes w1, w2 and RapiTime at two instrumentation levels- START OF SCOPES and FULL.

Figure 6.24: Comparison of pessimism in WCET estimate using RapiTime and phase based
technique for Bezier,Bitcount, Bs and Bubble sort.

From Figure 6.24, it can be seen that RapiTime estimates WCET with greater accuracy

for Bitcount compared to the phase based technique. The reason is that Bitcount is composed

of various phases, some of which have very high variation in CPI. Hence unrefined estimates

and refined estimates obtained on basis of signature are more pessimistic than the RapiTime

counterparts. However, with additional refinement based on CPI values, they come very close

to each other. Since Bezier exhibits a stable CPI variation, the phase based WCET analyzer
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performs better than RapiTime. It can be observed from figure 6.6.1, that probabilistic WCET

estimate obtained using RapiTime, at p={0.9, 0.95} is unsafe. At p=0.99, the pessimism

jumps to 1.7. The corresponding probabilistic WCET estimates given out by the phase based

technique is much more uniform as it is determined by CPI variation which has a lower variance

compared to variance in execution count frequencies that is incorporated by RapiTime in its

probabilistic model.

Figure 6.25: Comparison of pessimism in WCET estimate using RapiTime and phase based
technique for Cnt,Crc, Dij and Edn.

For most programs, refinement based on limiting CPI variance to 50% of CPI variance of

sub-phases obtained by refinement based on PC signatures is observed to be either close to or
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more accurate than RapiTime. Dijkstra is an exception as can be observed from Figure 6.25,

which requires higher levels of refinement to match the accuracy obtained using RapiTime.

It can also be observed that estimates obtained using a higher window size (w2) saturate

quickly compared to those obtained using w1. The reason is that as instrumentation granularity

increases in the phase based technique, CPI variation becomes a lot more smoother[41]. In figure

6.26, we observe that the pessimism in WCET estimation by RapiTime for Janne complex is

highly pessimistic. Janne complex has a two level nested loop and the entry to the inner loop

is controlled by value of data variables that are modified within the program. By running the

program with an exhaustive set of inputs it is observed that the inner loop is very sparsely

visited. At present there is no way of annotating this information in RapiTime. A new feature

in RapiTime which can convey this information as an annotation will greatly improve the

pessimism in WCET. For this reason, we do not include Janne complex in our comparison of

average pessimism in WCET estimate over all benchmarks seen in RapiTime versus the phase

based WCET analyzer.

Figure 6.29 depicts the average pessimism in WCET estimated over all benchmarks using

RapiTime and phase based WCET analyzer using START OF SCOPES instrumentation and

window size w2 respectively. At this instrumentation level, using even unrefined estimates show

improvement over RapiTime. At p=0.99, WCET estimated using unrefined CPI is 7% better

than RapiTime. Subsequent levels of refinement shows an improvement of 36.6%, 49.5%, 50.8%,

51.4% and 51.4% over RapiTime. The reason is START OF SCOPES instrumentation level

yields very pessimistic estimates for certain benchmarks as it is a coarse level of instrumentation.

Figure 6.30 depicts the average pessimism in WCET estimated over all benchmarks using

RapiTime and phase based WCET analyzer using FULL instrumentation and window size w1

respectively. From the figure it can be observed that, RapiTime estimates using FULL instru-

mentation is much more accurate than START OF SCOPES instrumentation. At p=0.9 and

0.95, estimates obtained by refinement based on signature are more accurate than RapiTime.

At p=0.99, estimates obtained using refinement based on signature lag behind RapiTime by

10.6%. However further refinement based on CPI variance limiting COV of CPI to 50% and

10% of original CPI variance improves pessimism by 18% and 32% compared to RapiTime. Im-

provement on further refinement is marginal and is more pronounced at p=0.99 than at lower

probability values. While there is a large disparity between the estimates made by RapiTime
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Figure 6.26: Comparison of pessimism in WCET estimate using RapiTime and phase based
technique for Fft,Fir, Insertion sort and Janne complex.

at two different instrumentation levels, the estimates are not largely different at the two win-

dow sizes used by the phase based WCET analyzer. The reason is that the repetition of CPI

variation within a phase ensures the preservation of phase behavior at higher window sizes.

6.6.2 Number of Instrumentation Points

In this section, we shall compare the average number of instrumentation points used in RapiTime

with FULL and START OF SCOPES instrumentation with w1 and w2 levels of instrumenta-

tion used in the phase based WCET analyzer taken across all programs. Figure 6.31 plots the
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Figure 6.27: Comparison of pessimism in WCET estimate using RapiTime and phase based
technique for Lms,Lud, Matmul and Minv.

number of instrumentation points used on an average for all configurations used as shown.

With a window size of w1, unrefined estimates require only 4.5% of the instrumentation

points employed by RapiTime FULL instrumentation. With a window size of w1, refined esti-

mates require 12% of the instrumentation points employed by Rapitime FULL instrumentation.

With a window size of w2, unrefined estimates require only 5.22% of the instrumentation points

employed by RapiTime SCOPES instrumentation. With a window size of w2, refined estimates

require 10.3% of the instrumentation points employed by Rapitime START OF SCOPES in-

strumentation.
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Figure 6.28: Comparison of pessimism in WCET estimate using RapiTime and phase based
technique for Nsch and Ndes.

The phase based WCET analyzer uses the property of phase behavior and CPI homogene-

ity and can hence capture CPI information accurately by using only a small fraction of the

instrumentation points otherwise required by conventional measurement based WCET analyz-

ers like RapiTime and make accurate estimates that come very close to the accuracy achieved

by RapiTime and in some programs that display stable CPI, even better. This way, program

phase behavior helps build a non-intrusive WCET analyzer whose performance compares well

with a commercial WCET analyzer such as RapiTime.

6.6.3 Time to Estimate WCET

Figure 6.32 compares the time taken by our phase based WCET analyzer at window size,

w2 with the corresponding time taken by RapiTime at START OF SCOPES instrumentation

granularity for all the programs. The time taken by the phase based technique is normalized

with respect to the RapiTime counterpart as shown. Compared to START OF SCOPES, the

time to analyze unrefined phases taken by the phase based WCET analyzer is on an average

only 1/10 that of RapiTime. The amount of processing involved in the case of unrefined phases

is minimal as only Chebyshev-cantelli bounds need to be computed. The analysis time using

estimates obtained based on refinement with respect to signature is still about 3/4ths that of

RapiTime. But additional levels of refinement based on CPI variance increases the analysis time

further compared to RapiTime. Refinement to allow CPI variance of a sub-phase to 50% that

of the original CPI variance leads to a 30% increase in analysis time compared to RapiTime.
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Figure 6.29: Average improvement in accuracy compared to RapiTime for both w2, w1 versus
START OF SCOPES, FULL.

Further refinement beyond this point increases analysis time of the phase based method only

marginally.

Figure 6.33 compares the time taken by our phase based WCET analyzer at window size,

w1 with the corresponding time taken by RapiTime at FULL instrumentation granularity for

all the programs. Similar to Figure 6.32, the time taken by the phase based technique is

normalized with respect to the RapiTime counterpart. Compared to FULL, the analysis time

using unrefined CPI taken by the phase based WCET analyzer is on an average about 1/7th

that of RapiTime. The analysis time using estimates refined based on signature is still only

about half of the time taken by RapiTime. Refinement to allow CPI variance of a sub-phase

to 50% of that of the original CPI variance increases the analysis time, but which continues

to be about 3/4ths of the time taken by RapiTime. Any further refinement beyond this point

increases analysis time of phase based method only marginally. The reason of higher analysis

time by RapiTime is due to large traces generated and the time spent in processing them.

6.6.4 Analysis Time versus Trace Size

Since both the phase based WCET analyzer and RapiTime are measurement based WCET an-

alyzers, both produce traces when the program is instrumented and executed. Trace analysis

time forms a major part of WCET analysis time. The most important factor that influences

trace analysis time is the trace size. Figures 6.34 and 6.35 plot the growth of analysis time
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Figure 6.30: Average improvement in accuracy compared to RapiTime (w1 versus FULL.)

with respect to trace size for START OF SCOPES and FULL instrumentation respectively.

The analysis time grows slowly in the case of START OF SCOPES compared to FULL instru-

mentation. The size of the trace generated by START OF SCOPES instrumentation is about

half of the size of trace generated by FULL instrumentation. The analysis time is observed to

be a direct function of uncompressed trace size in both cases.

Figures 6.36 and 6.37 plot the growth of analysis time using unrefined estimates with respect

to trace size for window size w1 and w2 respectively. The left Y-axis plots both the number

of instrumentation points and the trace size in bytes. The trace size generated using window

size w2 is about half the size of the trace generated using w1. The analysis time in our case

is not a direct function of the uncompressed trace size as it depends on several other factors

such as computation of theoretical upper bound on IC and phase detection time. The growth

of analysis time for both w1 and w2 are similar.

Figures 6.38 and 6.39 plot the growth of analysis time using estimates obtained using

refinement based on PC signature and CPI variance for window sizes w1 and w2 respectively.

The growth of analysis time is faster in case of refinement based on controlling CPI variance

compared to refinement based on PC signature. Once again, the analysis time is not a direct

function of trace size as analysis time is influenced by several other factors such as computation

of theoretical upper bound on IC and phase detection time.
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Figure 6.31: Average instrumentation points used in RapiTime and phase based WCET ana-
lyzer.

6.6.5 Scalability of Analysis Time

In the previous section, we looked at how analysis time grows with respect to trace size individ-

ually in the phase based WCET analyzer and RapiTime. In Figure 6.40, we plot the analysis

times of both the tools together versus the corresponding trace sizes to see how the individual

tools scale with increasing trace size. Since the analysis time is more dependent on the trace

size than on the instrumentation mode, we include numbers from both the instrumentation

granularities in this graph (FULL, START OF SCOPES, w1 and w2) in this graph.

Analysis time for unrefined estimates are too small to figure in this graph. Growth of

analysis time taken of the phase based WCET analyzer are similar to RapiTime upto 420MB

of trace. Beyond 420MB, analysis time by phase based WCET analyzer using refined estimates

based on signature and CPI variance overtakes RapiTime. The highest analysis time is taken

by Dijkstra- 40 minutes for refinement based on signature and 80 minutes for refinement based

on controlling CPI variance (limiting COV of CPI of subphase to 50% of original value). In

Chapter 8, we shall see that the analysis time can be reduced by parallelizing the process of

WCET analysis itself. Since the result of analysis of each phase is independent of the other,

they can be processed in parallel. This brings down the analysis time considerably.
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Figure 6.36: Growth of analysis time with trace size in case of phase based WCET analyzer
using unrefined phase(w1).
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6.7 WCET Analysis of DEBIE-1

All the results reported till now were based on WCET benchmarks created for purpose of

evaluating WCET analyzers and embedded benchmark suites. In this section, we shall evaluate

how our proposed WCET analysis technique performs with respect to a real-world benchmark,

DEBIE-1 (DEBris In orbit Evaluator)[106]. DEBIE-1 is a standard instrument for monitoring

space debris and meteoroids in near earth orbit. The onboard control software of DEBIE-1 was

adapted to serve as an industry standard benchmark to evaluate several WCET analysis tools

in the following way. DEBIE-1 was very hardware dependent in operation. It interacted with

a specific multi-threaded real-time kernel and had specific peripherals and memory layouts.

However, to let the program be tested on ordinary workstations during its development, the

hardware and kernel dependencies were hidden by #defines and modules that formed a basic

hardware abstraction layer (HAL) including also a kernel abstraction. The real DEBIE-1

benchmark was transformed into the debie1 benchmark by removing all hardware and kernel

specific components and adding a harness component. With much of the original code of

DEBIE-1 being retained, the HAL was changed to connect to the harness instead of the real

hardware and a real kernel. The software is written in C language. A copy of the software can

be requested from Tidorum[107].

The control software of debie1 comprises of six tasks[103]. In the real system, these tasks

are activated by interrupts and all of them have real-time deadlines. In debie1, the original

behavior is simulated as debie1 is single threaded. In this thesis, we have applied our technique

to estimate WCET for all of the six tasks. We have also conducted a similar experiment

using RapiTime and the comparison of the two techniques are presented. These six tasks

have featured in the WCET tool challenge[64], an event that happens once in every 3 years

and brings together WCET tool developers and researchers all over the world[104]. Further

information about the purpose of the tasks can be found in the WCET tool challenge wiki[104]

and the DASIA’2000 paper on DEBIE-1[103].

6.7.1 Accuracy of WCET

debie1 Task 1

Each of the six tasks of debie1 are associated with a root function that is to be analyzed for
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Figure 6.41: Comparison of Phase based technique and RapiTime for debie1 task 1.

