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Abstract

Graphs model relationships across real-world entities in web graphs, social network graphs,
and road network graphs. Graph algorithms analyze and transform a graph to discover graph
properties or to apply a computation. For instance, a pagerank algorithm computes a rank for
each page in a webgraph, and a community detection algorithm discovers likely communities in
a social network, while a shortest path algorithm computes the quickest way to reach a place
from another, in a road network. In Domains such as social information systems, the number
of edges can be in billions or trillions. Such large graphs are processed on distributed computer
systems or clusters.

Graph algorithms can be executed on multi-core CPUs, GPUs with thousands of cores,
multi-GPU devices, and CPU+GPU clusters, depending on the size of the graph object. While
programming such algorithms on heterogeneous targets, a programmer is required to deal with
parallelism and and also manage explicit data communication between distributed devices.
This implies that a programmer is required to learn CUDA, OpenMP, MPI, etc., and also the
details of the hardware architecture. Such codes are error prone and difficult to debug. A
Domain Specific Language (DSL) which hides all the hardware details and lets the programmer
concentrate only the algorithmic logic will be very useful.

With this as the research goal, Falcon, graph DSL and its compiler have been developed.
Falcon programs are explicitly parallel and Falcon hides all the hardware details from the
programmer. Large graphs that do not fit into the memory of a single device are automatically
partitioned by the Falcon compiler. Another feature of Falcon is that it supports mutation of
graph objects and thus enables programming dynamic graph algorithms. The Falcon compiler
converts a single DSL code to heterogeneous targets such as multi-core CPUs, GPUs, multi-GPU
devices, and CPU+GPU clusters. Compiled codes of Falcon match or outperform state-of-the-

art graph frameworks for different target platforms and benchmarks.
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Chapter 1

Introduction

1.1 Motivation

Graphs model relationships across real world entities in web graphs, social network graphs,
and road network graphs. Graph algorithms analyze and transform a graph to discover graph
properties or to apply a computation. For instance, a pagerank algorithm computes a rank for
each page in the webgraph, a community detection algorithm discovers likely communities in a
social network, while a shortest path algorithm computes the quickest way to reach from one
place to another in a road network.

An algorithm is irregular if its data access pattern or control-flow pattern is unpredictable
at compile time. Static analysis techniques prove inadequate to deal with the analysis and
parallelization of irregular algorithms, and we require dynamic techniques to deal with such
situations. Traditionally, graph algorithms have been perceived to be difficult to analyze as
well as parallelize because they are irregular.

GPUs further complicate graph algorithm implementations: managing separate memory
spaces of CPU and GPU, SIMD (single instruction multiple data) execution, exposed thread
hierarchy, asynchronous CPU/GPU execution, etc. Hand-written and efficient implementations
are not only difficult to code and debug, but are also error prone.

Depending on the domain, the number of edges in a graph may vary and in domains such
as social information systems, the number of edges can be in billions or trillions. Such large
graphs are processed on distributed computer systems or clusters. Programming such systems
requires the Message Passing Interface(MPI), which provides APIs for sending and receiving
data across machines, distributed shared memory, etc. Graph algorithms can be executed on
multi-core CPU clusters, massively parallel GPU clusters and multi-GPU devices with each

GPU having thousands of cores. There are many frameworks for large scale graph processing



on CPU clusters. Google’s Pregel [65], which uses the Bulk Synchronous Parallel (BSP) model
of execution over vertices and PowerGraph [46] which follows Gather-Apply-Scatter (GAS)
model of execution over edges are examples of such frameworks. Distributed processing will be
efficient only if a graph is partitioned and distributed across machines properly, so that there is
work balance on all the nodes and communication between the nodes is minimized. Such large
graphs are partitioned using random partitioning, and graph partitioning tools have failed to
partition such graphs properly with their heuristics.

It would be really helpful if a programmer can specify a graph algorithm in a hardware
independent manner and focus solely on the algorithmic logic. Unfortunately, such an approach
which essentially requires auto-parallelization of sequential code provides limited performance
in general when compared to a manually parallelized hardware-centric code (by an expert).
Our goal in this work is to bridge this performance gap between auto-generated code and a
manually crafted implementation. We wish to let the programmer write the algorithm at a
higher level (much higher than CUDA and OpenCL), without any hardware-centric constructs.
For a distributed system, the programmer need not specify how the graph should be partitioned
across distributed machines, and how communication and synchronization between machines
should happen. To achieve a performance close to that of a hand crafted code, we make two
compromises: (i) we allow only graph algorithms to be specified (i.e., we do not provide special
constructs for other types of algorithms), and (ii) we require the code to be explicitly parallel.
The first compromise trades generality for speed, while the second one allows our code generator
to emit hardware-specific code.

With this in focus Falcon, a domain specific language (DSL) for graph processing has been
developed and implemented. This makes programming graph algorithms easier. The DSL codes
are explicitly parallel and the same DSL code can be converted to executables for CPU, GPU,
multi-GPU machine, CPU cluster, GPU cluster and CPU+GPU cluster. The target system
for which the executable is to be created can be specified as a command line argument during
the compilation of the DSL code. The Falcon compiler allows mutation of graph objects and
hence dynamic graph algorithms can be programmed in Falcon. A Falcon programmer need
not learn MPI, OpenMP, CUDA etc., and the details of the hardware architecture. Falcon
programs are at a higher level of abstraction compared to CUDA/C++ code for GPU/CPU,
and distributed framework (like PowerGraph) codes. It follows the BSP [95] model of execution.
Experimental evaluation shows that our implementations outperform or match with the state-
of-the-art frameworks which work for single GPU, multi-core CPU, CPU cluster and multi-GPU
devices. The important feature of the Falcon is that the a single DSL code can be converted

to all the targets mentioned above.



1.2 Contributions of our work

We have designed and developed a domain specific language (DSL), Falcon, for graph manip-

ulation. Falcon supports a wide range of target systems which include
e A single machine with multi-core CPU. The machine can also have one or more GPUs.
e CPU clusters, with each machine having a multi-core CPU and private memory.

e GPU clusters, with each machine having a GPU. Such a machine will also have a multi-

core CPU on which the operating system runs.

e CPU+GPU clusters, where both CPU and GPU of each machine in the cluster is used

for computation.

A single DSL code written by a programmer can be converted to all the target systems men-
tioned above by giving proper command line arguments to the Falcon compiler. This makes
programming easier, as a programmer is required to concentrate only on the algorithmic logic
and need not learn different libraries, languages and the details of device architectures, which
are required for efficient manual coding. For example, if programmer has no framework avail-
able, he/she will be forced to learn CUDA, OpenMP, Message Passing Interface (MPI) etc., and
device architectures such as SIMT execution model of GPU, distributed memory of clusters,
etc. Programming using these APIs and libraries is error prone and programs are difficult to
debug. The Falcon compiler generates high level language codes from the DSL code with these
libraries. The generated code is then compiled with the appropriate device-specific compilers
and libraries to create the executables. This approach enables better productivity.

Falcon extends the C language with additional data types relevant to graph processing. It
has parallel and synchronization constructs for specifying explicitly parallel graph algorithms.
Synchronization constructs are important in graph algorithms as most of the algorithms are
irregular. Falcon also support atomic and reduction operations. The Falcon compiler creates
an abstract syntax tree (AST) from the input DSL program. Traversals on this AST emit code
for appropriate targets.

Unlike previous reported DSLs for graph algorithms [53, 79], Falcon supports mutation of
graph objects, where the structure of the graph changes dynamically. This feature is important
in current social networks. For example, if WebGraph is taken as a graph where a webpage is
a vertex and a link to a wepage y from a webpage x is an edge x — y of the graph. WebGraph
changes over time due to addition and deletion of webpages and links. This requires updating

the pagerank value of each webpage and dynamic algorithms allow new values to be calculated
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from current values. This saves a lot of time compared to computation of values from scratch.
Another example is the computation of the shortest distance on road networks, which also
change over time.

Falcon supports devices with more than one GPU (multi-GPU devices). It allows running
different algorithms on the same input graph in parallel on multi-GPU devices (assuming that
the graph fits within the GPU memory). To the best of our knowledge, there is no graph
framework or DSL which supports this.

The Falcon compiler generates code for distributed systems, and thereby enabling com-
putations on large scale graphs. In such a system, the Falcon compiler does following things

automatically.

e Partitioning the input graph and storing it as subgraphs on each device participating in

the computation.
e Communication of graph properties across devices using the BSP execution model.
e Generation of optimized communication code by sending only modified values.

The CUDA framework does not have any support for a barrier for the entire kernel. Similarly
MPI library does not provide a distributed locking mechanism. The Falcon compiler has
implemented support for both of these in software and provides them to the programmer as
constructs in Falcon.

Meshes can be viewed as graphs. For example, a mesh of triangles can be viewed as a
graph with points and edges, with the properties that an edge will be part of one triangle
(boundary edge) or two triangles. If a triangle is taken as a graph property, it can have up
to three neighbouring triangles, three angles, etc. Falcon allows adding extra properties to
points and vertices in the graph as found in previous graph DSLs. The novelty of Falcon
is that it allows properties to be added to a graph, such as triangle, and process the graph
as a mesh of triangles. This feature of Falcon allows processing dynamic meshes where the
structure of the mesh changes during program execution. Algorithms such as Delaunay Mesh
Refinement (DMR) [26] have been implemented in Falcon for all the targets mentioned before.
Mesh algorithm are used in computational geometry.