WCET estimation. The root function of task 1 is TC InterruptService which is the telecom-

mand interrupt handler. Figure 6.41 describes the pessimism of WCET estimate obtained using

RapiTime with START OF SCOPES and FULL instrumentation and the proposed phase based

technique. RapiTime estimates with FULL instrumentation are more accurate and safer than

those obtained with START OF SCOPES instrumentation. At p=0.9 and p=0.95, the pes-

simism reported by phase based technique is lesser by 8% and 19% than RapiTime. However,

at p=0.99, the pessimism increases by 9% compared to RapiTime. The increased pessimism is

due to the fact that there is high CPI variation while the code pertaining to task 1 is executed.

Hence simple probabilistic inequalities like Chebyshev do not yield good results. The code base

pertaining to task 1a is very small and does not exhibit phase behavior. Hence CPI varia-

tion cannot be refined by creating sub-phases out of phases as we saw earlier. An alternative

way to reduce pessimism would be to gathering many more samples and use more complex

probabilistic inequalities more in line with the true distribution of samples.

debie1 Task 2

The root function of task 2 is TM InterruptService which is the telemetry interrupt han-

dler. Figure 6.42 describes the pessimism of WCET estimate obtained using RapiTime with

START OF SCOPES and FULL instrumentation and the proposed phase based technique.
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Figure 6.42: Comparison of Phase based technique and RapiTime for debie1 task 2.

RapiTime estimates with FULL instrumentation are more accurate and safer than those ob-

tained with START OF SCOPES instrumentation. At p=0.99, the pessimism reported by the

phase based technique is greater 17% compared to RapiTime. Task 1 and task 2 have very

similar properties and hence are not good candidates for phase behavior.

debie1 Task 3

The root function of task 3 is HandleHitTrigger which refers to handling a situation when one

of the four sensor units of the system registers a hit which is the impact of a particle of space

debris or a natural speck of solid material on the sensitive foil on the exterior face of the sensor

unit. Figure 6.43 describes the pessimism of WCET estimate obtained using RapiTime with

START OF SCOPES and FULL instrumentation and the proposed phase based technique.

It can be observed that the phase based technique reports very high pessimism compared to

RapiTime. The increased pessimism arises out of two factors. The code base of task 3 is

comprised of analog to digital conversion code, most of which comprise of polling loops that

run until conversion is finished. Hence computation of theoretical upper bound on IC assumes

that the loops iterate the maximum number of times, though in day to day operation this

is not the case. The second reason for the pessimism is the high variation of CPI which

can be refined as most of the code contains loops that exhibit phase behavior and we hence

apply refinement based on signature and CPI variation. With maximum level of refinement, at
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Figure 6.43: Comparison of Phase based technique and RapiTime for debie1 task 3.

p=0.99, the pessimism reported by the phase based technique is 89% higher than RapiTime with

FULL instrumentation. Since RapiTime applies probabilistic functions on observed maximum

frequency of basic blocks to compute the overall WCET estimate, it does not suffer from this

added pessimism. By exercising the program with a test input set that gives 100% coverage,

we could make our estimates better by using maximum observed instruction count instead of

using theoretical upper bound on IC.

debie1 Task 4

The root function of task 4 is HandleTelecommand which refers to the execution of telecom-

mands. Figure 6.44 describes the pessimism of WCET estimate obtained using RapiTime with

START OF SCOPES and FULL instrumentation and the proposed phase based technique. At

lower probability values, the results obtained using phase based technique with refined phases

and RapiTime are similar. At p=0.99, the phase based technique reports 24% more pessimism

than RapiTime. The root function for this task addresses execution of any telecommand in

any state. As a result, computation of theoretical upper on IC considers all possible cases and

ends up estimating a large value. Considering each type of telecommand separately can help

in obtaining tighter bounds.
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Figure 6.44: Comparison of Phase based technique and RapiTime for debie1 task 4.

debie1 Task 5

The root function of task 5 is HandleAcquisition. The acquisition task is responsible for reading

the non-volatile (digital) sensor data from the sensor unit, evaluating the reality and quality

of the hit event, and storing the event in the science data memory, an array of event records in

data memory. The science data memory has a finite buffer space. Hence if it is full and cannot

accomodate a new hit event, the acquisition task has to find the worst old event that can be

evicted out to find place for the new event. This process is time consuming. Figure 6.45 de-

scribes the pessimism of WCET estimate obtained using RapiTime with START OF SCOPES

and FULL instrumentation and the proposed phase based technique. Task 5 exhibits phase be-

havior that can be split into sub-phases based on PC signatures and CPI variation. Though the

estimate obtained using phase based technique without any refinement shows more pessimism

than RapiTime, estimate obtained by RapiTime with FULL instrumentation is twice as more

pessimistic than the estimate obtained using phases with maximum level of refinement. Task

5 exhibits phase behavior that can be further refined for different paths by tracking their PC

signatures. The CPI behavior is very regular and hence can be used to partition sub-phases

further. As a result, the proposed technique works well for this task and is able to estimate

WCET with high accuracy.
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Figure 6.45: Comparison of Phase based technique and RapiTime for debie1 task 5.

debie1 Task 6

The root function of task 6 is HandleHealthMonitoring which is a house keeping task respon-

sible for monitoring the health of the debie1 system. During normal operation, it is invoked

periodically to monitor the state of various systems of debie1. The task follows a well defined

sequence to conduct checks on the various components of debie1 as a result, many parts of

the code base exhibit phase behavior. Figure 6.46 describes the pessimism of WCET estimate

obtained using RapiTime with START OF SCOPES and FULL instrumentation and the pro-

posed phase based technique. There is little difference between the estimate made by RapiTime

at FULL instrumentation and the proposed technique using unrefined phases. However, using

PC signatures, a significant portion of the code base can be split into sub-phases that show

lesser CPI variation and thus brings down the pessimism by 37%.

6.7.2 Instrumentation Statistics

In this section, we shall compare the amount of instrumentation used by RapiTime and the

proposed technique to estimate WCET. Figure 6.47 compares the relative proportion of instru-

mentation points used by RapiTime with FULL and START OF SCOPES instrumentation and

the proposed phase based technique. The numbers to the right of the bars indicate the number

of instrumentation points used in FULL instrumentation. On an average, phase behavior is

observed to require only one third of the instrumentation points used in START OF SCOPES
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Figure 6.46: Comparison of Phase based technique and RapiTime for debie1 task 6.

instrumentation and about one fourth of the instrumentation points used in FULL instrumen-

tation.

Figure 6.47: Comparison of number of instrumentation points for all tasks of debie1 used by
RapiTime and the proposed technique.

Table 6.6 compares the uncompressed trace sizes generated by RapiTime with FULL and

START OF SCOPES instrumentation and the phase based technique and also describes the

number of inputs used to generate the trace. The trace generated by the proposed technique

is much smaller. As we saw earlier, the uncompressed trace size is an important factor in

determining the analysis time. As debie1 comes with its own set of test harness that exercises

most of the paths, we see each task is tested with a different number of inputs. It is important



Chapter 6. Probabilistic Bounds of Phase CPI 185

to note that even with thousands of inputs, the trace generated by tasks 1, 2 and 4 indicate

the small magnitude of its code base.

Table 6.6: Trace size in Megabytes and number of inputs.
Task number Scopes Full Phase Number of inputs

1 4.5 5.2 0.5 6580

2 4.5 5 1.6 2500

3 101 103 53 5380

4 1 1.6 0.3 3160

5 52 97 25 5262

6 427 434 152 36902

6.7.3 Analysis Time

Figure 6.48 compares the trace analysis time by RapiTime and the proposed technique. These

times exclude the trace generation time as both take the same amount of time to generate the

trace as it depends on the simulator speed. While we compared performance of RapiTime with

our technique using other WCET benchmarks, we saw higher traces result in higher analysis

time. The same is the case in debie1. In programs that run for a shorter amount of time,

structural analysis takes a significant portion of analysis time of the proposed phase based

technique. In tasks, where higher levels of refinement produce better accuracy, the analysis

time overtakes RapiTime by a few percent. But overall, as the phase based technique produces

lesser amount of trace, the analysis time is shorter than RapiTime.
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Figure 6.48: Comparison of analysis time of all tasks of debie1 by RapiTime and the proposed
technique.

6.8 Related Work

6.8.1 Program Phase Behavior

Lau et al[41] observe that fixed length intervals can not find phase behavior especially if the

period of the phase behavior is different from the fixed interval length and that there exists a

hierarchy of phase behaviors and a phase can consist of smaller sub-phases. In order to identify

variable length intervals, the code trace is analyzed for patterns. Traces of loops, calls, return

traces are run with sequitur which finds variable length interval start and end points and also

gives the hierarchy of phase behavior. We find phases by applying the code structure analysis

algorithm[39] on a hieararchical call loop graph built with profiling. The edges of this graph

store hieararchical information about the number of instructions executed across calls and loops

and by looking at the variance in number of instructions executed, the algorithm selects edges

that mark beginning of phases.

Annavaram et al[57] examine the use of code signatures obtained through periodic sampling

to predict performance for data base applications and SPEC 2000. They use VTUNE[105] to

sample hardware counters and PCs (sampled code signatures). The signature in [57] is referred

as an extended instruction pointer (EIP) which is a bunch of unique PC addresses that are

obtained by sampling and collecting performance data. EIP vectors are clustered and formed

into phases. The objective of [57] is to predict accurate CPI using smaller number of samples.
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In case of phase classification based on basic block vectors[28] every basic block executed is

profiled whereas in [57], EIP profiling is done at a granularity of 100 million instructions.

To quantify how accurately EIPvs can predict CPI, this work uses regression trees that can

optimally subdivide EIPV space into groups such that CPIs of all EIPVs in that group have

the theoretically smallest possible variance. Our work is different from [57] in many ways.

Firstly our objective is timing analysis. Hence phases must be tied to code regions in our

case. Hence we use code structure analysis[39], that builds a call loop graph annotated with

profile information. In contrast to [57] that samples PCs every 100 million instructions, we

record every PC into a bitmap for an interval consisting of a fixed group of loop iterations

along with the number of instructions committed during that interval and the CPI during that

interval. Phases are classified into sub-phases based on pairs of PC bitmap and IC values. The

sub-phases are successively classified into smaller sub-phases with respect to CPI variation by

partitioning samples into two categories with one category containing CPI samples that are

lesser than the mean and the other category containing CPI samples that are greater than the

mean.

Lau et al[40] show that the accuracy of EIP vectors identifying phases improves significantly

if they are associated with loops and procedures and prove that there exists strong correlation

between code and performance as CPI changes correspond correctly to code changes. Our work

begins by identifying call loop boundaries and marking them as phases. The phases are then

refined further based on code signatures and CPI variation.

6.8.2 Measurement Based WCET Analysis

Betts et al[3] observes that on the one hand, source-level instrumentation provides greater

flexibility and is often the most convenient, but it is handicapped by the probe effect and

on the other hand, less intrusive instrumentation normally demands some type of hardware

support. Both problems have non trivial solutions. The first problem is addressed in [2]

where instrumentation point graphs (IPGs) are constructed that model the information that

flows between basic blocks. This is required in situations where there is availability of sparse

instrumentation with only a few basic blocks containing instrumentation points. The trace is

then parsed and using either an ITree which is based on tree based schema or IPET the final

wcet is estimated. The second problem is addressed in [3] which describes how traces of only
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branch instructions generated by typical hardware debug interfaces are analyzed to interpolate

the missing instructions from the trace.

We stick to source code level instrumentation but use properties of program phase behavior

to help us obtain accurate WCET estimates with sparse instrumentation. We describe a hybrid

measurement based WCET analysis technique that is least intrusive and works with programs

that exhibit phase behavior. The repetitive manner in which CPI varies in programs that

exhibit phase behavior can be used to reduce instrumentation required in WCET analysis of

such programs. We propose to instrument at the level of groups of loop iterations leading to

a low instrumentation overhead of 1-2%. The number of iterations per group can be varied as

per the requirement. Phases also help in compressing PC signatures considerably.

Bernat et al [29] measure execution time of basic blocks(execution time profiles or ETPs)

and note their relative frequencies. The ETPs are convolved together to give probabilistic

WCET estimates using three different scenarios- ETPs are mutually independent, ETPs are

dependent, dependency is not known. The phase based timing model views execution time as

a product of instruction count(IC) and CPI and estimates program WCET in terms of phases

instead of blocks, instructions, segments or paths. We use probabilistic bounds on phase CPI

to compute WCET of a phase.

Seshia et al[66] models the problem of estimating WCET as a game between the algorithm

(player) and the environment of the program (adversary), where the player seeks to accurately

predict the property of interest while the adversary sets environment states and parameters

to thwart the player. Over several rounds, the player or algorithm learns enough about the

environment to be able to accurately predict path lengths with high probability, where the

probability increases with the number of rounds. To solve this problem, [66] employs a ran-

domized strategy that repeatedly tests the program along a linear-sized set of program paths

called basis paths, using the resulting measurements to infer a weighted-graph model of the

environment, from which quantitative properties can be predicted. However the technique as-

sumes that the timing of a program depends only on the control flow through that program.

In general, the timing can also depend on characteristics of input data that do not influence

control flow. Our technique works well in such situations as well, as the impact of all archi-

tectural components such as cache, branch predictors, pipelines et cetera is reflected in CPI.

We build a phase based timing model that characterizes the timing of a phase by the average
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phase CPI.

Edgar et al [71], Hansen et al [38] and Lu et al [97, 98] work with end to end program execu-

tion time samples and try to fit these samples into a Gumbel distribution using extreme value

theory(EVT). Once the parameters of the distribution are computed, the estimate of WCET

at various probabilities is available. Our work neither assumes any probability distribution of

CPI samples nor tries to fit these samples into any distribution. We use Chebyshevs inequality

that is applicable to any distribution, to compute bounds on CPI. The precision of our results

will denitely improve if information regarding true probability distribution of CPI samples is

available.

6.9 Conclusions

In the previous chapter, we saw that the homogeneous behavior of CPI within a phase can be

used to reduce instrumentation in a measurement based WCET analyzer. The phase based

timing model uses maximum of mean CPI observed across inputs to estimate WCET. However,

WCET estimated thus is approximate and has no probabilistic guarantees. In this chapter, we

introduce a way to obtain probabilistic bounds of phase CPI using the Chebyshev inequality.

We assume no probability distribution of CPI samples and hence opt for Chebyshev inequality

as it only requires samples to have finite mean and variance. The accuracy of CPI bound will

certainly improve if the true probability distribution is known. Since we are interested in only

the upper bound, we use a more optimal Chebyshev-cantelli inequality. If theoretical upper

bound of instruction count (IC) is used in the timing equation, we obtain a probabilistic bound

on program WCET using probabilistic bound of phase CPI. A probabilistic bound on WCET is

more beneficial than absolute WCET as depending on the criticality of the application, WCET

at the required probability can be derived.

Chebyshev-cantelli inequality works well with phases that exhibit low variance in CPI re-

sulting in tight CPI bounds and accurate WCET estimates (Examples: Fir(Arch1), Jan(Arch2)

and Lms(Arch1)). Some phases exhibit high variance in CPI. Applying Chebyshev inequality

for such phases results in pessimistic WCET estimates (Mat(Arch2)). To isolate points of high

variation in CPI, we refine such phases into smaller sub-phases based on PC signatures collected

using profiling. We observe the following results for p=0.99. Refinement based on signatures
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reduces average pessimism of WCET by 25%, 22% and 26% on Simplest, Inorder complex and

complex respectively. Refinement is designed to enable the user to control variance of CPI

within a sub-phase, which is useful in programs like Bubble sort wherein CPI varies through-

out program execution and points of high variation of CPI cannot be isolated based on PC

signatures alone. We split a sub-phase into four levels (CPI variance within the subphase is

limited to 50%, 10%, 5% and 1% of average CPI variance of the sub-phase obtained by re-

finement based on PC signature). Refining Bubble sort (Arch1) at these four levels reduces

pessimism by 21%, 31%, 35% and 42% respectively.

The following improvements are with respect to Chronos at p=0.99. Average accuracy of

WCET obtained by refinement based on signature improves by 9%, 23% and 33% on sim-

plest, Inorder complex and complex respectively. On simplest, average accuracy improves by

refinement at the first level(50%) by 13%. The improvement is marginal beyond the first level.

Average accuracy of WCET continues to improve following refinement at each of these four

levels of CPI variance on Inorder complex by 38%, 40%, 41.5% and 42.7%. Average accuracy

of WCET continues to improve following refinement at each of these four levels of CPI variance

on complex by 46%, 47%, 50.5% and 52.7%. The trace generated by the phase based WCET

analyzer is highly compressible owing to the repetitive and homogeneous nature of phase behav-

ior. The compression factor on simplest, where CPI variation is much more stable compared to

other architectures, is 24.8%. On Inorder complex and complex, where CPI variation is higher,

the compression factor is 14.6% and 14.9% respectively.

The phase based WCET analyzer is also evaluated by comparing it with a commercial

measurement based WCET analyzer, RapiTime. In the case of programs with high CPI varia-

tion, WCET estimated by using unrefined and refined estimates based on signature are more

pessimistic than RapiTime. However further levels of refinement bring down the difference

between the estimate made by the phase based WCET analyzer and RapiTime. In the case

of programs with stable CPI, the estimates made by RapiTime are far more pessimistic than

the phase based WCET analyzer. RapiTime gives an option to the user to instrument at two

levels- START OF SCOPES and a much finer FULL level. Likewise, the phase based WCET

analyzer is experimented with two window sizes w1 and w2 which is double the size of w1.

At p=0.99, compared to estimates obtained by START OF SCOPES, the estimates made by

the phase based WCET analyzer are more accurate by 7% on an average, even when using
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unrefined CPI. Subsequent levels of refinement show an improvement of 36.6%, 49.5%, 50.8%,

51.4% and 51.4% over RapiTime.

RapiTime with FULL instrumentation gives much more accurate estimates than START OF SCOPES

as it instruments the program at a higher number of points compared to START OF SCOPES.

Estimates made by the phase based WCET analyzer using refinement based on signature are

10.6% more pessimistic on an average than RapiTime. However further levels of refinement

make the estimates more accurate by 18.2%, 32%, 32.2% and 32.22% on an average over

RapiTime. The phase based WCET analyzer makes use of the repetitive and homogeneous

nature of CPI variation to reduce the instrumentation points compared to RapiTime. The

average number of instrumentation points used by the phase based WCET analyzer when

it has to estimate using unrefined phases is 4.5%(w1) of RapiTime (FULL) and 5.2%(w2)

of RapiTime (START OF SCOPES). The average number of instrumentation points used by

phase based WCET analyzer when it has to estimate using refined estimates is 12%(w1) of

RapiTime (FULL) and 10.3%(w2) of RapiTime (START OF SCOPES). Unrefined estimates

use CPI samples measured at 100-1000 instruction intervals. Refined estimates use CPI samples

measured at a few loop iteration intervals and hence much higher in number.

With START of SCOPES/w2, the phase based WCET analyzer takes 1/10th, 3/4th of the

time taken by RapiTime while using unrefined phases and phases refined based on signature.

Further levels of refinement takes 30% more time than RapiTime. With FULL/w1, the time

taken by the phase based WCET analyzer is always lesser than RapiTime (1/7th, half of, 3/4th

that of RapiTime using unrefined, refined based on signature, refined based on CPI variance

respectively). In case of RapiTime, the analysis time is a function of uncompressed trace

size. In case of phase based WCET analyzer, there are several other factors that contribute

to analysis time such as computation of theoretical upper bound of IC and phase detection.

The analysis time of phase based WCET analyzer grows similarly compared to RapiTime for

a trace of size less than 420MB. Beyond 420MB, the phase based WCET analyzer overtakes

RapiTime. Due to the fact that the results of analysis of each phase are independent of the

other, the analysis time can be further reduced by processing phases in parallel. While there

is a large disparity between the estimates made by RapiTime at two different instrumentation

levels, the estimates are not largely different at the two window sizes used by the phase based

WCET analyzer. The reason is that the repetition of CPI variation within a phase ensures the
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preservation of phase behavior at higher window sizes.

Our phase based technique is applied on the modified version of DEBIE-1 (debie1), which

was specifically developed to evaluate WCET analyzers and the results are compared with

RapiTime. debie1 is comprised of six tasks that are run routinely as part of system operations.

The following comparisons are done at p=0.99 and compared with RapiTime-FULL instrumen-

tation. Out of the six tasks, two tasks do not display phase behavior. As a result, RapiTime

estimates WCET with greater accuracy than our proposed technique (Task1: 36% and Task2:

13%). Two other tasks exhibit phase behavior but since there is a large difference between

theoretical upper bound on IC and maximum observed IC, the phase based technique exhibits

greater pessimism in WCET estimate compared to RapiTime (Task3: 89% and Task4: 24%).

Two other tasks exhibit phase behavior and WCET estimates are obtained with various levels

of refinement and are more accurate than than RapiTime (Task5: 216% and Task6: 37%).

The estimates can be further improved by using a more exhaustive test input set that guaran-

tees sufficient coverage so that we could use maximum observed instruction count in place of

theoretical upper bound on instruction count.



Chapter 7

Implementation of Phase Based

Technique on a Native Platform

In the earlier chapters, we saw that WCET can be estimated with more accuracy if we consider

phase-wise CPI than overall program CPI. We could apply simple probabilistic inequalities to

obtain the probabilistic upper bound of CPI associated with a particular probability value.

We also saw a much finer level of phase detection based on executed paths that isolates points

of high variation of CPI. All these techniques were implemented using either a MIPS based

simulator or an ARM based simulator. Simulators generally execute atleast 10 times slower

than native execution. If a program runs for a very long time, simulation could take many

hours or even days to finish. In such situations, a native execution is a much better alternative.

In this chapter, we shall describe how the phase based technique can be implemented so that

it can work directly on a native platform.

7.1 Performance API or PAPI

Cycles per instruction (CPI) is an important performance parameter that is used to commonly

evaluate a processor. As a result, most processors are equipped with hardware performance

counters that measure CPI with least intrusion. In this work, we use Performance API or

PAPI[101] to measure CPI. PAPI is a standard application programming interface (API) for

accessing hardware performance counters available on most modern microprocessors.

Two kinds of counter interfaces exist- The high level API, which lets us to start, stop and

193
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read counters for PRESET events on the cpu. The low level API manages hardware events in

user defined groups called event sets. The low level API offers fine grained measurement and

control of the PAPI interface. It provides access to both PAPI preset and native events. In

this work, we use the low level API that allows us to focus on events that are of interest to

us. The two events that are relevant to us are PAPI TOT INS and PAPI TOT CYC which

help us measure total instructions and cycles respectively. The source code of the program is

modified by adding calls to PAPI interfaces as shown in Figure 7.1.

The startup PAPI calls take up a few tens of thousands of cycles and occur only in the

beginning of the program. Each of the PAPI read calls that occur during execution of the

program takes about 2000 processor cycles to execute. Hence we need to judiciously choose the

instrumentation granularity such that the program execution time is not affected due to exces-

sive PAPI calls. In the previous chapter, we saw that estimation of worst case phase CPI did

not change significantly by having a larger instrumentation granularity. This happens because

CPI varies repetitively within a phase. Hence we use a higher instrumentation granularity (one

PAPI call per 500-2000 instructions) to accommodate PAPI calls and at the same time not

affect the execution time of the program that we are trying to measure.
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Figure 7.1: Source code modifications to measure CPI using PAPI.
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7.2 Partial Signatures

In the previous chapter, we saw that a phase could contain points of high CPI variation. Inorder

to isolate such points of high variation, we used the notion of a PC signature to codify different

paths in a compressed manner. The PC signature is composed of a bitmap that stores hashed

PC addresses that have been executed in every x iterations of the loop that makes up the phase

apart from the number of instructions (IC) executed in those x iterations and the CPI of the x

iterations. The bitmap is easily implementable in a simulator as we have complete access of PC

addresses that enter and commit in the pipeline. However, in case of native implementation,

we cannot access the PC addresses of instructions in the pipeline using PAPI calls. We require

specific hardware support inorder to be able to do that. As a result, we cannot form the bitmap

which is a vital part of the PC signature. We can only store the IC and CPI of the x iterations.

Hence instead of a complete PC signature which is a triple, now we have only a partial PC

signature in the form of a tuple <IC, CPI>.

Inorder to evaluate the pessimism of resultant WCET estimates owing to the absence of the

bitmap, we reuse the traces generated in the previous chapter but with the bitmaps removed.

For this study, we choose three benchmarks out of our benchmark suites- Bezier which is ob-

served to be very structured and is a well behaved program with little variance in IC and CPI,

Dijkstra which exhibits high variation in IC and moderate variation in CPI and Janne complex

which has a complex structure but CPI is rather stable. Figures 7.2, 7.3 and 7.4 plot the pes-

simism of WCET estimate obtained using CPI samples of an unrefined phase (unref p), phase

refined based on complete signatures (ref sig p) and phase refined based on partial signature

(ref p). On an average, the use of CPI samples of phases obtained by refinement based on

partial signatures yield WCET estimates that are pessimistic than those obtained using CPI

samples of unrefined phases by {50%, 45% and 31%} , {48%, 44%, 33%} and {46%, 42%,

29%} on Simplest, Inorder complex and Complex corresponding to probabilities p=0.9, 0.95

and 0.99.

The reason for increased pessimism in explained as follows. Using partial signatures we

can refine a phase based on only IC. All tuples with the same IC fall into the same sub-phase.