Falcon allows writing different implementations for the same algorithm using its construc-
tors and data types. For example, the single source shortest path (SSSP) algorithm can be
implemented in different ways in Falcon and each implementation is meant for a particular

target system and a set of input graph properties. This is discussed in detail in Chapter 2.



In brief, to the best of our knowledge, Falcon is the first framework which supports such a

wide variety of architectures for implementing static and dynamic graph algorithms.

1.3 Organization of the thesis

Rest of the thesis is organized as described below. Chapter 2 discusses basic graph related
definitions, well known graph algorithms, different ways of implementing graph algorithms,
hardware architectures, and different execution models. Chapter 3 discusses past research on
graph frameworks for heterogeneous distributed systems. Chapter 4 explains the design of
Falcon DSL. Chapter 5 deals with code generation and experimental evaluation on a single
machine. Chapter 6 contains the details of code generation for distributed execution of graph

algorithms. We conclude in Chapter 7 and provide directions for future work.



Chapter 2

Preliminaries and Background

2.1 Graph definitions [16]

A graph is an abstract structure that represents a structural relationship between entities. A

graph G(V,E) consists of a set of vertices V and a set of edges E. An edge in E is a pair of

vertices from V. A graph can have a set of optional mutable properties D associated with V

or E. A graph is called a weighted graph if it has a weight or a number associated with each

edge. Some algorithms require the weight to be a nonnegative integer number or real number

or positive number etc. A graph is undirected if all its edges are bidirectional. A graph is

directed if all its edges are directed from one vertex to another. For a directed edge e(u—v), u

is called the source and v is called the sink of the edge e, u is called a predecessor of v and v is

a successor of u. An example of an unweighted directed graph is shown in Figure 2.1(a) with
V = {vl, v2, v3, v4, vb} and

E= {el, €2, €3, e4, eb, €6, €7, e8 } where

el={vl, v2}, e2={vl, v3}, e3={v2, v4}, ed={v3, vb}, eb={v3, v4},

e6={v3, v2}, e7={v4, v5}, e8={vh, v5}

Figure 2.1(b) shows a weighted directed graph with the same set of vertices and edges of
Figure 2.1(a).

An edge with identical ends is called a loop. Edge e8 in Figure 2.1(a) is a loop. An edge
with distinct end points is called a link. A graph is simple if it has no self loops and no two
edges join the same pair of vertices (e.g u — v — u). Two or more vertices are called adjacent
vertices if they are connected by a common edge. Two or more edges are called adjacent edges

if they are incident with a common vertex. We denote the number elements in V and E by



A Directed Graph A Directed weighted Graph
14

(a) A directed graph (b) A weighted directed graph

Figure 2.1: Examples for directed unweighted and weighted graph

|V| and |E| respectively. The out-degree of a vertex is defined as the number of outgoing edges
from the vertex. The in-degree of a vertex is defined as the number of incoming edges to the
vertex. A simple graph in which each pair of vertices is joined using separate edges is called a
complete graph. The diameter of a graph is defined as the greatest distance between any pair
of vertices.

A graph G(V, E) is a bipartite graph if the vertex set V' can be partitioned into two disjoint
subsets X and Y, such that each edge has one end in X and the other end in Y. The partition
(X,Y) is called a bipartition of the graph G. An example of a bipartite graph is a movie-actor
graph where the set X represents movies and the set Y represents actors and the edges are
between an element m € X to an element a € Y, denoting “a is acted in movie m”. A graph
is k-partite, if the vertex set can be partitioned into k£ disjoint subsets, such that no edge has
both end points in the same subset.

A graph Gy is a subgraph of G if V(Gs) C V(G) and G(Es) € E(G) and D(Gj) is a
restriction of D(G). When G5 C G and G # G, Gy is a proper subgraph of G and G is a proper
supergraph of G5. Let f:E— F be a function from a set E to a set F, so that the domain of f
dom is given by dom(f)CE. If a set A is a subset of E (AC E), then the restriction of f to A is
given by the function f4: A— F.

A path in a graph G(V,E) from vertex z; to z, is a sequence of vertices {z1,%s,...,z,} such
that (z1,22), (22,23), ..., (Z(n—1),%5) € E and each x; are distinct. A cycle of a graph G(V,E) is
a set B/ C FE that forms a path such that the first and last vertex of the path are the same. A
graph is called cyclic graph if it has at least one path which is a cycle. A graph is called acyclic
if has no path which forms a cycle. A tree is a undirected, connected, acyclic graph. For two
vertices u,ve V of a graph G(V,E), v is reachable from u if there is a path from u to v, otherwise
v is unreachable from u.

A graph G(V, E) is connected when there is a path between every pair of vertices in V. In



a connected graph, there are no unreachable vertices. A graph that is not connected is called a
disconnected graph. A spanning tree T' of an undirected, connected graph G is a subgraph that

is a tree which includes all the vertices of G and number of edges in 7" is |V| — 1.

2.2  Well-known graph algorithms [31]

In this section we look at well known graph algorithms, which have applications in different
areas of science [31] and forms a part of some of our benchmarks.

Breadth First Search (BFS) is one of the simplest algorithms for traversing a graph. Given
a directed or undirected graph G(V, F) and a distinguished source vertex s, BFS explores the
edges of G to find every vertex that is reachable from s. It computes the distance (smallest
number of edges) from s to each reachable vertex. For any vertex v reachable from s, a simple
path from s to v corresponds to a shortest path from s to v in G, that is, a path containing
the smallest number of edges. BFS algorithms are used in many applications such as the
Ford— Fulkerson algorithm for computing the maximum flow in a network.

Depth First Search (DFS) is another algorithm for traversing the vertices in a graph, where
it searches deeper in the graph whenever possible. DF'S traverses the unexplored outgoing edges
of the most recently discovered vertex v. Once all the outgoing edges of v are traversed, the
search starts from the unexplored edges of the parent of the vertex v. As an example of its
applications, DF'S is used to find connected components of a graph .

Single Source Shortest Path (SSSP) algorithm [105] is used to find a path from a source
vertex to every vertex in V, with minimum weight in a weighted, directed graph G(V,E). One
popular SSSP algorithm is the Bellman-Ford Algorithm [3], which also finds negative cycles
in a graph with negative weights. Dijkstra’s algorithm [55] solves the SSSP problem on a
weighted, directed graph G(V,E) for the case in which all the edge weights are nonnegative.
SSSP algorithms are applied automatically to find the distance between two locations in systems
like Google Maps and GPS (Global Positioning System).

Minimum Spanning Tree (MST) is a subset of the edges of a connected, weighted undirected
graph that connects all the vertices together, without any cycles and has minimum possible total
edge weight. Any undirected graph (not necessarily connected) has a minimum spanning forest,
which is the union of the minimum spanning trees for its connected components. Well know
algorithms for MST computation are Prim’s [2] and Kruskal’s [1] algorithms. Boruvka’s MST
algorithm [90] uses the Union-Find data structure to find the MST. MST has direct applications
in design of networks including telecommunication networks and transport networks.
PageRank algorithm was developed by Larry Page and Sergey Brin in 1996 as part of a

research on search engines in 1996 [61]. It is used to rank a Webgraph and is used to give



priority to each wurl or web-page in the World Wide Web (WWW). The pagerank value is used
by search engines to rank web pages. The algorithm uses a dampling factor denoted by d, which
is usually set to 0.85. Then pagerank pr of a vertex v ( url in Webgraph) in a graph G(V,E) is
defined by the equation given below.

pr(v) = (1 —d) + N +d x Sum(pr(u)/out-degree(u)), (Yu,v € VA e(u —v) € E) A N==|V]|.
Survey Propagation is an algorithm for finding an approximate solution to the Boolean
Satisfiability Problem (SAT) [18] that takes a k-SAT formula as input, constructs a bipartite
factor graph over its literals and constraints, propagates probabilities along its edges, and deletes
a vertex when its associated probability is close enough to 0 or 1.

K-core of a graph is the largest subgraph with all the vertices having minimum degree K [13].
The K-core algorithm is used to study the clustering structure of social network graphs. This
algorithm has applications in areas such as network analysis and computational biology.
Triangle Counting algorithm counts the number of triangles in a graph [94]. The triangle
counting algorithm has applications in social network analysis.

Connected Components- Two vertices of an undirected graph are in the same connected
component if and only if there is a path between them. A directed graph is weakly connected
if it is connected without considering the direction of edges. A directed graph is strongly
connected if there is a directed path between every pair of vertices. A weakly connected
component(WCC or CC) of G(V,E) [90] is a set of vertices V' C V such that there is an
undirected path between every pair of vertices in V’. A strongly connected component
(SCC) [91] of a directed graph G(V,E) is a set of vertices V' C V such that there is a directed
path between every pair of vertices in V'. SCC algorithms can detect cyclic dependencies in
programs and communities in social network graphs.