Assume we have a nested loop as shown in Figure 7.5. Assume that the number of instructions

executed in the inner loop is 10 per iteration and bounds of both loops are 10 and that there are

10 other instructions executed in the outer loop apart from the inner loop. Assume 4 iterations
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Figure 7.2: Impact of partial signatures on pessimism of WCET on Simplest architecture

are grouped into a window and instrumented. Since every window consists of 4 iterations and

4 does not divide 10. When we reach the inner loop boundary, the next window will contain

additional instructions belonging to the boundary (remaining 2 iterations). This causes the

number of instructions executed for every window to be 40, 40, 50, 40 and so on. According

to our definition of sub-phases as described in Chapter 6, the maximum IC possible in every

sub-phase represented by a bitmap signature is considered to compute WCET estimate. Hence

we need a way to avoid including the extra instructions that get executed at the boundary for

every loop iteration. Because if we include it, we end up computing a much higher instruction

count which is even greater than the theoretical upper bound on IC.

7.2.1 Optimal Global Maximum

In this section, we describe the solution to reduce the pessimism in IC. Lets assume we have n

sub-phases and that we have full signature information including the bitmap. Let the maximum

IC for a bitmap Bi be LMi (local maxima). According to the definition of sub-phase as described

in the previous chapter, let fi be the fraction of times, bitmap Bi occurs in the traces. Then

we have,

SWW × f0 × LM0 + ... + SWW × fn × LMn ≤ SWIC (7.1)
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Figure 7.3: Impact of partial signatures on pessimism of WCET on Inorder complex architec-
ture

Where SWW is the theoretical upper bound on the number of windows possible and SWIC is

the theoretical upper bound on IC.

However, we have only partial signatures with us. As a result, we do not know the unique

local maxima IC values, LM0, ... ,LMn. We only have a global maxima value which is the

maximum IC across all sub-phases pertaining to the loop. Let us term the global maxima value

as GM. Hence we have the following equations.

GM = Max(LM0, ... , LMn) (7.2)

SWW × f0 × GM + ... + SWW × fn × GM ≤ SWIC (7.3)

SWW × GM × (f0 + ... + fn) ≤ SWIC (7.4)

Since (f0 + ... + fn) equals 1, we have,

SWW × GM ≤ SWIC (7.5)
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Figure 7.4: Impact of partial signatures on pessimism of WCET on Complex architecture

Hence the optimal value of GM should be,

Opt GM ≤
SWIC

SWW
(7.6)

If x iterations comprise a window (sub-phase),

Opt GM ≤
SWW × x × Max IC per iteration

SWW
(7.7)

Opt GM ≤ x × Max IC per iteration (7.8)

Which essentially is what Opt GM is supposed to be: x times the maximum possible IC per

iteration.

Method

Using this information, we bump up the IC value of sub-phase i to Opt GM if ICi < Opt GM.

If ICi of sub-phase i is > Opt GM (likely boundary candidates), we bump it up to GM. This

prevents all the iterations from being assigned a false high boundary value and hence brings

down the pessimism. This solution brings down the pessimism of WCET estimate obtained
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Figure 7.5: Cause of additional pessimism with partial signatures : an example

using partial signatures considerably as shown in Figures 7.6, 7.7 and 7.8. The estimates

obtained by using Opt GM is represented by ref opt p. The average pessimism of WCET

estimates for all the three benchmarks considered are plotted in Figures 7.9, 7.10 and 7.11.

Table 7.1: Percentage Improvement by using Opt GM instead of GM as maximum IC of a
sub-phase.

p=0.9 p=0.95 p=0.99

Simplest

Ref opt/Ref 40.95 40.89 40.66

Ref opt/Ref sig -33.15 -33 -32.97

Ref opt/Unref 3.6 5.89 13.97

Inorder complex

Ref opt/Ref 41.4 41.69 42.47

Ref opt/Ref sig -36.84 -38.04 -41.91

Ref opt/Unref 2.72 4.33 8.86

Complex

Ref opt/Ref 46.16 47.02 49.35

Ref opt/Ref sig -26.52 -26.4 -26.8

Ref opt/Unref 12.29 15.16 22.3

The percentage improvement obtained by using Opt GM compared to the estimate ob-

tained using unrefined phases and refined phases with partial and full signature is described in

Table 7.1. On Simplest architecture, refined estimates show more or less the same values as



Chapter 7. Implementation of Phase Based Technique on a Native Platform 201

Figure 7.6: Pessimism of WCET estimates obtained using unrefined phase, refined phase with
full and partial signatures on Simplest architecture

the architecture does not consist a data cache and predicts branches perfectly. Around 41%

improvement is seen when Opt GM is used with partial signatures compared to when GM is

used. However the estimates are still 33% more pessimistic compared to the situation when

full signatures are known. At p=0.99, the estimates obtained using Opt GM are 14% more

accurate than estimate obtained using unrefined phases.

On Inorder complex architecture, refined estimates show slightly more pessimism with in-

creasing probability as the architecture is more realistic and has a data cache and a realistic

branch predictor. Around 41% improvement is seen when Opt GM is used with partial signa-

tures compared to when GM is used. However the estimates are still 38-40% more pessimistic

compared to the situation when full signatures are known. At p=0.99, the estimates obtained

using Opt GM are 9% more accurate than estimate obtained using unrefined phases.

On Complex architecture, refined estimates show slightly more pessimism with increasing

probability as the architecture is out-of-order and has a data cache and a realistic branch

predictor. Around 48-49% improvement is seen when Opt GM is used with partial signatures

compared to when GM is used. However the estimates are still 26% more pessimistic compared

to the situation when full signatures are known. The difference between estimates obtained
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Figure 7.7: Pessimism of WCET estimates obtained using unrefined phase, refined phase with
full and partial signatures on Inorder complex architecture

using partial signatures with Opt GM and those obtained using full signatures comes down

in case of Complex architecture as the CPI variation in Complex is much more random than

Inorder complex. Refinement based on full signature works better on Inorder complex than

on Complex. At p=0.99, the estimates obtained using Opt GM are 22% more accurate than

estimate obtained using unrefined phases.

Using Opt GM with partial signatures, we estimate WCET for these three benchmarks on

the native platform. We run our experiments on AMD Athlon with a dual core processor each

of speed 800 MHz, a cache of 512 KB and 2GB DDR memory. We use PAPI 5.0.1 to collect

traces of IC and CPI. Figure 7.12 describes the pessimism of WCET estimate obtained by our

technique on this native platform. The average pessimism of WCET estimated using unrefined

phases on the native platform is 4, represented by the first bar in each probability. Using

refinement based on partial signatures, the average pessimism comes down to 3.65(second bar).

Subsequent refinement based on controlling CPI variance within a sub-phase to 50%, 10%,

5% and 1% of the original CPI variance brings down pessimism to 3.6, 2.78, 2.56 and 2.52

respectively(subsequent bars under each probability).
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Figure 7.8: Pessimism of WCET estimates obtained using unrefined phase, refined phase with
full and partial signatures on complex architecture

7.2.2 Instrumentation Overhead with PAPI

In this section we shall describe the instrumentation overhead due to PAPI calls. The instru-

mentation ratio for the three benchmarks considered is described in Figure 7.13. The average

sub-phase sizes for Bezier, Dijkstra and Janne complex on the native platform are 1841, 554

and 650 respectively. On an average PAPI is called 0.12% of the time the program is exe-

cuted, to measure CPI. Since PAPI start up code takes a few thousands of cycles and some

programs execute for only a few thousands of cycles, we execute such programs many times

to overcome the effect of start up code. Figure 7.14 describes the time taken by the programs

with and without PAPI code. The average overhead with respect to time due to PAPI across

all benchmarks is 2.2%.
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Figure 7.10: Average pessimism of WCET estimate using all kinds of phases on Inorder complex
architecture
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Figure 7.11: Average pessimism of WCET estimate using all kinds of phases on Complex
architecture
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Figure 7.13: Percentage of time, PAPI is called during program execution

Figure 7.14: Time overhead of PAPI calls



Chapter 7. Implementation of Phase Based Technique on a Native Platform 207

7.3 Related Work

Corti et al[52] use performance counters in Motorola PowerPC 604e microprocessor to measure

various parameters like cache misses, stalls in the pipelines and various other units. These values

are used to calculate CPI that is multiplied by the basic block length to obtain cycles taken

by basic blocks to execute on the target system. Our technique uses performance API (PAPI)

to measure CPI at various instances within a phase. The CPI samples within a phase are used

in either an absolute function or a probabilistic function to obtain absolute or probabilistic

estimates worst case phase CPI which will be used to compute the overall program WCET.

Different versions of PAPI are available on multiple architectures. Other measurement based

tools either use hardware devices such as oscilloscopes, logic analyzers to obtain time traces,

but in the case of these devices, it is difficult to find the correspondence between measurements

and the program paths[34]. Hardware debug support comprising of trace buffers of limited

memory have been used to collect timestamp traces of instructions in measurement based

analyzers[3]. However the issue with these buffers is the rate at which these traces are produced

and the finiteness of the trace buffer. If trace data is produced too fast, there could buffer

overflows causing blackouts as a result of which, part of trace can be lost. Hence generally

only branch instructions are timestamped and recorded in the trace buffer[3]. The phase based

technique helps us to use sparse instrumentation to collect CPI at arbitrarily large granularities

of instructions without significantly affecting the accuracy of phase CPI and hence worst case

execution time. As a result, source code level instrumentation with PAPI can be used to obtain

accurate measurements of CPI. Recently there have been efforts to support very fast access

to hardware performance counters such as LiMiT (light weight microarchitectural tool kit)[45]

that is 90x faster than PAPI-C requiring 12ns per access. We could benefit from such a tool

that would reduce instrumentation overhead even further.

7.4 Conclusions

In this chapter, we describe how we can implement the phase based WCET analysis technique

on a native platform. Simulations are atleast 10 times slower than native execution. For

programs that take a long time to execute, collecting traces might take hours or even days.

In such programs, collection of traces by native execution is very helpful. Implementation of
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the technique on a native platform involves modifying the source code to make PAPI calls.

Unless, we have special hardware support to record PC addresses of instructions that commit

in the pipeline, we have to resort to using a partial PC signature instead of a full PC signature,

<Bitmap, IC, CPI>. A partial signature is a tuple <IC, CPI> that represents the number

of instructions executed in the sub-phase and the CPI of the sub-phase. In some programs

that involve nested loops, there is an added pessimism in the estimation of worst case IC with

partial signatures, as it considers additional instructions executed at the boundaries to compute

maximum IC per sub-phase. On an average, the use of CPI samples of phases obtained by

refinement based on partial signatures yield WCET estimates that are pessimistic than those

obtained using CPI samples of unrefined phases by {50%, 45% and 31%} , {48%, 44%, 33%} and

{46%, 42%, 29%} on Simplest, Inorder complex and Complex corresponding to probabilities

p=0.9, 0.95 and 0.99.

A simple correction in the timing equation that makes use of optimal global maximum IC

per sub-phase alleviates the pessimism to a large extent (40-49% on Simplest, Inorder complex

and Complex architectures). If there is hardware support to associate instruction addresses

with event counters, accuracy of WCET can improve further by (26-41%). PAPI calls takes

around 2000 processor cycles to execute. Hence the program has to be instrumented with

caution so as to not affect the execution time of the program which we are trying to analyze.

Program phase behavior comes to the rescue here. Higher instrumentation granularities does

not change the variation characteristics of CPI significantly. Hence we choose a much higher

instrumentation granularity (one PAPI call per 500-2000 instructions) to measure CPI. The

average instrumentation ratio (ratio of number of PAPI calls to the total number of instructions)

is observed to be 0.12%. On an average, PAPI is observed to cause the execution time of

programs to increase by 2.2%. In the next chapter, we shall see other advantages of phases in

the context of program timing analysis.



Chapter 8

Other Advantages of Phases in

Timing Analysis

In the previous chapters, we saw that program phase behavior helps build a very simple timing

model that estimates WCET of a program in terms of its phases. The homogeneous variation

of CPI within a phase enables us to use coarse instrumentation (ratio of instrumentation <

5%). In this chapter, we shall see that phases offer additional advantages such as faster WCET

analysis and estimation of WCET for a particular program run.

8.1 Parallelized WCET analysis

Existing WCET analysis methods can be classified into two categories- a separated approach

where program structural analysis is decoupled from estimating the effect the underlying ar-

chitecture or an integrated approach where structural analysis and estimating the effect of

the underlying architecture are carried out side by side. Our approach clearly belongs to the

separated approach as we estimate the theoretical upper bound on IC and worst case CPI

separately. The estimation of both quantities are independent of each other. Hence estimation

of theoretical upper bound on IC and worst case CPI can be done in parallel. However, if the

program has multiple phases, program phase detection has to be carried out first before the

theoretical upper bound on IC for each phase is determined.

Our approach is trace based and estimates worst case CPI by analysis of traces of CPI per

phase or sub-phase. Some programs can be composed of a number of phases depending on its

209
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structural complexity. Some programs with large running times can produce large amounts of

trace. Hence trace analysis can be expensive in terms of time and space. In this regard, we are

at an advantage of using phases to divide our program into smaller units of analysis. Since the

analysis result of one phase is not dependent on the analysis of another phase, we can analyze

the phase traces in parallel. This can be done because CPI is fairly an independent entity. The

CPI of one phase is fairly independent of the other phases. No correlation is observed between

CPI of two different phases of a program.

In an earlier chapter, we saw that the time taken to obtain WCET estimate based on phase

refinement with respect to PC signature in the case of Dijkstra was about 40 minutes on ARM

architecture, a major part of which is taken up by trace analysis. This is because, Dijkstra is

comprised of a large number of phases based on PC signature which is further comprised of

smaller number of sub-phases when refined based on CPI tolerance. The trace analysis time

using our technique is observed to be about 4 times the time taken by RapiTime. We apply

the following parallelization on Dijkstra to reduce trace analysis time for estimating WCET

using phases refined based on signature. The parts of timing analysis that are carried out in

parallel are prefixed by ”[parallel]”.

1. Run the profile based phase detection algorithm on the program with a few representative

test inputs.

2. Note the binary instructions that mark phase boundaries.

3. Build CFG out of the program binary.

4. Demarcate the phases in the CFG.

5. [parallel]

Distribute the work of computing the theoretical upper bound on instruction count for

each phase i equally among n threads.

6. Run the program either on a simulator or on the native platform. The trace of CPI for

each phase and sub-phases is generated in cpisig i for each input i.

7. Compress cpisig i for all i.
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8. [parallel]

Distribute the work of collecting unique PC bitmap/IC values from cpisig i into temp i

equally among n threads.

9. Merge all the temp i files into a single unique signature file.

10. [parallel]

Distribute the work of collecting various IC for each unique signature i and the maximum

IC equally among n threads.

11. Collate the various IC information and maximum IC into a file.

12. [parallel]

Distribute the work of collecting CPI for each unique PC bitmap, IC pair (each sub-phase

i) equally among n threads.

Each thread in parallel calculates mean and variance of sub-phase CPI for each sub-phase

i.

Each thread in parallel calculates Chebyshev-Cantelli bounds of CPI for each sub-phase

i and output this information into variance sub i.

13. [parallel]

Distribute the work of collecting CPI for each unrefined phase i, equally among n threads.

Each thread in parallel calculates mean and variance of phase CPI for each phase i. Each

thread in parallel calculates Chebyshev-Cantelli bounds of CPI for each phase i and

outputs this information into variance i.

14. Using sub-phase signature information, create an awk file that records the occurrence of

every sub-phase for a given input.

15. [parallel]

Distribute the work of collecting sub-phase occurrence pattern for every input i equally

among n threads. Each thread in parallel creates the frequency of occurrence information

for every sub-phase for each input i.

16. Collate the frequency of occurrence of sub-phases for all inputs i into a single file.
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17. Append CPI bound information for every sub-phase to this file.

18. Append information about the theoretical maximum number of windows possible (SWW)

(section 6.4.3 in chapter 6) to this file.

19. Use the timing equation Eq.(6.23) to estimate WCET of unrefined phases and Eq.(6.29)

to estimate WCET of refined phases and Eq(6.3) for programs that exhibit multiple phase

patterns.

In addition to this, steps 1 and 2 is run in parallel with step 3. And step 13 is run in parallel

with steps 9 - 12. Likewise, the trace analysis for estimating WCET using phases refined based

on CPI variance is parallelized. We evaluate the speedup in analysis time obtained in the

case of Dijkstra using multiple threads in Figure 8.1. The experiment was run on a multicore

machine comprising of 8 Intel Xeon cores each at a frequency of 2.66GHz with a cache size of

6144KB. We define speedup with n threads as the ratio of the time required to execute steps

1 to 19 running n threads to the time required to execute steps 1 to 19 sequentially.

Figure 8.1: Speedup in trace analysis time with multiple threads.

8.2 Worst Case Remaining Execution Time (WCRET)

The primary focus of the thesis is to estimate worst case execution time of a program that

holds across any permissible input. There also exists a dynamic counterpart of WCET of a
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program that can be calculated at any instance during execution of a particular program-input

pair, also known as the worst case remaining execution time (WCRET). Accurate estimation

of the worst case remaining execution time at any point during a program’s execution helps

in improving scheduling tasks to maximize resource utilization. If WCRET is unknown, tasks

might be unnecessarily over-provisioned with resources. If tasks finish in much less time than

their anticipated worst case execution times, this would result in severe under utilization of

resources[62]. The earlier this information is available to us, the better. It is highly desirable if

the method allows us to learn from program behavior and helps us refine our existing WCRET

estimates.

Program phase behavior allows us to estimate WCRET of a program fairly in advance and

also refine the estimate in a very simple way. At the beginning of program execution, there

is little information about the dynamic behavior of the program. Hence our initial estimate

of WCET is the product of theoretical upper bound on IC and maximum of average CPI. As

and when phases are entered into and information about actual phase CPI begins to emerge,

we refine our estimate of WCRET. Our prime assumption is that variation of CPI within a

phase is fairly homogeneous and repetitive and CPI will continue to vary in the same manner

till the end of the phase. The program is intercepted at every ten thousand instructions and

the WCRET is estimated at this point. Figure 8.2 describes our algorithm to estimate the

WCRET of the program at each such point. If a program has multiple phase patterns, the

algorithm can be modified to keep track of the currently occurring phase pattern and apply

the corresponding timing equation. MIN CPI in Figure 8.2 refers to the minimum number of

intervals that should elapse before we start using current phase CPI to help predict future CPI.

Max CPI[i] refers to the worst case CPI of phase i estimated as described in chapter 5.

We apply this technique on some of the benchmarks that have been considered in this work

on the Inorder complex architecture which is of intermediate complexity. All programs are

compiled by gcc with the -O2 and static flag inorder to be simulated by Simplescalar. The

simulator code is suitably modified as described above in Figure 8.2. Each program is run with

a specific input and the call to compute WCRET is inserted after the commit of every ten

thousand instructions.
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/***

 **   curr_phase: current phase

 **   cycles[i]: stores actual elapsed cycles for phase i

 **   instns[i]: stores actual number of instructions executed

 **   for phase I

 **   total_pred_cycles: Predicted worst case execution time 

 **   for the current run

 **   SWIC[i]: theoretical upper bound on Ic for phase i  

 **   sim_cycle: actual cycles elapsed till now

****/

Compute_WCRET () {

// Account for all phases that have occurred so far 

for(i=0; i<curr_phase; i++) {

 total_pred_cycles += cycles[i];

}

// Account for current phase 

if(count_cpi[curr_phase] > MIN_CPI) {

 total_pred_cycles += (SWIC[curr_phase] * 

   (float) cycles[curr_phase]/instns[curr_phsae]);

}

// Account for all future phases

for(i=curr_phase+1; i<NUM_PHASES; i++) {

 total_pred_cycles += SWIC[curr_phase] * Max_CPI[curr_phase];

}

WCRET = total_pred_cycles-sim_cycle;

} 

Figure 8.2: Algorithm to compute WCRET of a program at any instant of time during execu-
tion.

8.2.1 Evaluation

We plot the predicted WCRET at the commit of every ten thousand instructions. Inorder to

evaluate the accuracy of predicted WCRET, we also plot the actual remaining cycles at each

of these points for comparison purposes(computed by the difference of actual execution cycles

and cycles elapsed till that point). Ideally, the two plots should coincide. For simple straight

line programs with stable CPI behavior even across inputs, the predicted WCRET is accurate

right at the beginning and remains so during execution of the program. Matmul is a classic

example as shown in Figure 8.3.

In programs with a high maximum CPI, the initial predicted WCRET is pessimistic, but as

we continue to learn about the dynamic behavior of CPI as execution progresses, we can refine

our WCRET estimate accordingly. Bitcount is a good example with a high maximum CPI.

But as we get to know more about dynamic behavior of each of its phases, we can get close

to the actual remaining cycles as shown in Figure 8.4. The bends in the curve correspond to

the phase transition points in Bitcount. In programs where the theoretical upper bound on IC



Chapter 8. Other Advantages of Phases in Timing Analysis 215

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 0  2000  4000  6000  8000  10000  12000

C
yc

le
s

Ten Thousand instructions executed

Predicted
Actual

Figure 8.3: Predicted remaining cycles versus actual remaining cycles for Matmul (In-
order complex).
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Figure 8.4: Predicted remaining cycles versus actual remaining cycles for Bitcount (In-
order complex).

is larger than the maximum observed instruction count, the corresponding WCRET estimate

also is larger by that amount. Bezier and Bubble sort are classic examples of this as shown in

Figures 8.5 and 8.6 respectively.

At present, we refine our WCRET estimate by making use of the current CPI information.

If there is a large difference in the theoretical upper bound on IC and the number of instructions

that have been executed, the estimated WCRET is always larger than the actual WCRET even

at the end of program execution. If there is a way to learn and use the number of instructions

that have been executed in the equation to estimate WCRET, our technique can estimate

WCRET with high degree of accuracy. For programs with a simple structure, this can be



Chapter 8. Other Advantages of Phases in Timing Analysis 216

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 0  2000  4000  6000  8000  10000  12000

C
yc

le
s

Ten thousand instructions executed

Predicted
Actual

Figure 8.5: Predicted remaining cycles versus actual remaining cycles for Bezier (In-
order complex).
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Figure 8.6: Predicted remaining cycles versus actual remaining cycles for Bubble sort (In-
order complex).

easily done. Lets consider Bubble sort which is composed of a 2 level loop nest. The outer loop

iterates for N times where N represents the number of elements to be sorted. The inner loop

iterations depend on the index of the outer loop. So essentially the inner loop body is executed

N×(N+1)
2 times. If we can keep count of the number of times the outer branch instruction is

executed, we can use the number of instructions that have been executed so far and refine our

WCRET estimate shown as follows. By keeping track of the number of instructions executed

so far, we are able to predict the worst case remaining execution time with more accuracy as

shown in Figure 8.7.

N = MAX ELEMENTS − bubcount;
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Figure 8.7: Predicted remaining cycles versus actual remaining cycles for Bubble sort (In-
order complex) tracking number of instructions executed along with CPI.

total predicted cycles = sim cycle +
N × (N + 1)

2
× I ×

total cpi[0]

count cpi[0]
;

Where, MAX ELEMENTS is the size of the array that is being sorted. bubcount keeps

count of the number of times the outer loop branch is executed. I is the number of instructions

in the inner loop body.

8.3 Related Work

Kumar et al[83] describe a framework that finds dominant or recurring patterns of behavior

from the profile of an application, and produces signatures (detection patterns) that can be

used to identify the occurrence of these behaviors in future runs of the application, predict

the occurrence of these behaviors sufficiently in advance, and make statistical assertions about

the likelihood of the occurrence of these behaviors during the application’s execution. The

programmer can use these patterns to assess how well the application will satisfy various

relaxed real-time deadlines. The method first profile-instruments a C application. It then runs

the Statistical Analyzer tool described in [83] that detects patterns of behavior and generates

prediction patterns and statistical guarantees for those. The patterns of behavior consist of

segments of function call-chains, annotated with the statistics predicted for them. The call-

chains are further refined into minimal distinguishing call-chain sequences that unambiguously

detect the corresponding pattern of behavior when it starts to occur at runtime, and make
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statistical predictions about the nature of the behavior. Kumar et al[83] expect that the

statistical behavior of the function call at the top of the stack can be predicted using a short

sequence of function calls occurring just below it in the call-stack, without going all the way to

main in most applications. Apart from call sequence, behavioral statistics annotated by profile

information are considered for a match. The matching sequence is picked to predict the future

call sequence. The idea is to carry out an early prediction which can be done by seeing only a

small prefix and predicting the entire suffix. A finite state machine sequence detector is used to

predict the following pattern. Our technique works on the principle of phase behavior. Based

on the observation that CPI varies homogeneously and repetitively within a phase, an early

sequence of phase CPI is used to predict the subsequent sequence of phase CPI. Gupta et al[62]

propose that correlation among different parts of the program can help refining the WCRET

estimate. Only regions that matter in influencing execution time are considered. Correlation is

computed at the statement level. For instance an assignment and a condition within the loop

can be correlated. Post assignment, the remaining time estimate is likely to be refined better.

Another possibility that can affect remaining execution time is a set of multiple assignments

affecting a branch. The compiler must be modified to find out all such assignments that affect

a branch. In contrast to [62] which is purely a static approach, our work is a dynamic approach

and is centered around the CPI.