There are many graph algorithms which have been proved to be NP-Complete. Usually,
these algorithms are solved with heuristics. Some of the well know NP-Complete graph prob-
lems are discussed below.

Graph Coloring is a way of coloring the vertices and edges of a graph [43]. A coloring of
graph such that no two adjacent vertices share the same color is called a verter coloring of
graph. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges
share the same color. A coloring using at most k colors is called k-coloring. Graph coloring has
applications in process scheduling, register allocation phase of a compiler and also in pattern
matching.

A Vertex Cover of an undirected graph G(V,E) is a subset V' C V satisfying the condition:
if e(u,v) is an edge of G, then either u € V' or v € V' (or both) [23]. The size of a vertex cover

is the number of vertices in it. The vertex cover problem is to find a vertex cover of minimum



size in a given undirected graph. The vertex cover problem has applications in hypergraphs.
Travelling Salesman Problem- In the Travelling Salesman problem, we are given a com-
plete, weighted, undirected graph G (V, E) with positive weights for edges and we are required
to find a tour of G with minimum cost, where every vertex is visited once [52]. This algorithm
has applications in microchip manufacturing, DNA sequencing etc.

A Clique in an undirected graph G(V,E) is a subset V' C V' of vertices, each pair of which is
connected by an edge in E [20]. A clique is a complete subgraph of G. The size of a clique is the
number of vertices it contains. The clique problem is defined as finding a clique of maximum
size in the graph G. The clique problem has applications in social networks, bioinformatics and

computational chemistry.

2.3 Graph storage formats

Figures 2.2(a) and 2.2(b) shows two graph storage schemes namely Adjacency Matrix format
and Compress Sparse Row (CSR) Format respectively for the input graph given in Figure 2.3.
The adjacenary matrix format has a storage overhead of O(|V|?). If the input graph is sparse,

most of the entries in the input graph will be invalid (0o) and this results in suboptimal storage

utilization.
S U v t w
s 0 5 100 00 00 s U v t w
U 00 0 10 80 115 index 0 2 5 6 7 7
v 00 00 0 40 00 vertices | u v v t W t W
t 00 00 00 0 18 weight 5 100 | 10 80 110 | 40 18
(b) CSR FORMAT
w 00 00 00 00 0

(a) ADJACENCY MATRIX

Figure 2.2: Representation of Graph in Figure 2.3

In the CSR format, the graph storage use three one dimensional arrays. The edges of the
graph object are stored using two arrays vertices and weight. The edges with a source vertex
v are stored in adjacent locations starting from location index/0]. The indez[z] (0 < z<|V])
stores the starting index in the wvertices and weight arrays for edges with source vertex x. For

example
e (s,u) and (s,v): two entries of vertices and weight arrays starting from index/0/(=0).
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(di\;?;f;?éd) s u v t w
initial (0,-) (00, =) | (00,=) | (00,—) | (00,—)
itrl (0,-) (5,8) (100,8) | (00, —) | (o0, —)
itr2 (0,-) (5,8) (15,u) | (85,u) | (120,u)
itr3 (0,-) (5,8) (15,u) | (55,v) | (103,t)
itrd (0,) (5,8) (15,u) | (55,v) | (73,t)
final (0,-) (5,8) (15,u) | (55,v) | (73,t)

Table 2.1. SSSP computation using Algorithm 1 Figure 2.3. An input graph for SSSP algorithm

e (w,v),(ut) and (u,w) : three entries of vertices and weight arrays starting from in-

dex[1](=2).

This representation has a storage overhead of |V|+1 for the index array and |E| for the vertices
and the weight arrays. So, the total overhead is |V| 4+ 1+ 2 x |E| or O(V + E). This saves a
lot of space for sparse graphs and most natural graphs are sparse.

Coordinate List (COO) format is another popular graph storage format. It stores a graph
object as list of (src-vertex, dst-vertex, weight) tuples. The tuples are sorted by the ascending
order of (src-vertex, dst-vertex) pair to have improved locality of access. This format also saves
space and storage complexity is 3 x |E| or O(E) and is suitable for sparse graphs. The COO
format of the graph in Figure 2.3 will have one entry for each edge as given below.

(s, u, 5), (s, v, 100), (u, v, 10), (u, t, 80), (u, w, 1150), (v, t, 40), (t, w, 18).

11



Algorithm 1: Bellman-Ford SSSP algorithm
1 for( i=0to |V]-1 ){

2

distancel[i|= oo;
3
4}
5 distance[s] = 0;

6 for( 1 =1to|V]-1){

7 for( each edge (u, v) with weight w ){
8 if( distance[u] + w <distance[v] ){

distance[v] = distance[u] + w;

predecessor[i] = null;

10 predecessor[v] = u;

11 }

12 }

13 }

for( each edge (u, v) with weight w in edges ){
15 if( distancefu] + w <distance[v] ){

error “negative-weight cycle in Graph”

1

IS

16

17

18 }
19 }

20 return distance[], predecessor|];

exit;

Here we discuss different ways of computing SSSP (using different algorithms) for a directed
graph G(V,E). It shows that there are many possible implementations for a given algorithm

with different storage and computational complexities.

2.3.1 Bellman-Ford algorithm

Figure 2.3 shows a sample input graph and Table 2.1 shows a possible SSSP computation for the
graph using Algorithm 1. Assume the algorithm takes the edges in the order (t—w), (uv—w),
(v—t), (u—t), (u—v), (s—u), (s—wv). The table shows the vertices whose distances are reduced
in blue color. It shows the predecessor in the shortest path along with the shortest distance.
The vertex s is taken as the source vertex. The computational complexity of Bellman-Ford
algorithm is O(V x E).

The above algorithm is purely sequential with one edge processed at a time. But the al-

gorithm can be modified to a parallel version where multiple edges are processed at the same

12



time by different processors in a device.

2.3.2 Worklist based SSSP computation

iteration | vertites s(dist, pred) | u(dist, pred) | v(dist, pred) | t(dist, pred) | w(dist, pred)
initial NIL (0:-) (00, —) (00, —) (00, ) (00, )
itrl s (0,-) (5,5) (100,s) (00,-) (OO =)
itr2 v (0,) (5,5) (15,1) (85,1) (120,u)

itr3 WtV (0,) (5,5) (15,1) (55,v) (103.t)

itrd Wt (0,) (5.5) (15,u) (55,v) (73.t)

itr5 NIL (0,) (5.5) (15,u) (55,v) (73,t)

Table 2.2. SSSP computation using Algorithm 2

Algorithm 2 shows the pseudo-code for a worklist based SSSP computation. The above
algorithm requires that there is no negative cycle in the graph. The distance and predecessor of
all vertices are initialized as in Algorithm 1 and distance of source vertex s is then made zero.
Then computation proceeds using two worklists current and next, which can store a subset
of vertices in the graph. The source vertex s is added to the worklist current (Line 7). The
computation happens in the while loop (Line 8-20), which exits when the shortest distance to
all the reachable vertices are computed. In the while loop, each vertex u in the worklist current
is taken (Line 9) and its outgoing edges are processed in the inner loop ( Lines 10-16).

For each edge e(u — v) taken for processing, the distance reduction is done as in Algorithm 1.
If the distance of the vertex vis reduced, it is added to the worklist next (Line 14), which contains
the vertices to be processed in the next iteration of the while loop. Once all the elements in
current are processed, worklists current and next swapped (Line 18), making size of next zero.
After the swap of next and current worklist, size of current will be number of elements added
to next during the last execution of the loop in Lines 9-17. If no elements are added to next,
size of current after swap operation will be zero, this is the fix-point for computation and the
algorithm terminates. The above algorithm has a computation complexity of O(V + FE) which
is much better than the Bellman-Ford algorithm complexity of O(V x E). But the algorithm
has the the restriction that there should be no negative cycle in the graph, otherwise it will
go into an infinite loop. Table 2.2 shows the iterations of Algorithm 2 for the input graph in
Figure 2.3. The number of iterations of algorithm is the same as that of the Bellman-Ford
algorithm( |V| — 1), but the Bellman-Ford algorithm in each iteration traverses all the edges,

while the worklist based algorithm traverses each edge only once over all the iterations, thus
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Algorithm 2: Worklist based SSSP algorithm

1 for( each vertex v in V ){

2 distance[v]= o0;

3 predecessor[v] = null;

4}

5 distance[s] = 0;

6 Worklist<vertex >current,next;

7 current.add(s);

s while( 7 ){

9 for( each vertex u In current ){

10 for( each edge (u, v) with weight w ){
11 if( distance[u] + w <distance[v] ){
12 distance[v] = distance[u] + w;
13 predecessor[v] = u;

14 next.add(v);

15 }

16 }

17 }

18 swap(current,next);

19 if(current.size==0)break;

20 }

N
=

return distancel], predecessor|];

reducing the running time.

2.3.3 SSSP algorithm with CSR format
The SSSP algorithm for graph stored in CSR format is shown in Algorithm 3. The graph should

not have negative cycles for correct execution of the algorithm. At the beginning of the while
loop the changed variable is set to zero. When distance value of any vertex is reduced in the if
statement block 13-17, variable changed is set to one (Line 16). The algorithm reaches a fix
point when distance value of no vertex is reduced after the termination of for loop (Lines 8-19),
which ensures Line 16 not executed. Hence variable changed is zero (the value set in Line 7)
after processing all the edges and the program exits.