8.4 Conclusions

Apart from reducing instrumentation overhead, program phase behavior has other advantages

too. The CPI of one phase is fairly independent of another phase. The result of trace analysis of

one phase does not depend on the result of trace analysis of any other phase. As a result, trace

analysis of multiple phases can happen in parallel thereby reducing the overall time to carry

out WCET analysis. Further estimating theoretical upper bound on IC can be parallelized

with estimating WCPI. In this chapter, we implemented such a parallel WCET analyzer that

estimates WCET based on refinement with respect to PC signatures and observed the following

speedup of {1.9, 3.7, 4.7, 5.5} with {2, 4, 6, 8} threads respectively. For estimation based on

higher levels of refinement with respect to controlling CPI variance, the speedup is slightly

reduced by a few percent. Program phases also help in estimating the worst case remaining
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execution time of a program run with a particular input, at any point during its execution.

Accurate knowledge of WCRET helps prevent over-provisioning of resources thereby increasing

resource utilization. Estimation of WCRET is based on the homogeneous variation of CPI

within a phase and involves predicting future CPI of a phase by looking at a prefix of occurring

phase CPI. For certain programs with a simple structure, one can even predict the number of

instructions that will further improve accuracy of WCRET.



Chapter 9

Conclusions and Future Work

The thesis explores several aspects of CPI-centric worst case execution time analysis and pro-

poses techniques that estimate WCET with increasing levels of accuracy in each succeeding

chapter. State of the art WCET analyzers estimate cost of executing a program in terms of

cycles either by carrying out static analysis, or direct measurement or fitting statistical mod-

els to measured execution times. The thesis proposes to view execution time as a product

of instruction count(IC) and cycles per instruction(CPI) and explores the advantages of this

formulation in each chapter.

To begin with, a program is considered as a single unit and program WCET is estimated as

a product of worst case IC and worst case CPI. Worst case IC is estimated as the theoretical

upper bound on IC(SWIC). The advantage of using a bound on IC is that it can be used

whenever building an exhaustive test input set that achieves complete coverage is difficult.

Worst case CPI is estimated using various analytical and statistical functions of measured

CPI samples. Using this basic timing model, a safe analytical combination that can be used

for IC and CPI is determined to be SWIC, Max Avg(CPI) which is the maximum of average

CPI of the program observed across inputs. On simplest architecture, this combination gives

a WCET estimate that is 9% pessimistic compared to Chronos. On Inorder complex and

Complex architectures, this combination improves accuracy in WCET estimate by 38% and

51.7% respectively compared to Chronos. A safe statistical combination that can be used for IC

and CPI is determined to be SWIC, 99per(CPI) which is the 99th percentile CPI value observed

across all inputs. On simplest architecture, this combination gives a WCET estimate that is

36.5% pessimistic compared to Chronos. On Inorder complex and Complex architectures, this

220
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combination improves accuracy in WCET estimate by 10.6% and 29.3% respectively compared

to Chronos. The percentile CPI value is observed to be highly dependent on the distribution

of CPI samples which inturn depends on the distribution of input data. Hence the analytical

combination is preferred over the statistical one.

During our experiments, we observe that the overall program IC and CPI are correlated

in many cases. This gives us an opportunity to optimize our WCET estimate. A scatter plot

is constructed with a large vector of (IC, CPI) samples gathered over a large number of runs

with different inputs. Five kinds of correlation are observed. In some programs, CPI and

IC are negatively correlated with each other. With increasing IC, CPI decreases. In some

programs, CPI and IC are positively correlated with each other. With increasing IC, CPI also

increases. In some programs, irrespective of input, IC and CPI do not vary significantly. In

some programs, with increasing IC, CPI saturates to a particular value. In some programs,

the correlation is not clear. In programs where the correlation is clear, we can fit a curve

to the points in the scatter plot and define CPI as a function of IC. Using this, we optimize

WCET as a product of the theoretical bound on IC and f(IC). This estimate is observed to

be much optimal than the product of worst case IC and worst case CPI in many cases. Using

correlation information, on Simplest architecture, the WCET estimate is now only 4.7% more

pessimistic than Chronos. On Inorder complex and Complex architectures, the improvement in

accuracy using correlation is 49% and 62.3% compared to Chronos. The correlation also helps

us in benchmark classification. For instance, programs that exhibit the same IC, CPI values

irrespective of input need not be tested exhaustively with respect to worst case execution time

analysis.

The formulation of WCET as a product of a maximal function of IC and a maximal function

of CPI works well for small programs wherein execution centers around a single loop and

exhibits stable CPI throughout execution. However, this is seldom the case. Many a times, a

program is composed of a well defined set of tasks. The dynamic behavior within each task

might be different from the rest. This principle manifests itself as program phase behavior which

refers to a phase like variation of certain architectural parameters like CPI during execution.

Within each phase, the variation of CPI is homogeneous and centered around the mean. The

coefficient of variation of CPI within a phase is much lesser than the coefficient of variation

of CPI across phases. Using this observation, we propose a phase based timing model that
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estimates WCET of a program in terms of its phases. On Simplest architecture, using phase

information brings the WCET estimate very close to Chronos (1.73% higher than Chronos).

On Inorder complex and complex architectures, using phase information, the WCET estimates

are 43% and 55.3% more accurate than Chronos. Phases have important implications on the

instrumentation aspect of measurement based WCET analysis. Phases can be instrumented

at arbitrarily large intervals without causing a significant impact on the accuracy of WCET.

Phases are typically composed of hundreds or thousands of instructions. Hence instrumentation

at the phase level is much more advantageous than instrumentation at the level of basic blocks

and instructions.

The homogeneous and uniform nature of CPI within a phase helps us to obtain probabilistic

bounds of phase CPI using simple probabilistic inequalities such as Chebyshev inequality which

does not assume any particular distribution of data. Since the CPI samples that we have are

not created by exercising *all* paths in the program, it helps to have a formalism by which we

can bound a future unknown CPI sample to obtain a more robust WCET estimate. By using

the theoretical upper bound on IC, which is a constant, we prove that the probabilistic bound

on CPI can be extended to the whole program WCET as well. Based on these lines, we build

a probabilistic WCET analyzer that can give us WCET estimates depending on the desired

probability value.

Some phases can exhibit high variation of CPI. The primary reasons that could cause

this could either be the presence of complex if-conditions, branch mispredictions, stalls in the

pipeline or cache behavior. Applying probabilistic bounds as is, for such phases, yields a very

pessimistic bound on CPI. For this reason, we isolate such points of high variation of CPI

using a PC signature, which is a triple consisting of a PC bitmap, IC and CPI value, tracked

for every x iterations of a loop. The bitmap encodes path information in a highly compressed

manner and helps distinguishing loop iterations that execute different paths. The PC bitmap

and IC values are observed to correspond to CPI values and are hence used to classify a phase

further into smaller sub-phases. At p=0.99, using signatures, the average pessimism of WCET

estimates across all benchmarks improves by 9%, 23% and 33% compared to estimates obtained

by Chronos on Simplest, Inorder complex and Complex respectively.

In some programs, CPI variation may not correspond to instruction execution patterns but

be more influenced by the data it accesses and the order in which it accesses it. Hence we



Chapter 9. Conclusions and Future Work 223

make a provision to split a sub-phase into smaller sub-phases based on allowed coefficient of

variation of CPI within a sub-phase. Further refinement based on controlling CPI variance

within a subphase to 50%, 10%, 5% and 1% of its original value yields 12.9%, 13.1%, 13.1%,

13.1% improvement on Simplest architecture. On Inorder complex and Complex architectures,

the corresponding improvements are 38%, 40%, 41%, 43% and 46%, 47%, 50%, 52%.

The proposed probabilistic WCET analyzer is compared with a commercial probabilistic

WCET analyzer, RapiTime. Comparisons are done at two levels of instrumentation supported

by RapiTime. START OF SCOPES which is a coarse level and FULL which is a fine level

of instrumentation. Compared to RapiTime, the average pessimism of WCET obtained by

our technique based on PC signatures across all benchmarks at p=0.99 improves by 7% when

programs are instrumented at START OF SCOPES granularity. Program phase behavior helps

us to achieve this with only 10.3% of instrumentation points used by RapiTime. Further

refinement based on controlling CPI variance within a subphase to 50%, 10% and 5% of its

original value yields an improvement of 37%, 49% and 51% respectively. Any further refinement

yields marginal improvement. WCET analysis based on signatures takes about 3/4ths of the

time taken by RapiTime using START OF SCOPES. Further refinement based on controlling

CPI variance takes 30% more time than RapiTime.

When RapiTime instruments at FULL granularity, the average pessimism obtained by our

technique based on signatures is more pessimistic by 10.6%. However further refinement based

on controlling CPI variance of a subphase to 50% and 10% of its original value yields 18% and

32% improvement. Any further refinement yields marginal improvement. Use of program phase

behavior enables us to achieve this result with only 12% of the instrumentation points used by

RapiTime. WCET analysis based on signatures takes half the time taken by RapiTime using

FULL instrumentation. Further refinement based on controlling CPI variance takes about

3/4ths of the time taken by RapiTime.

The trace analysis time is found to be a major factor in deciding the overall WCET analysis

time. In case of the phase based technique, the number of phases have an equal influence on the

trace analysis time. However, since the results of trace analysis of one phase is not dependent

on the other phase, traces of different phases can be analyzed in parallel thereby reducing the

overall WCET analysis time. A parallel implementation based on these lines is observed to

speedup the analysis time by factor of 1.98, 3.68, 4.71, 5.5 with 2 threads, 4 threads, 6 threads,
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8 threads respectively.

The proposed technique is also implemented on a native platform using hardware perfor-

mance counters accessed by performance API (PAPI). This feature is useful for programs that

take a long time to simulate as simulation can be upto 10 times slower than native execution.

Unless there is special hardware support to record PC addresses with events, we can have only

partial PC signatures that store only IC, CPI information for groups of iterations. Use of

partial signatures is observed to increase pessimism by 26-41% compared to estimates obtained

by refinement based on full signatures but is more accurate than unrefined estimates by 8-22%.

Lastly, the homogeneity of CPI within a phase can be used in estimating the worst case

remaining execution time of a program run with a specific input well before the program finishes

execution. Predicting execution time early prevents holding onto resources for a longer time

and leads to better resource utilization

The proposed technique is evaluated with respect to several desirable characteristics of

a WCET analyzer which was touched upon in Chapter 2 in Tables 9.1 to 9.3 as follows.

Most measurement based WCET analyzers are retargetable and hence this characteristic is not

discussed in these tables. A comparison with some of the other measurement based tools is

also presented.
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Table 9.1: Comparison of proposed technique with other measurement-based tools with respect
to desirable characteristics of WCET analyzers.

Proposed RapiTime Segments IPG GameTime SWEET
Technique (TU Vienna)

Accuracy

If CPI is sta-
ble, estimates
are tight even
at high proba-
bility.

FULL esti-
mates are
more accurate
than START-
OF SCOPES
estimates.

If segments are
too small, the
estimates can
get pessimistic.

Pessimism at
leaf node level
gets propa-
gated up to
root. If a
program has
many pro-
cedure calls,
estimates can
get pessimistic.

For simple
architectures
with good
timing pre-
dictability,
perturbation
is small and
hence probabil-
ity of accurate
estimates is
high.

Accurate for
simple archi-
tectures with
only L1 in-
struction cache
and simple
to moderate
pipelines with
bounded long
timing effects
and without
any anomalies.

Multiple levels
of refinement
exist that
can increase
accuracy.

With higher
probability,
the pessimism
is generally
observed to be
high.

Different gran-
ularity of
instrumenta-
tion does not
have significant
impact on ac-
curacy unlike
RapiTime and
Segments.

Safety

Usage of SWIC
ensures higher
degree of
safety.

As basic block
frequencies
obtained using
measurement
is used to com-
pute WCET,
safety depends
on coverage.

Can be unsafe
due to insuffi-
cient state cov-
erage.

Can be unsafe
due to insuf-
ficient coverage
by inputs.

As input cover-
age is based on
paths, it has a
higher chance
of safety than
other measure-
ment based
approaches
that cover
paths only
within a seg-
ment.

The technique
uses more of
static analysis
than measure-
ments. Static
analysis is
used to predict
values, branch
prediction out-
comes. Only
pipeline analy-
sis is performed
by carefully
controlled sim-
ulations using
cycle accurate
simulators.

Non-intrusive Instrumentation

Phase behavior
allows us to use
sparse instru-
mentation. We
can afford to
use source level
instrumenta-
tion because of
this.

START-
OF SCOPES
instruments
the program
at fewer points
compared to
FULL but
is observed
to give very
pessimistic es-
timates. FULL
provides accu-
rate estimates
but instru-
ments every
basic block.

Provides
adaptable
instrumenta-
tion. User
can vary size
of segments.
However larger
segments imply
higher num-
ber of paths
which will
increase input
test generation
time.

This tech-
nique deals
with sparse
instrumenta-
tion. Given a
few arbitrary
ipoints, IPG
models flow
of information
from one point
to another.