This is a naive implementation and the worst case running time is O(V x E) as the number
of iterations in worst case can be |V|—1. Even though the theoretical running time is O(V x E),
for all natural sparse graphs, running time is much lesser than this value and the algorithm
terminates in very few iterations. The running time of each iteration of the while loop can

be reduced by adding more vertex properties to the graph and processing only a subset of the
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Algorithm 3: SSSP algorithm on CSR format Graph

1 for( i=0to |V]|—1){

2 distance[i]= oo;

3 predecessor[i] = null;

4}

5 distance[s] = 0;

6 while( 7 ){

7 changed=0;

8 for( i=0to |V|—1){

9 start=index][i];

10 end=index[i+1]-1;

11 for( j=start to end ){

12 dst=vertices[j];

13 if( distance[i] + weight[dst] <distance[dst] ){
14 distance[dst] = distanceli] + weight|[j];
15 predecessor[dst] = i;
16 changed=1;

17 }

18 }

19 }

20 if(changed==0)break;

21 }

22 return distance[], predecessor|];

edges. Such an implementation can be seen in Algorithm 20 in Section 3.1.1.

2.3.4 A-Stepping SSSP algorithm

In the A-Stepping SSSP Algorithm [69], vertices are ordered using a set of worklists called
buckets representing priority ranges of A, where A is a positive value. The bucket Bli] will have
vertices whose current distance value is given by (i — 1) x A < distance<i x A. The buckets
are processed in an increasing order of index value i and a bucket Bli] is processed only after
bucket Bi — 1] is processed. Algorithm 4 shows the A-Stepping SSSP algorithm.

The function Relazr takes as argument a vertex v and an int value z. If the current distance
of v is greater than z, the vertex v is removed from current bucket B/ distance(v)+A] (Line 4)
and it is added to the bucket Bfz +A/ (Line 5). Then the distance of vertex v is reduced to x
(Line 6).

The SSSP algorithm works in the following way. Initially for each vertex v in the graph,

two sets heavy and light are computed, where
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Algorithm 4: A-Stepping SSSP algorithm

Bucket B;

Relax( vertex v, int x) {

if( (z <distance(v) ) ){
B[ distance(v)+ A]=BJdistance(v)+ A] \ v;
B[ x+ A]=B[x+ A] U v;
distance(v)=x;

}

}
SSSP () {

10 for( each vin V ){

11 Set heavy( v ) :={ (v, w)in E : weight( v, w ) >A }
12 Set light (v ):={ (v, w)in E: weight( v, w ) <= A}
13 distance ( v ) := INF // Unreached

14 }

15 relax( s, 0); // bucket zero will have source s.

16 1:=10

17 // Source vertex at distance 0

18 while( NOT isEmpty(B) ){

19 Bucket S := ¢;

20 while( B[i]# ¢ ){

© 00 N O oA W N =

21 Set Req := { (' w, distance( v ) + weight (v,w )): vin B[i] A (v, w ) in light(
v ) }//add light weight edges for relaxation

22 S:= S UB[1i];//store all elements in B[i] to bucket S for Line 27

23 Bli]:=¢;

24 foreach ( ( v,x ) in Req) Relax( v, x ) //relax. may add elements to Bli] again

25 }

26 //done with Bli].add heavy weight edge for relaxation

27 Req := { ( w,distance( v ) + weight (v,w )) : vin S A\ (v, w ) in heavy( v ) }
foreach( ( v, x ) in Req) relax( v, x );//relax heavy weights.

28 1:=1+1

29 }

30 }
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heavy(v)= (V (v,w) € E ) A (weight (v,w) >A")
light(v)= (¥ (v,w) € E) A\ ((weight (vyw) < A)
Then the distance of all the vertices is made oo (Lines 10-14).

The algorithm starts by relaxing the distance value of source vertex s in Line 15 with a
distance value of zero. This will add the source vertex to bucket zero (Line 5). Then the
algorithm enters the while loop in Lines 18 to 29, processing buckets in an increasing order of
index value 14, starting from zero.

An important feature of the algorithm is that, once the processing of bucket Bfi/ is over, no
more elements will be added to the bucket B[i], when the buckets are processed with increasing
values of index i. A bucket Bli] is processed in the while loop (Lines 20 to 25).  Algorithm
terminates when all the buckets Bli], >0 are empty. The performance of the algorithm depends
on the input graph and the value of the parameter A, which is a positive value. For a Graph
G(V,E) with random edge weights, maximum node degree d (0<d<1) , the sequential A-
stepping algorithm has a time complexity of O(|V| + |E| + d x P), where P is the maximum
SSSP distance of the graph. So, this algorithm has running time which is linear in |V| and |E]|.

We have seen different ways of implementing SSSP algorithms. This is true for many graph
algorithms. The complexity of the algorithms have also been discussed. The A- stepping
algorithm has been proved to be the best for SSSP computation on single core and multi-core
CPUs which have Multiple Instruction Multiple Data (MIMD) architecture. But this algorithm
is not the best for machines which follow Single Instruction Multiple Data (SIMD) architecture,
where all the threads execute the same instructions in synchronism but work on different data.
For such architectures, the optimized Bellman-Ford variant is faster. But if the graph object
has a high diameter (e.g., road network), a worklist based algorithm is faster on an SIMT
(Single Instruction Multiple Thread, e.g., GPU) machine.

2.4 Parallel graph algorithms

Current generation computing devices have multiple cores inside them, and parallel algorithms
running on many cores benefit from them. Most graph algorithms can be made to run in
parallel. For example, the Bellman-Ford SSSP algorithm in Algorithm 1 can be made parallel
by processing the edges in parallel, using separate threads. Results of a parallel execution should
preserve sequential consistency which can be defined as: “the result of a parallel execution is the
same as that of the operations performed by all the threads on all the devices being executed
in some sequential order”. Graph algorithms are irreqular, where multiple threads may try to
update the same vertex or edge properties. The irregularity of the graph algorithms depends

on the run time parameters such as the graph structure and can not be handled using any
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compile time analysis. In such cases the updation of the properties should be done using
atomic operations, so as to preserve the serial consistency. When Algorithm 1 in Section 2.3.1
is made parallel by processing all the edges in parallel, code in Lines 8-11 should have atomic
operations such as atomicMIN to reduce the distance of the vertex. Due to the irregular nature
of the graph algorithm, the speedup obtained by parallel algorithms will not be linear as in

regular algorithms, such as matrix multiplication.

Algorithm 5: Parallel Bellman-Ford SSSP algorithm

1 parallel for( each vertez v in V' ){

2 distance[v]= oo;

3 predecessor[v] = null;

‘)

5 distance[s] = 0;

6 parallel for( i = 1to |V|-1 ){

7 parallel for( each edge (u, v) with weight w ){
8 atomic if( distance[u] + w <distance[v] ){
9 distance[v] = distance[u] + w;

10 predecessor[v] = u;

11 }

12 }

13 }

14 parallel for( each edge (u, v) with weight w in edges ){
15 if( distancefu] + w <distance[v] ){

16 error “negative-weight cycle in Graph”

17 exit;

18 }
19 }

20 return distance[], predecessor|];

Algorithm 5 shows the parallel version (pseudo code) of the Bellman-Ford SSSP algorithm.
The code has parallel for where all the elements are processed in parallel. Lines 1-4 initialize
distance and predecessor of each vertex in parallel. The parallel for loops in Lines 6-13 and
Lines 7-12 process all the elements in parallel. Due to the irregular nature of the algorithm, the
code enclosed in the if statement needs to be executed atomically (which is shown as atomic
if operation in the pseudo code(Lines 8-11)). This happens as two threads may try to update
the distance of a vertex v using edges p—v and u—v at the same time, and this needs to be
serialized for correct output. In the implementation of the algorithm in a high level language,
a programmer must use the atomic operations provided by the language. Speedup that can

be achieved depends on the number of conflicting accesses between the threads in the parallel
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Algorithm 6: Parallel SSSP algorithm on CSR format Graph

1 parallel for( i=0to |[V]| -1 ){
2 distance[i]= oo;
3 predecessor[i] = null;
4}
5 distance[s] = 0;
6 while( 7 ){
7 changed=0;
8 parallel for( i=0to |[V|—1){
9 start=index][i];
10 end=index[i+1]-1;
11 parallel for( j=start to end ){
12 dst=vertices[j];
13 atomic if( distance[i] + weight[dst] <distance[dst] ){
14 distance[dst] = distanceli] + weight|[j];
15 predecessor[dst] = i;
16 changed=1;
17 }
18 }
19 }
20 if(changed==0)break;
21 }
22 return distance[], predecessor|];
region.

Similarly Algorithm 3 in Section 2.3.3 which computes SSSP on an input graph object stored
in the CSR format can also be made parallel as shown in Algorithm 6. A parallel version of
the worklist based SSSP computation is shown in Algorithm 7. Both these algorithms follow
the same code pattern with parallel for and atomic if operations.

Parallel algorithms can be implemented using the OpenMP library in a multi-core CPU and
by using the CUDA library in Nvidia-GPU.