Works with
only measured
end to end
path execution
times. Hence
level of in-
strumentation
required is low.

Not purely
measurement-
based. Only
pipeline anal-
ysis is carried
out using mea-
surements at
the basic block
level.
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Table 9.2: Comparison of proposed technique with other measurement-based tools with respect
to desirable characteristics of WCET analyzers.

Proposed RapiTime Segments IPG GameTime SWEET
Technique (TU Vienna)

Time taken to estimate WCET

Traces are
small as phases
span thousands
of instructions.
Hence anal-
ysis time is
small. SWIC
derivation and
estimation of
worst case CPI
can be done
in parallel.
Further, trace
analysis of
each phase
can be done in
parallel.

Depending
on trace size,
analysis takes
time to extract
path infor-
mation from
time stamped
traces. Time
has been shown
to be a direct
function of non
compressed
trace size.
Time stamps
can overflow
and hence need
to be specially
taken care of.

Input genera-
tion based on
model checking
takes larger
time.

Trace parsing
takes long time
as time stamps
record only
sparse ipoints
and the whole
path has to be
reconstructed.

Checking feasi-
bility of basis
paths and
generation of
basis paths
take longest
time. Number
of iterations
run by the
algorithm to
learn about the
environment
also determines
the time.

Cannot be
compared
directly as
it predomi-
nantly involves
static analysis
more than
measurements.

Scalability

Large num-
ber of phases
observed to in-
crease analysis
time. There
is inherent
parallelism in
the technique
that can be ex-
ploited to make
it scalable. For
instance, par-
allel estimation
of worst case
IC (SWIC)
and worst case
CPI can be
carried out
and estimation
of worst case
CPI of several
phases can be
done in paral-
lel. IPET is
used to derive
SWIC in this
work. SWIC
can also be
derived using
tree based
schema or
graph theoreti-
cal algorithms
like longest
path search.

START-
OF SCOPES
is more scal-
able compared
to FULL. If
trace size is
large analysis
can take a lot
of time. In this
technique path
analysis and
cost derivation
is inseparable.

This tech-
nique also uses
IPET. Larger
segments make
input test
generation less
scalable.

This technique
also uses IPET
and gives more
accurate re-
sults compared
to when ipoints
are used with
tree based
schema. Using
IPET, location
of ipoints is
insensitive to
estimation
accuracy. Al-
ternatively,
tree based
schema, Itree
can be used
to obtain esti-
mates but less
accurate and
highly sensitive
to location of
ipoints.

Number of
tests to be run
is polynomial
in input size.
Computing
basis paths
is time con-
suming as it
involves feasi-
bility checking
using integer
programming
and SMT
solving which
is not easily
scalable.

Path based
technique is
scalable but
gives less accu-
rate estimates.
IPET gives
more accurate
estimates but
is less scalable
compared to
the path based
technique[6].

Computation of other related information apart from WCET

Mapping
WCET to path
is difficult,
however phases
that are likely
to lie on the
worst case
path can be
obtained with
little effort.

Path mapping
is very clear,
the tool is
user friendly
and has an
excellent GUI
and is used
extensively
in develop-
ment and
architectural
exploration
studies.

Since the tech-
nique uses
IPET, the
worst case
path cannot be
reconstructed
unless the
whole program
is a segment
(max seg).

Paths can be
reconstructed
using ipoints
hence worst
case path can
be identified.

Essentially
path based
hence worst
case path can
be obtained.

Using path
based represen-
tation can help
obtain worst
case path.
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Table 9.3: Comparison of proposed technique with other measurement-based tools with respect
to desirable characteristics of WCET analyzers.

Proposed RapiTime Segments IPG GameTime SWEET
Technique (TU Vienna)

Other Remarks

Since phase
markers are
tied to call
loop bound-
aries, compiler
optimizations
are not a
threat. The
technique is
simple, intu-
itive and highly
transparent to
the user and
works seam-
lessly across all
architectures.
Estimates can
get pessimistic
for programs
that are highly
structurally
complex
(where SWIC
>> MIC). In
such cases, ex-
haustive inputs
can be applied
and MIC can
be used in-
stead of SWIC.
High varia-
tion of CPI
also causes
pessimism
which can
be remedied
by applying
refinement to
phases.

Unified con-
texts improve
accuracy but
take more time
than separated
contexts. Time
stamps can
overflow for
lengthy execu-
tions. Source
code level in-
strumentation
especially at
FULL level can
impact pro-
gram execution
time. At such
times, object
level tracing
has to be ap-
plied to reduce
instrumenta-
tion overheads.
FULL level
can generate
very large
traces thereby
increasing
analysis time.

Infeasible
paths cutting
across seg-
ments need to
be specially
handled. The
tool performs
static analysis
at the source
code level
hence needs
assurance from
the compiler
that it will not
significantly
alter the struc-
ture of the
program.

Ipoints to path
reconstructibil-
ity is complex.
Additional
constraints
need to be
added to han-
dle infeasible
paths.

Loops have to
be completely
unrolled upto
their safe
bounds. Anal-
ysis assumes
that the timing
of the program
depends only
on control
flow although
timing can
also depend
on several
characteristics
of data that do
not determine
control flow.

To make use
of automatic
flow analysis,
program has
to be run with
the SWEET
research com-
piler. Pipeline
analysis re-
quires a highly
controlled
cpu model
and works
for pipelines
with small
to medium
complexity.
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9.1 Future Work

In this section we outline a few directions along which our work can be extended.� The techniques proposed in this thesis apply to single core architectures. Phase behavior

has been applied in multicore architectures too, though in different contexts such as core

assignment[84], data placement and cache performance improvement[58]. A similar study

can be carried out on such advanced architectures to estimate WCET. Since timing is

to be estimated, the effects of cache synchronization and bus traffic have to be carefully

accounted for. As several threads of a program can run in parallel on several cores, the

timing model would be much more complicated than what was discussed in the thesis.

Many cyber physical systems are distributed in nature. It would be interesting to see if

we can apply phase behavior in such systems.� The methods proposed to compute the theoretical upper bound described in this thesis

use absolute loop bounds. However, we could assign loop variables to loops and derive

bounds in the form of parametric timing equations which will help us obtain a parametric

WCET estimate[70, 67]. Depending on the loop bounds, the WCET appropriately would

change.� It would be very useful if we could model the architecture aspects such as cache size,

block size etc as part of the timing model, such that, we could predict WCET estimates

for small variations in these parameters without having to redo the whole process of

WCET analysis. Such an implementation could be very useful in architecture design

exploration studies when different architectures are evaluated to pick the appropriate one

for an application.� Phases are seen in other parameters such as energy and power as well[25]. A similar

model can be built to estimate worst case energy that would be very useful in embedded

systems that have strict constraints with respect to power consumption and energy used.

In closing, this thesis proposes several techniques that can give accurate worst case execution

time estimates associated with a particular probability for programs exhibiting phase behavior

with minimal instrumentation. The thesis also describes a technique to predict the dynamic

remaining worst case execution time of a program run. Phases have been used in various other
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applications such as architecture simulation reduction, memory foot print reduction, power

and energy optimizations and the like. This work describes how to apply phases in the context

of timing analysis. The thesis also proposes a correlation based technique that exploits the

inherent correlation between IC and CPI of a program that can give approximate WCET

estimates in programs that do not exhibit any phase behavior.



Appendix A

Chronos: Specifics and Usage

Chronos[94] is a static WCET analysis tool developed by the embedded software research

group at the National University of Singapore. It is released in the public domain and can be

downloaded from [99]. Chronos has been widely used in the real time and embedded systems

community for evaluation and comparison studies. We choose Chronos for comparison, as it

models the same simplescalar MIPS architecture that we use for carrying out our experiments.

Since Chronos is a static WCET analyzer, the tool provides an upper bound on the WCET

estimate of a program which can never be exceeded by any of the program runs. The Chronos

package consists of the main tool, linear programming solver based on LP[100], modified source

code of Simplescalar Version 3.0 [113], modified version of GCC Version 2.7.3 along with a few

binaries that comes along with Simplescalar- simpleutils-990811.tar.gz and simpletools-2v0.tgz.

The details of installation can be found in [100]. Apart from these set of binaries, Chronos

comes with a set of example programs and analysis outputs of these programs along with details

on how the estimates were obtained. These examples help the user to quickly start using the

tool with ease.

Chronos builds the program CFG out of the binary and carries out microarchitecture mod-

eling which computes the cost of executing each basic block on the given architecture supplied

in a config file. The format of specifying architecture components is similar to the format used

by Simplescalar. The inputs to Chronos are hence the binary and the architectural specifica-

tion given in the config file along with annotated loop bound information specified in a .cons

file. In most cases, Chronos automatically derives infeasible path information by structural

analysis[87]. The user can however populate the .cons file with additional flow constraints on
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the CFG including infeasible paths. Chronos estimates WCET using the implicit path enu-

meration technique by solving an ILP problem. The individual estimates of cost of executing

each basic blocks form the constants in the objective equation constructed for the purpose of

estimating WCET. The variables of the objective equation indicate the execution frequencies

of basic blocks which are to be maximized. The tool carries out structural analysis on the

CFG and forms additional linear constraints based on flow equations of the CFG and creates

an .lp file which consists of these equations in a format acceptable to the ILP solver. The user

can then invoke the ILP solver which processes these equations and maximizes the objective

equation subject to the constraints. The maximal value of the objective equation is the WCET

estimate.

Figure A.1: Sample CFG output by Chronos.

Chronos tool can be used to dump program CFG. A sample CFG output is as shown in

Figure A.1. Each procedure is addressed as proc[n]. Each entry in a procedure signifies a

basic block. The binary address for the first instruction in the basic block is also provided as

shown. At the end of each entry, there may be a set of numbers enclosed in square brackets

which indicate the basic blocks connected to the current basic block by edges. A procedure

call is indicated by a Pn at the end of an entry. For simple loops, Chronos computes loop

bound information automatically. For complex while loops or loops whose bounds cannot be

easily ascertained, in addition to the architectural specification in the config file, the user must
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specify loop bound information in a .cons file in the following format.

C<pi>.<bj> = Bk

C<pi>.<bj> - Bj C<pk>.<bm> < 0

Where, pi indicates the procedure number, bj indicates the basic block number and Bk is the

constant bound which is specified by the user. The first constraint specifies the bound on the

execution frequency of C<pi>.<bj>. The second constraint specifies that C<pi>.<bj> executes

atleast Bj times block C<pk>.<bm>.

The user can dump the program CFG using the following command.

commandline:> est -run CFG <benchmarkbinary>

Inorder to perform WCET analysis of a program, Chronos requires the program binary, the

architectural specification in the .config file and the set of constraints specified in the .cons file.

By running the following command

commandline:> est -config <benchmarkbinary.config> <benchmarkbinary>

an .lp file is generated which consists of the linear programming equation and the set of con-

straints derived from the CFG structure. By running the following command,

commandline:> lp solve -rxli xli CPLEX <benchmarkbinary.lp>

the final WCET estimate is obtained as output.
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RapiTime: Specifics and Usage

RapiTime[102] is a commercial measurements based WCET analyzer developed by the research

group at the University of York. RapiTime comes along with a user friendly guide that contains

the installation instructions in detail. Apart from the actual tool, RapiTime also provides a

tutorial package which consists of a set of examples which have been analyzed for WCET

using RapiTime. RapiTime is a hybrid measurements based analyzer as it combines the static

model of the software with detailed measurements of timing behavior obtained on the target

system. The static model of the program is built by automatically parsing the source code

to identify function boundaries, conditional structures and control flow. The static model is

then populated with the times taken to execute each part of the software, in this case, a basic

block. These times are derived from a trace of execution times of instrumented portions of the

program on the target. The trace is a list of tuples consisting of the identifier of the basic block

and its corresponding timestamp. The difference between the timestamp of the current basic

block and the next indicates the time taken to execute the current basic block.

RapiTime is a measurements based tool and hence provides support to instrument program

source code. RapiTime supports instrumentation at two levels- START OF SCOPES and

FULL. RapiTime also provides instrumentation at the FUNCTION level but this option has

not been observed to yield accurate WCET estimates. Hence we do not consider this option for

our study. FULL is the finest level of instrumentation as it is added at the beginning and end

of each block of code. This allows each individual sub-path through the code to be identified

and so enables detailed code coverage information to be obtained. FULL instrumentation

provides maximum accuracy in the computed worst case execution times and is the default
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profile. START OF SCOPES is a coarser level of instrumentation compared to FULL. In

case of START OF SCOPES, instrumentation points are added at the beginning of blocks of

code but not at the end. START OF SCOPES instrumentation can result in some increased

pessimism in the computed worst-case execution times.

The instrumentation code upon execution, writes the identifier of every instrumentation

point to an output port and the rapitime trace box adds a timestamp for each of these in-

strumentation points and stores the trace data. The resulting trace is then combined with the

static model of the program to generate reports. The trace data encodes paths that have been

traversed during execution and hence can be used to obtain various coverage information along

with average, best case and worst case execution times. RapiTime is based on probabilistic

worst case execution time analysis[29] that computes an execution time profile for each block

of code which contains distribution of execution times. Two types of distribution are stored.

One is the set of measured execution times observed and the other is the set of computed

distribution that shows the probability of the execution time exceeding certain values when the

worst case path through the code is taken.

Inorder to estimate WCET using RapiTime, we need to take the following steps. The

source code of the application that we want to analyze is coded in my application.c. This

file should contain a call to my main function which acts as a test driver and invokes the

application with various test data. All declarations can be placed in my application.h. If we

do not want RapiTime to analyze a particular function, procX, we should include the following

declaration within my application.h

#pragma RPT instrument ("procX", FALSE);

We should also exclude the test driver, my main function from the analysis as the purpose of

this function is only to test the application with various test data.

#pragma RPT instrument("my main function", FALSE);

Instrumentation options for functions that are to be analyzed should be specified in

my rpt annotations.h as follows, depending on the level of instrumentation chosen by the

user:

#pragma RPT instrument ("funcX", "TRUE", "FULL");

#pragma RPT instrument ("funcY", "TRUE", "START OF SCOPES");

....
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The main function should contain the following declarations.

#include "rpt.h"

// include all other header files

#pragma RPT instrument ("main", FALSE);

int main(void);

{

RPT init(void);

my main function();

RPT Output Trace();

return 0;

}

The root function of analysis must be specified by setting the value of ROOT in the makefile

to the name of the function desired. PROG must be specified to be the name of the appli-

cation, in this case, my application. OBJS should be specified as the set of object files and

ANNOT FILE should be specified to be the annotation file, my rpt annotations.h. The us-

age can be easily understood by looking at the example code that comes as part of the tutorial

package.

Once, make is executed, the program is processed in several stages. The source code is

converted to an instrumented code by the binary utility tool, cins for C code which is then

compiled and linked. cins also extracts structural information from each instrumented C source

file, which is stored in the form of an .xsc file corresponding to each C source file. xstutils,

another binary utility tool, analyzes the structural information contained in the .xsc file and

generates a single RapiTime data base file with the extension, .rtd. xstutils is responsible for

understanding annotations and thereby instruct RapiTime to behave in an appropriate way.

xstutils is responsible for signalling any errors with respect to instrumentation such as there

not being enough instrumentation points.

The instrumented executable can either be run using a simulator like SimIt-ARM-2.1[114]

that is used by RapiTime by default. RapiTime can also be interfaced to run on a native

platform to carry out measurements. Once the program is run, a trace file, trace.txt is generated

as output. Since instrumentation points can cover every basic block, the trace file size can be
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huge and is hence compressed into trace.rpz by RapiTime.

Once the trace is generated, traceutils pre-processes the trace data. For some large pro-

grams, the time stamps can exceed the size of timers used and can wrap around. This situation

is handled by executing traceutils in the following manner.

commandline:> traceutils.exe trace.txt -o trace.txt -w <bitsize>

where <bitsize> should be a power of 2 and is large enough to ensure wraparound is fixed.

Finally the pre-processed trace is parsed by a traceparser which combines the computed

time measurements of each basic blocks along with the measured and computed distribution

information and program structure to give the final WCET estimates. RapiTime, being a

probabilistic WCET analyzer generates estimates at various probability values. The end user

can pick the estimate at the desired probability. Apart from WCET information, RapiTime

also generates various reports that give valuable information about the program with respect

to coverage by instrumentation points, call-tree which shows potential functions lying on the

worst case path, execution time profiles that show variability in execution times due to hardware

effects, untested code, code not on the worst case path, contribution of each basic block to the

worst case execution time, observed distribution of execution times for the worst case path,

links to source code, search and sort facilities on all data, variability in end to end execution

times across different invocations.
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Laura Kovacs, Felix Krause, Marianne de Michiel, Mads Christian Olesen, Adrian

Prantl, Wolfgang Puffitsch, Christine Rochange, Martin Schoeberl, Simon Wegener,

Michael Zolda and Jakob Zwirchmayr. The WCET Tool Challenge. In Proceedings of

11th International Workshop on Worst-Case Execution Time (WCET) Analysis, 2011,

http://www.mrtc.mdh.se/index.php?choice=publications&id=2620

[65] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,

David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,

Frank Muller, Isabelle Puaut, Peter Puschner, Jan Staschulat and Per Stenström. The

Worst-Case Execution Time Problem - Overview of Methods and Survey of Tools. In

ACM Transactions on Embedded Computing Systems (TECS), Volume 7(3), 2008, pages

1-53.

[66] Sanjit A. Seshia and Jonathan Kotker. GameTime: A Toolkit for Timing Analysis of

Software. In Proceedings of Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), 2011, pages 388-392.

[67] Sebastian Altmeyer, Christian Humbert, Björn Lisper and Reinhard Wilhelm. Parametric

Timing Analysis for Complex Architectures. The Fourteenth IEEE Internationl Conference

on Embedded and Real-Time Computing Systems and Applications, 2008, pages 367-376.



REFERENCES 244

[68] Sheldon M Ross. Introduction to Probability and Statistics for Engineers and Scientists.

Wiley, 2009.

[69] Sheayun Lee, Jaejin Lee, Chang Yun Park and Sang Lyul Min. A flexible tradeoff between

code size and WCET using a dual instruction set processor. In Proceedings of the 8th

InternationalWorkshop on Software and Compilers for Embedded Systems (SCOPES). Vol.

3199 of Lecture Notes in Computer Science, 2004, pages 244-258.

[70] Sibin Mohan, Frank Mueller, William Hawkins, Michael Root, Christopher Healy and

David Whalley. ParaScale: Exploiting Parametric Timing Analysis for Real-Time Sched-

ulers and Dynamic Voltage Scaling. Proceedings of the IEEE Real-Time Systems Sympo-

sium, 2005, pages 233-242.

[71] S. Edgar and Alan Burns. Statistical Analysis of WCET for Scheduling. In Proceedings of

RTSS, 2001, pages 215-224.

[72] Srikant, Y. N. and Shankar, Priti. The Compiler Design Handbook: Optimizations and

Machine Code Generation, Second Edition. CRC Press, Inc., 2007, ISBN:142004382X

9781420043822

[73] Stefan Stattelmann and Florian Martin. On the Use of Context Information for Precise

Measurement-Based Execution Time Estimation. In Proceedings of WCET, 2010, pages

64-76.

[74] Stefan Schaefer, Bernhard Scholz, Stefan M. Petters and Gernot Heiser. Static Analysis

Support for Measurement-based WCET Analysis, In IEEE Conference on Embedded and

real-time computing systems and applications, Work-in-progress session, 2006.

[75] Sudipta Chattopadhyay, Chong Lee Kee, Abhik Roychoudury, Timon Kelter, Peter Mar-

wedel and Heiko Falk. A Unified WCET Analysis Framework for Multi-core Platforms.

In IEEE Real-Time and Embedded Technology and Applications Symposium, 2012, pages

99-108.

[76] Sudipta Chattopadhyay and Abhik Roychoudury. Unified Cache Modeling for WCET

Analysis and Layout Optimizations. In Proceedings of RTSS, 2009, pages 47-56.



REFERENCES 245

[77] Sven Bünte. A Benchmarking Suite for Measurement Based WCET Analysis. In ICSTW,

2008, pages 353-356.

[78] Sven Bünte, Michael Zolda and Raimund Kirner. Let’s get less optimistic in measurement-

based timing analysis. In Proceedings of SIES, 2011, pages 204-212.

[79] Sven Bünte, Michael Zolda, Michael Tautschnig and Raimund Kirner. Improving the Con-

fidence in Measurement-Based Timing Analysis. In 14th IEEE International Symposium

on Object/Component/Service-Oriented Real-Time Distributed Computing, 2011, pages

144-151.

[80] Thomas Lundqvist and Per Stenström. An integrated path and timing analysis method

based on cycle-level symbolic execution. In Real-Time Systems Volume 17, 1999, pages

183-207.

[81] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically scheduled mi-

croprocessors. In Proceedings of the 20th IEEE RTSS, 1999, pages 12-21.

[82] Thomas Lundqvist and Patrik Sandin. Towards a practical WCET analysis approach based

on testing. In Work-in-progress session of ECRTS, 2008.

[83] Tushar Kumar, Jaswanth Sreeram, Romain Cledat and Santosh Pande. A profile-driven

statistical analysis framework for the design optimization of soft real-time applications.

Proceedings of ESEC/SIGSOFT FSE, 2007, pages 529-532.

[84] Tyler Sondag and Hridesh Rajan. Phase-based Tuning for Better Utilization of

Performance-Asymmetric Multicore Processors. In Proceedings of CGO, 2011, pages 11-20.

[85] Usman Khan and Iain Bate. WCET Analysis of Modern Processors Using Multi-Criteria

Optimisation. In Proceedings of the 1st International Symposium on Search Based Software

Engineering, 2009, pages 103-112.

[86] Vivy Suhendra, Tulika Mitra, Abhik Roychoudury and Ting Chen. WCET centric data

allocation to scratchpad memory. In Proceedings of RTSS, 2005, pages 223-232.

[87] Vivy Suhendra, Tulika Mitra, Abhik Roychoudury and Ting Chen. Efficient Detection and

Exploitation of Infeasible Paths for Software Timing Analysis. In Proceedings of DAC,

2006.



REFERENCES 246

[88] W. Liu and M. C. Huang. EXPERT: Expedited Simulation Exploiting Program Behavior

Repetition. In Proceedings of ICS, 2004.

[89] W. Zhao, D. Whalley, C. Healy and F. Mueller. WCET code positioning. In Proceedings

of RTSS, 2004, pages 81-91.

[90] Wegener, Joachim and Grochtmann, Matthias. Verifying Timing Constraints of Real-Time

Systems by Means of Evolutionary Testing. In the Journal of Real-Time Systems, Volume

15(3), 1998, pages 275-298.

[91] Wolf F. Behavioral Intervals in Embedded Software. Kluwer Academic Publishers. 2002.

[92] Wolf F., Ernst R. and Ye W. Path Clustering in Software Timing Analysis. In IEEE

Transactions on VLSI Systems 9(6), 2001, pages 773-782.

[93] W. Pugh. The Omega Test: A Fast ad Practical Integer Programming Algorithm for

Dependence Analysis. In ACM/IEEE Conference on Supercomputing, 1991.

[94] Xianfeng Li, Yun Liang, Tulika Mitra and Abhik Roychoudury. Chronos: A Timing An-

alyzer for Embedded Software. Science of Computer Programming, Vol. 69(1-3), 2007,

pages 56-67, http://www.comp.nus.edu.sg/∼rpembed/chronos/download.html

[95] Yan-Tsun Steven Li and Sharad Malik. Performance Analysis of Embedded Software Using

Implicit Path Enumeration. In IEEE Transactions on Computer-aided Design of Integrated

Circuits and Systems, Vol. 16(12), 1997, pages 1477-1487.

[96] Yan-Tsun Steven Li. Cinderella 3.0 WCET analyzer.

http://www.princeton.edu/∼yauli/cinderella-3.0/

[97] Yue Lu, Thomas Nolte, Iain Bate and Liliana Cucu-Grosjean. A New Way about using

Statistical Analysis of Worst-Case Execution Times. In ACM SIGBED Review, 8(2), 2011.

[98] Yue Lu, Thomas Nolte, Iain Bate and Liliana Cucu-Grosjean. A Trace-Based Statistical

Worst-Case Execution Time Analysis of Component-Based Real-Time Embedded Systems.

In Proceedings of ETFA, 2011.

[99] http://www.comp.nus.edu.sg/∼rpembed/chronos/download.html



REFERENCES 247

[100] http://www.comp.nus.edu.sg/∼rpembed/chronos/chronos manual.pdf

[101] http://icl.cs.utk.edu/papi

[102] http://www.rapitasystems.com

[103] http://www.mrtc.mdh.se/projects/WCC/2011/doku.php?id=bench:debie1

[104] http://www.mrtc.mdh.se/index.php?choice=publications&id=2620

[105] http://software.intel.com/en-us/intel-vtune-amplifier-xe

[106] http://www.spaceinfo.fi

[107] http://www.tidorum.fi/en/

[108] http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

[109] http://www.eecs.umich.edu/mibench/

[110] http://www.mathworks.in/products/matlab/

[111] http://www.absint.com

[112] http://www.bound-t.com

[113] http://www.simplescalar.com

[114] http://simit-arm.sourceforge.net/



Index

Abstract, 5

Front matter, 4

I.I.Sc. logo, 4

Index, 8

Line spacing, 6

page headings, 9

Preface Section, 4

Title page, 3

248