2.5 Graph partitioning

When a graph algorithm is executed on a distributed system which requires message passing
between machines, the graph object should be partitioned and distributed across all the devices
involved in the computation. Execution of the graph algorithm may involve communication of
graph object properties (like distance in SSSP) before and after a parallel computation step.

So, the partitioning algorithm must ensure that there is less communication overhead and
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Algorithm 7: Parallel Worklist based SSSP algorithm

1 parallel for( each vertex v in V' ){

2 distance[v]= o0;

3 predecessor[v] = null;

4}

5 distance[s] = 0;

6 Worklist<vertex >current,next;

7 current.add(s);

s while( 7 ){

9 parallel for( each vertex u In current ){

10 parallel for( each edge (u, v) with weight w ){
11 atomic if( distance[u] + w <distancefv] ){
12 distance[v] = distance[u] + w;

13 predecessor[v] = u;

14 next.add(v);

15 }

16 }

17 }

18 swap(current,next);

19 if(current.size==0)break;

20 }

N
=

return distancel], predecessor|];

proper work balance across nodes. Large-scale graphs are very sparse and follow the power-law
distribution. Such graphs are difficult to partition [8, 4] and popular frameworks have used
random or hashed partitioning strategy. There are two type of graph partitioning, vertez-cut
and edge-cut.

In a wvertex-cut partitioning every edge is assigned one of the machines involved in the
computation. The number of edges in each machine is almost the same.In this partitioning
model, two or more edges with the same source vertex (e.g u — v and u — w ) may reside
on multiple machines. So, one of the machines is taken as the master node of the vertex. The
master node holds the most recent values of the vertex. This partitioning strategy gives work
balance but can result in more communication volume as edges with the same source vertex
reside on two or more devices.

In the edge-cut partitioning strategy, a vertex v is assigned a machine along with the edges
with v as the source vertex. This partitioning strategy will have less communication overhead,

but the ideal work balance achieved by wertez-cut partitioning will not be achieved.
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2.6 Dynamic graph algorithms

Some algorithms make changes in the graph topology at run time by addition and/or deletion
of vertices and/or edges. Such algorithms are called dynamic graph algorithms. A dynamic
graph algorithm is said to be fully dynamic if it has both insertion and deletion of edges or
vertices. It is said to be partially dynamic if it has only one type of update, either insertion or
deletion. A dynamic graph algorithm is called incremental if only insertions are allowed, and
it is called a decremental algorithm if only deletions are allowed [39].

In an incremental SSSP algorithm [81] where edges are added with nonnegative weights,
the shortest distance from the source vertex can possibly only decrease with the addition of
edges. So, instead of computing SSSP from scratch, it can be computed starting from the
current shortest distance value. The same argument applies to incremental variants of BFS

and Connected Components also.

Algorithm 8: Incremental SSSP algorithm

1 SSSP(graph,distance,predecessor) {

2 ‘ //compute SSSP

5}

4 AddEdges(graph) {

5 read edges;

6 add edges to the graph;

. }

8 Incremental-SSSP(graph,distance,predecessor) {
9 parallel for( each vertex v in V ){
10 distance[v]= oc;

11 predecessor[v] = null;

12 }

13 SSSP(graph,distance,predecessor);
14 AddEdges(graph);

15 SSSP(graph,distance,predecessor);
16 }

Algorithm 8 shows the pseudo code for incremental SSSP computation. The SSSP function
(Lines 1-3) computes SSSP using any one of the algorithm mentioned before (e.g., Lines 5-20,
Algorithm 7). The initialization of distance and predecessor is done using a parallel for in
Lines 9-12. Then SSSP is computed (Line 13). The AddEdges() function (Lines 4-7) add new
edges to the graph. After the initial SSSP computation, AddEdges() is called (Line 15). Then,
SSSP is computed from the current distance values by calling SSSP() again (Line 15), without

resetting distance and predecessor of each vertex and without computing SSSP from scratch.
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Dynamic graph algorithms are important because the topology of real life graphs changes over
time, and only some properties need to be recomputed (e.g., rank of a webpage, shortest path

in road networks, etc.).

2.7 Mesh algorithms

Mesh generation algorithms are used in areas such as computational geometry. Meshes can
be mesh of triangles, quadrilaterals etc. Mesh generation is also called grid generation. In
computer simulations, an algorithm may begin with a set of points in a d-dimensional space
(d > 2) and generate a mesh, which satisfies some constraints. Meshes can be considered as
special types of graphs where there is a relationship between edges and vertices. If it is a mesh
of triangles, the relationship between edges and vertices is that, an edge will be a part of one
triangle (boundary edge in a mesh) or two triangles (edge not belonging to the boundary of
mesh). It is possible to view meshes as graphs with such constraints and write graph algorithms

to create and process such meshes. Two popular mesh algorithms are described below.

Algorithm 9: Delaunay Triangulation pseudo code

L DT ()

2 Mesh mesh;

3 worklist wi;

4 initialize mesh;

5 add all points to worklist wl;

6 for( each point p1 in wl ){

7 Worklist cav;

8 Point p2;

9 Triangle tri,tr2,
10 p2=the closest point of pI in mesh;
11 tr1= triangle with p2 as one of its point;

12 tr2= triangle which contains p1 in its circumcircle;
13 cav= all neighboring triangle of ¢r2 whose circumcircle contains p1I;
14 retriangulate cav;

15 }

[y
(=]
-

2.7.1 Delaunay Triangulation

Delaunay triangulation (DT) produces a mesh of triangles by triangulation of a set of 2-
Dimensional points such that the circumcircle of any triangle in the mesh does not contain any
other points. The algorithm takes as input a set of 2-Dimensional points contained inside a

big surrounding triangle and builds the delaunay mesh by inserting a new point and retrian-
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gulating the affected portions of the mesh. The output is a mesh which satisfies the delaunay
triangulation condition and the set of vertices of the mesh is the set of input point.

One possible implementation of DT [98] is given in Algorithm 9.

For the above algorithm, points can be taken in any order and all orders will lead to to a

valid mesh, where the circumcircle of all triangles contains no other points.

2.7.2 Delaunay Mesh Refinement(DMR)

Algorithm 10: DMR algorithm pseudo code

1 DMR () A{

2 Mesh mesh;

3 worklist bad,

4 initialize mesh;

5 for( each triangle t in mesh ){

6 ‘ if(¢ is a bad triangle) add t to bad;

T |}

8 for( eah triangle t in bad ){

9 if( ¢ is not deleted ){

10 worklist cav,newtria;

11 cav= cavity(t);

12 delete triangles in cav from mesh;
13 retriangulate cav;

14 add new triangles to mesh and newtria;
15 for( each p in newtria ){

16 ‘ if(p is bad triangle) add p to bad,
17 }

18 delete t from mesh;

19 }

20 }

21 }

A DMR algorithm [26] takes a delaunay triangulated mesh and refines it such that no triangle
has an angle less than 30 degrees and the circumcircle of each triangle contains no other points.
The algorithm takes an input Delaunay mesh and produces a refined mesh by retriangulating
the portions of the mesh where there are triangles with angle less than 30 degrees (called bad
triangles). Pseudo code of the DMR is shown in Algorithm 10.

In the DMR algorithm, an initial worklist (bad) which contains all the triangles which have
one or more angles with degree less than 30. In a DMR implementation based on worklist,
in each step/iteration a bad triangle ¢ is taken from the worklist. The cavity of the triangle

t, is a set of triangles affected by the bad triangle t. The cavity (cav) is retriangulated. In
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the retriangulation, all the triangles in cavity are deleted. Then a new point is inserted at the
circumcenter of ¢t or at the middle of a boundary edge, if the cavity contains a triangle at the
boundary of the mesh. New triangles are created by adding edges from each point in the cavity
to the new inserted point. The newly created triangles are checked and they are added to the

worklist if found to be bad. The DMR algorithm is used to model objects and terrains.

2.7.3 Morph algorithms

An algorithm is called a morph algorithm [77] if it modifies its neighborhood by adding or
deleting vertices and edges. It may also updating values associated with the vertices and edges.
An algorithm is a cautious morph algorithm, if a thread or process gets a lock on all the elements
which it is going to modify, before modifying them. Morph algorithms are also dynamic graph
algorithms, where it changes the structure of the graph object. The DMR algorithm has a

cautious morph implementation.

2.8 Graph classification based on its properties

Graphs have properties such as diameter, outdegree, indegree, size etc. Graphs can be clas-
sified into different categories based on these properties. There are public graphs like road
networks which store the map of roads, and social network graphs which show the connectivity
relationship between people etc. Graph classes have different values for properties mentioned
above. For example, road networks have high diameters, and social graphs have low diameters,
etc. We look at different graph classes and their properties. It is important to look at these
graph classes as the performance of an algorithm on a device may also depend on these graph

properties (e.g., low and high diameter of social and road networks respectively).

2.8.1 Road networks

A road network can be represented as a graph where a vertex represents the junction of two or
more roads and the edges represent the roads connecting the junctions. The diameter of a graph
is defined as the greatest distance between any pair of vertices. Road network graphs have very
high diameter. Further, vertices in a road network (junctions) have small out-degree. Road
networks are used by GPS and Google Maps for different applications such as shortest path,
optimal path (considering current traffic) computations. The difference between the smallest

and the highest degree in road a network graph is small.
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2.8.2 Random graphs

A random graph is created using a set of isolated vertices and adding edges between them at
random. Different random graph models give graphs with different probability distributions.
The Erd6sRényi model [35] assigns equal probability to all graphs with exactly E edges V
vertices. For example, for G(3,2) (which has graphs with 3 vertices and 2 edges), where V =
{Vb, Vi, V4 }, possible edges are (Vp-V4), (Vo-V2), (V3-V2). Number of subgraphs possible for
G(3,2) is three and all these graphs have an equal probability of 1/3 when a graph is generated
using the ErdésRényi model. Random graphs have a small diameter. The maximum degree of
a vertex is higher than that of a road network. Random graphs need not be fully connected.
The difference between the smallest and the highest degree of vertices in a random graph is

small.

2.8.3 Real World graphs

Real world graphs of social networks such as Facebook, Twitter etc., can be weighted (the
number of messages between two people (vertices)) and there could be multiple edges between
the same pair of vertices. Such graphs could be unipartite like people in a closed community
group, bipartite like a mowvie-actor database and also possibly multipartite. In a multipartite
graph there are multiple classes of vertices and edges are drawn between vertices of different
classes. Such real world graphs have a heavy-tailed distribution with very few vertices having a
very large degree ( outdegree or indegree) and others having very low degrees. As an example,
in the Twitter network, when celebrities are followed by a large number of people, while others
are followed only by their close friends. One famous heavy-tailed distribution is the power-law
distribution, and social graphs follow this distribution. Two variables = and y are related by
power-law if
y(r) = Az, where
A and v are positive constants and -y is called the power-law exponent.

A random variable is z distributed according to power-law if its probability density function
is given by
p(r) =A™,y > 1
The degree distribution of social network graphs follow power-law as given below.  Social
network graphs have a small diameter which is also called as the small-world phenomenon [12].
Real world graphs have a community structure with vertices forming groups and groups forming

within groups.

25



2.8.4 Recursive Matrix(R-MAT) model graphs

Social graphs or real world graphs follow the power-law distribution. R-MAT graphs are graphs
which follow the power-law distribution and can be created manually [48]. The basic algo-
rithm used by a R-MAT graph generator is to recursively subdivide the adjacency matrix of
the graph into four equal-sized partitions, and distribute edges within these partitions with
unequal probabilities. The adjacency matrix will be initially empty. Then edges are inserted
in to the matrix one by one. Each edge chooses one of the four partitions with probabilities a,
b, ¢, d respectively (a + b + ¢ + d = 1). The chosen partition is again subdivided into four
smaller partitions, and the procedure is repeated until we reach a simple cell (i, j) of the matrix
where 0 < 4,7 < N. This is the cell of the adjacency matrix occupied by the edge. There can

be duplicate edges (ie., edges which fall into the same cell in the adjacency matrix).

2.8.5 Large-Scale graphs

Large-scale graphs are graphs of very big size. These large-scale graphs cannot be processed
on a single machine, and so processing is done on a distributed system or computer cluster.
R-MAT graphs can imitate the large-scale graphs and can be used to create large-scale graphs.

A lagre-scale graphs can have trillions of edges.

2.8.6 Hypergraphs

A hypergraph [19] is a generalization of a graph in which an edge can join any number of
vertices, not necessarily two. A hypergraph G(V, E) is a graph where V is the set of vertices,
and E is a set of non-empty subsets of V called hyper-edges or edges. A k-uniform hypergraph is
a hypergraph such that all its hyper edges have size k. A 2-uniform hypergraph is a graph. A
hypergraph has applications in combinatorial optimization, game theory, and in several fields

of computer science such as machine learning, databases and data mining.

2.8.7 Webgraphs

The webgraph shows links between the pages of the World Wide Web (WWW). Webgraph is
a directed graph, where vertices correspond to the pages in the WWW, and there is an edge
e(u — v) if there is a hyperlink to page v in page u.
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2.9 Parallel computing devices

2.9.1 Multi-core CPU

A multi-core CPU is a single computing device with two or more independent processing units or
cores, with a shared volatile memory. OpenMP library [32] is the most popular tool to run parallel
codes on multi-core CPU. Multi-core CPUs follow Multiple Instruction Multiple Data(MIMD)
model of execution, with shared memory between cores. Algorithm 11 shows the C++ code for
adding two matrices d and e, and storing the result in the matrix f. The for loop in Lines 14
to 16 does the matrix addition. The for loop is made parallel by the OpenMP parallel for

pragma on Line 13, which creates 24 threads.

Algorithm 11: Parallel Matrix Addition using OpenMP on multi-core CPU

1 #include < stdio.h >
2 F#include < stdlib.h >
3 #include < omp.h >
4 void readMatrix(int *arr, int n, int m){
for(int i=0;i<n;i4++)
for(int j=0;j<m;j++)scanf(” %d” &arr[i * m + j));

}

void main(int arge, char *argv|]){

int tid,i,j,rows=256,cols=256;

10 int d[rows][cols],e[rows][cols],f[rows][cols];

11 readMatrix(d,rows,cols);//read first matrix

12 readMatrix(e,rows,cols);//read second matrix

13 #pragma omp parallel for num_threads(24)

14 for( int i=0;i<row*col;i++ ){

15 | f[i]=d[i]+e[i];

16 }

17 printf(” Values of Resultant Matrix C are as follows:”);
18 for(i=0;i<rows;i++)

19 for(j=0;j<cols;j++) printf(” Value of C[%d][%d]|=%d" ,i,j,c[i][j]);
20 }

© 0 N & !

2.9.2 Nvidia-GPU

Nvidia is a commercial company that developes GPUs for gaming and general purpose com-
puting, and also System on Chip units(SOCs) for mobile computing and automative units. It
launched their first GPU in 1999 named GeForce 256 SDR.
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The Nvidia GPU architecture is built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). Each SM consist of many Streaming Processors(SPs) (See Figure 2.4).
As an example Nvidia-K40c GPU consist of 2880 Streaming Processors (SPs) which are divided
to 15 SMs with each SM having 192 cores. It has 12 GB global memory. Each SM has a shared
memory and access latency to shared memory is 100x slower than that of the global memory.
It also has a constant, texture memory and thousands of registers to be used among threads
running on the SM. Size of texture, constant and shared memory is of the order of KBs.

In GPU programming, CPU is called the host and GPU is called the device. Using CUDA
library of Nvidia [30], programmers can write GPU programs called as kernels, which can have
thousands of threads and it is invoked from the host. Any function which is called from a
kernel code is called a device function. Kernel and device function definition starts with the
keyword __global__and __device__respectively in CUDA. CUDA extends C++ with additional
keywords and functions specific to GPU. When a CUDA kernel is invoked from the host (CPU),
blocks of the kernel are distributed to streaming multiprocessors (SMs). A global variable which
is allocated on the GPU is also preceded by __device__ keyword in the declaration statement
(e.g., __device__ int changed;). The threads of a thread block execute concurrently on one SM,
and multiple thread blocks can execute concurrently on an SM. As thread blocks terminate,
new blocks are launched on the vacated SM. A thread block cannot migrate from one SM to
another SM.

A multiprocessor (SM) can run hundreds of threads concurrently. The multiprocessor follows
the Single Instruction Multiple Thread (SIMT) architecture. The threads are issued in order

and there is no branch prediction and speculative execution.
2.9.2.1 SIMT architecture of Nvidia-GPU

The multiprocessor creates, manages, schedules, and executes threads in groups of 32 parallel
threads called warps. When a multiprocessor is given one or more thread blocks to execute,
it partitions them into warps and each warp gets scheduled by a warp scheduler for execution.
Each warp contains threads of consecutive, increasing thread IDs with the first warp containing
thread 0. A warp executes one common instruction at a time, and full efficiency is realized
when all 32 threads of a warp follow same execution path. If the threads of a warp diverge
due to conditional statements in the code, the warp serially executes each branch path taken
and disables threads that are not on that path. When all the paths are complete, the threads
come back to the same execution path. Branch divergence occurs only within a warp and each
warp executes independently. The SIMT architecture is similar to SIMD (Single Instruction,

Multiple Data) vector organizations in that a single instruction controls multiple processing
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Figure 2.4: Nvidia-GPU architecture

elements. A key difference is that SIMD vector organizations expose the SIMD width to the
software, whereas SIMT instructions specify the execution and branching behavior of a single
thread. In contrast with SIMD vector machines, SIMT enables programmers to write thread-
level parallel code for independent, scalar threads, as well as data-parallel code for coordinated
threads. For program correctness, SIMT architecture of GPU can be ignored. Execution time
improvements can be achieved by taking care of the warp divergence. The nvce compiler of
CUDA is used to compile GPU codes.

2.9.2.2 Example-matrix addition on GPU
The Algorithm 12 shows the CUDA code for matrix addition on Nvidia-GPUs. GPU and CPU

have separate memory space called device memory and host memory respectively. So, space for
matrices is allocated on the CPU (Lines 15-17) in variables a_h,b_h and c_h using the malloc()
function. The GPU matrices are allocated in the variables a_d,b_d and c_d (Lines 19-21) using
the cudaMalloc() function of the nvce library. Input matrices are then read to arrays on the

host memory a_h and b_h and then copied to device memory arrays a_d and b_d respectively
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Algorithm 12: Matrix addition using CUDA on Nvidia-GPU

1
2
3
4

© 0 I & !

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

#include < iostream >

#include < cuda.h >

_global__ void MatrixAdd(int *A,int *B,int *C){
int i = blockldx.x*blockDim.x + threadldx.x;
C[i]=Al[i]+BJi];

void readMatrix(int *arr, int n, int m){
for(int i=0;i<n;i++)
for(int j=0;j<m;j++) scanf(”%d” &arr[i * m + j]);
}

int main(){

int rows=256,cols=256, i, j, index;
int N=rows*cols;

// allocate arrays on host(CPU)
a-h = (int *)malloc(sizeof(int)*N)
b_h = (int *)malloc(sizeof(int)*N)
c_.h = (int *)malloc(sizeof(int)*N);

// allocate arrays on device(GPU)
cudaMalloc((void **)&a_d,N*sizeof(int));
cudaMalloc((void **)&b_d,N*sizeof(int));
cudaMalloc((void **)&c_d,N*sizeof(int));
readMatrix(a_h,rows,cols);//read first Matirx
readMatrix(b_h,rows,cols);//read second Matrix

I
)

cudaMemcpy (a_d,a_h,N*sizeof(int),cudaMemcpyHost ToDevice);/ /copy a_h to device
cudaMemcpy (b_d,b_h,N*sizeof(int),cudaMemcpyHost ToDevice);//copy b_h to device
MatrixAdd<<< 256,256>>>(a_d,b_d,c_d);//compute on device

cudaDeviceSynchronize();

cudaMemcpy (c_h,c_d,N*sizeof(int),cudaMemcpyDeviceToHost);/ /copy result to host

for( j=0;7<rows;j++ ){
for( i=0;i<cols;i++ ){
index = j*rows-i;

printf("A + B = C: %d %d %d + %d = %d” i,j,a-h[index],b_h[index],c_h[index]);
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using the cudaMemcepy() function (Lines 22-25).

Then the CUDA kernel MatrizAdd() is called, which does the matrix addition on GPU.
The number of thread_blocks and threads_per_block are specified before the argument list of the
MatrizAdd() function in CUDA syntax. These variables can have three dimensional values in
z, y, 2. The MatrizAdd() uses just one dimension (z, with both values set to 256). Then the
kernel will have 256 x256 threads ( 256 thread_blocks and 256 threads_per_block) and each thread
computes one element in the resultant matrix c_d. This matrix is then copied to host (CPU)
memory matrix c_h and the result is then printed. The value of the variables used in Line 4
are 0 < blockIdxr.x<256, blockDim.x == 256 and 0 < threadldx.x<256.

2.10 Computer clusters or distributed systems

A computer cluster consists of a set of connected computers that work together so that they
can be viewed as a single system. Machines in a cluster are connected to each other through
fast Ethernet networks, with each machine running its own instance of an operating system. In
most cases all the machines in a cluster will have the same hardware. Communication between
machines are done using software libraries such as MPI or OpenMPI. Computer clusters are
mandatory for large-scale graph processing where a graph object cannot be stored on a single
machine. Large-scale graphs are partitioned and distributed across machines in the cluster.

A CPU cluster consists of a set of machines, with each machine having one or more multi-core
CPU. A GPU cluster consists of a set of machines connected using network switches with each
machine having a CPU that runs the operating system and one or more GPU device. Each node
in the GPU cluster has a 12 core CPU and a GPU. We used this for heterogeneous execution
where one node uses both i) CPU and GPU or ii) Both CPU and GPU. An heterogeneous
cluster with CPU and GPU is a distributed system with each node having i) CPU and GPU
or ii) CPU.

2.11 MPI sample program

The MPI programming model [38] assumes a distributed memory model with each device
having its on private memory. If there are NV processes executing on P machines (P < N), each
machine will have its own private memory. Communication between processes is performed
through message passing. The basic primitives in MPI for message passing is MPI_Send() for
sending data to a remote machine and MPI_Recv() for receiving data from a remote machine.
These functions takes as argument data, type of data and size of data to be send, message-
id and process-id to identify the process on the remote node. MPI Isend() is a non-blocking

version of MPI Send() and takes similar arguments. MPI_Recv() function is for receiving data
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Algorithm 13: MPI sample program

1 #include<mpi.h>

2 int main(int arge,char *argvl[]){

3 int rank,size,number;

4 MPI_Comm_rank(MPI.COMM_WORLD, &rank);
5 MPI_Comm size(MPI_.COMM_WORLD, &size);
6
7
8
9

if( rank == 0 ){
number = 10;
MPI_Send(&number, 1, MPILINT, 1, 0, MPT.COMM_WORLD);
}
10 if( rank == 1 ){
11 MPI_Recv(&number, 1, MPIINT, 0, 0,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);
12 printf(Process 1 received number %d from process 0, number);

from remote nodes and have arguments similar to MPI Send() and this function call blocks
until data is received. The status of send and recv operations can be found using variables of
type MPI_Status specified as argument to the function.

Algorithm 13 shows the code for a distributed system with two machines, with one process
running on each machine. The process ranks will be 0 and 1. The process with rank 0 sends an
integer value 10 stored in the variable number to the process with rank 1, using a message-id 0.
The process with rank 1 waits for a message from process with rank 0 with message-id 0. After
the receive operation, the value is printed by process 1.

The above code is for CPU machines. When it is a distributed system with GPUs, there
is a requirement for communication between GPUs on two remote nodes. The MPI library
does not allow GPU locations as arguments to any of the library calls. The send operation is
performed by copying data from the device memory to the host memory and then initiating
an MPI_Send(). The receive operation, receives the data in the host memory, and then copies
the data from the host memory to the device memory. The OpenMPI library [41] has a cuda-
aware-support and it accepts device locations as arguments for send and receive operations,
which eliminates code for copying data between device and host. OpenMPI handles this copy

operation automatically.
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2.12 Multi-GPU machine

Nvidia is a commercial company that developes GPUs for gaming and general purpose com-
puting, and also System on Chip units(SOCs) for mobile computing and automative units. A
multi-GPU machine is a single machine with more than one GPU and a single mutlticore-CPU.
Multi-GPU machines can also be used for large-scale graph processing by partitioning the graph
and storing each subgraph on a separate GPU device on the machine. Programs can be written

in two ways :-

e One process, separate thread for each GPU device and this requires OpenMP library or
Pthreads library.

e Separate process for each GPU and this requires MPI or OpenMPI library for communi-

cation between processes.

When a graph algorithm is run on multiple GPUs, the input graph is read into the CPU
memory, and then it is partitioned to subgraphs and distributed across multiple GPUs devices.
When only one process is used, expert coding is needed to make this efficient. In the case of
multiple processes, the first process can read the graph into the CPU memory shared by all
the processes [89], and after this, distribution and processing of each subgraph is performed by

other processes.

2.13 Execution models for distributed systems

When an algorithm is executed on a distributed system with the graph partitioned into sub-
graphs and stored across multiple devices (Section 2.5) and the output should preserve sequential
consistency as discussed in Section 2.4. To achieve this, there should be communication across
devices which store subgraphs. Some of the popular and standard programming models for

distributed execution algorithms are described below.

2.13.1 Bulk Synchronous Parallel (BSP) model

In the BSP [95] model program execution is divided into three parts.

e Computation which happens concurrently on all the devices participating in program

execution. In our case this will be computation on subgraphs on each node.

o Communication, where the processes participating in execution exchange data with each
other. For a graph algorithm the data communicated will be graph properties, like distance

of vertices in SSSP computation.
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Algorithm 14: Distributed SSSP algorithm in BSP model

1 parallel for( =0 to |Viecartremote] — 1 ){

2 distance[i]= oo;

3 predecessor[i] = null;

‘)

5 distance[s] = 0;

6 while( 7 ){

7 changed=0;

8 parallel for( i=0 to |Vipear| — 1 ){

9 start=index][i];

10 end=index[i+1]-1;

11 parallel for( j=start to end ){

12 dst=vertices[j];

13 atomic if( distance[i] + weight[dst] <distance[dst] ){
14 distance[dst] = distanceli] + weight|[j];
15 predecessor[dst] = i;

16 changed=1;

17 }

18 }

19 }

20 barrier();

21 synchronize distance and predecessor value of remote-node with master-node;
22 barrier();

23 synchronize value of changed across all nodes;

24 barrier();

25 if(changed==0)break;

26 }

27 return distance[], predecessor|];

e Synchronization, where all the processes participating in the computation join at the

synchronization point, before proceeding to the next computation/communication.

Algorithm 14 shows the pseudo code for an SSSP in BSP model, for a graph stored in CSR
format. This is the modified version of Algorithm 3 and the algorithm assumes an edge-cut
partitioning. First, distance and predecessor of each local and remote vertex of the graph is
initialized (Lines 1-4). Then, the distances of vertices are processed by reducing all the outgoing
edges of local vertices in the subgraph, in parallel on all the machines (Lines 8-19). After the
distance is reduced, modified distance value of remote vertices are synchronized with the master
node by taking the minimum value across all the devices. The program exits when changed

variable is zero across all the devices after parallel computation.
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2.13.2 Asynchronous execution model

An asynchronous execution model also has the steps computation which happens concurrently
on all the devices and communication or message passing. But there will be no synchronization
point in the program code. The processes send the data which needs to be communicated to
the devices as and when they arrive and at the receiving side, data is processed as and when it

arrives.

Algorithm 15: Distributed SSSP computation in asynchronous model

1 Update(v,dist,pred) {

2 ‘ distance[v]=dist; predecessor|[v]=pred,;

5 }

4 SSSP() {

5 parallel for( all v neighbours of s ){

6 predecessor[v]=s;

7 sendmsg Update(v,0,s);

s | }

9 while( Message Update(v,dist,pred ){

10 if( distance[v] >dst ){

11 distance[v]=dist;

12 predecessor[v]|=pred;

13 parallel for( all u neighbours of v ){
14 ‘ sendmsg Update(u,distance[v],predecessor|v]);
15 }

16 }

17 }

18 }

Algorithm 15 shows a distributed asynchronous SSSP computation. The algorithm first
initializes distance and predecessor values, followed by distance of source vertex being made
zero. Then an update message is sent to all the neighbours of the source vertex (Lines 5-8).
The Update function with arguments v,dist and pred, reduces the distance of the vertex v to
dist and sets predecessor to pred (Lines 1-3). Following this, the computation happens in the
while loop as long as each node receives an Update message (Lines 9-17). When an Update
message is received, the received values are checked. If the distance of the vertex v is greater
than the received value dist, distance and predecessor of v are updated and Update messages
are sent to all the neighbours of vertex v (Lines 10-16). Computation finishes when no more

messages are sent.
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In the BSP model of execution as there is a synchronization step, multiple messages to
the same vertex on a particular machine can be aggregated, which reduces the communication
volume. But if there is any imbalance in computation time across the devices, the processes
which finish first will be idle till all other process complete their computation. As there is no
synchronization in the asynchronous execution model, the processes will not be idle as long as
there is data to be processed, but the aggregation of messages may not be possible as data is

sent to the devices as and when it arrives, and this results in more communication volume.

2.13.3 Gather-Apply-Scatter (GAS) model

The GAS model consist of three steps:

e (ather phase, where data on adjacent vertices and edges is gathered using a commutative

and associative function.
e Apply phase, where an apply function does computation on active vertices or edges. and

e Scatter phase, where new values of updated vertices and edges produced by the apply

function are scattered to the remote nodes.

Algorithm 16: SSSP in Gather-Apply-Scatter Model (PowerGraph)

gather (D, D(u,v) , D, ):
return Dy, + Dy
sum(a, b):
return min(a, b)
apply (D, , new. dist):
D_u = new_dist
scatter(D, ,De.) »Dy ):
if( decreased(D, ) ){
Activate(v)
return D, + D_(u,v)

© 0 N O oA W N+

=
(=}

}

[y
-

Algorithm 16 shows SSSP computation in the GAS model. In the gather phase, the gather
function is run in parallel for all the neighbours of the vertex D,. The gather() function uses
the weight of edge (D) and the distance of the adjacent vertex D,, and modifies the value of
the vertex D, using the commutative and associative function sum which is min for the SSSP

algorithm (the function name is sum but its usage is ‘+’, according to the syntax adopted by
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PowerGraph). The apply function modifies the value of D,. The dist value of the vertex is D,
is already modified by the gather function which uses min as the sum operator, and hence the
apply function is just an assignment. In the scatter phase, if the value of D, has been modified,
the vertices D, are activated for all the edges with D, as the source vertex (D(y,,)). The new
values are scattered through the edges D, ..

In the asynchronous execution model, communication volume will be high, but data gets
processed as and when it arrives. In the BSP model, communication volume is less, but com-
putation imbalance between processes can lead to long running times due to the barrier()
(synchronization) called on all the processes. The GAS model can be adopted to both BSP
and asynchronous models, depending on the necessity of a barrier after the apply phase of the
computation and on how the data should be communicated. For example, the PowerGraph

framework supports both synchronous and asynchronous computations over its GAS model.
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Chapter 3

Related Works

3.1 Frameworks for multi-core CPU machines

3.1.1 Green-Marl

Green-Marl [53] is a graph DSL for implementing parallel graph algorithms on multi-core CPUs.
The Green-Marl compiler generates OpenMP based parallel code from the DSL code for multi-
core CPU with shared memory.

It has five primitive data types Int, Long, Bool, Float and Double. Green-Marl has two
graph data types DGraph (for directed graph) UGraph (for undirected graph) along with two data
types Node and Edge to represent vertices and edges in the graph (respectively). A progammer
can use Graph instead of DGraph as Graph is an alias for DGraph. Node and edge properties
can be attached to vertices and edges of a graph object and specified using Node Prop and
Edge Prop respectively. Green-Marl has three types of worklists data types namely Set, Order
and Sequence. These data types may contain a set of vertices in a graph or neighbours of a
given vertex etc. Elements in a Set are unique but not ordered. Elements in an Order are
unique and ordered. Elements in a Sequence are ordered but not unique. Green-Marl has the
usual operators, such as While, Do-While, for, If, If-Else etc., for defining sequential execu-
tion of the program. It has operators to describe parallel computation. The Foreach statement
of Green-Marl allows parallel and independent processing of elements given as arguments to

Foreach. The syntax of Foreach statement is given below.
Foreach ( iterator : source (-). range) ( filter ) body_statement

An example of a Foreach statement is given below.
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Foreach (v : G.Nodes) (cond) { ... }
Here all the vertices v in the graph G which satisfy the condition cond execute the body of
the ForEach statement. The argument -’ is used to process elements in the reverse order.
Arguments -’ and filter are optional. Range used in above example is Nodes and iterator is
v.

Green-Marl has support for reductions in the body of the Foreach loop using special op-
erators: +=, *= Max=, min=, &&= and ||=, denoting Sum, Product, Maz, Min, All and Any

respectively.

Algorithm 17: Reduction

1 Graph G;
2 Node_Prop <Int>dist;

3 int sum = 0;

4 ForEach (t : G.Nodes) {
5 sum += t.dist;

6 }

A simple example of reduction in Green-Marl is given in Algorithm 17. Here the vertices in

the Graph object G have an integer property dist and sum stores the sum of dist values of all

the vertices in G using the reduction operator +=.

Algorithm 18: Group Assignment Algorithm 19: Inplace Reduction
1 Graph G; 1 Graph G;

2 Node_Prop <Int>dist; 2 Node_Prop <Int>dist;

3 G.dist = +INF; 3 Int total = Sum(s:G.Nodes){s.dist;}

Green-Marl also has group assignments. An example is shown in Algorithm 18. Here the
value of the vertex property dist is made +INF for all the vertices in the graph object G
in parallel in the generated code. The group assignment statement is an example of implicit
parallelism in Green-Marl. Another example of implicit parallelism in Green-Marl is in-place
reduction. An example for in-place reduction is shown in Algorithm 19, which stores the sum
of dist property values of all the vertices in the graph G in the variable total in parallel. Green-
Marl supports built-in iterators - which implement parallel traversals of DFS and BFS and
these can simplify the development of some graph algorithms.

Algorithm 20 is an implementation of the SSSP algorithm in Green-Marl. The program
consists of the SSSP function with four parameters. The parameters are i) G (type Graph) ii)
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Algorithm 20: SSSP algorithm in Green-Marl

1 Procedure SSSP(G:Graph, dist: Node_Prop <int >, len:Edge_Prop <int >, root: Node) {
2 Node_Prop <Bool >updated;

3 Node_Prop <Bool >updated_nxt;

4 Node_Prop <Bool >dist_nxt;

5 Bool fin= True;
6

7

8

9

G.dist=(G==root) ? 0: +INF;
G.updated=(G==root) ? True:False;
G.dist_nxt=G.dist;
G.updated_nxt=G.updated;

10 while( fin ){

11 fin=False;

12 ForEach(n:G.nodes) (n.updated) {
13 ForEach(s: n.Nbrs) {

14 Edge E=s.ToEdge();

15 <s.dist_nxt ; s.updated_nxt >min= <n.dist+e.len; True >;
16 }

17 }

18 G.dist=G.dist_nxt;

19 G.updated=G.updated _nxt;

20 G.updated_nxt=False;

21 fin= Exist (n: G.nodes) {n.updated};
22 }

23 }

vertex property dist (type Node_Prop) iii) edge property len (type Edge Prop), which stores the
weight of the edges in G and iv) root (type Node) which specifies the source vertex for SSSP
computation.

Lines 2—4 add three vertex properties updated, updated_nzt and dist_nzt to the graph object
G. The dist value of the root vertex is made zero and for all other vertices dist value is made
infinity (+INF), using group assignment in Line 6. Similarly the vertex property updated is
made True for the source (root) vertex and False for all other vertices in the group assignment
in Line 7.

The computation happens in the while loop (Lines 10-22) until a fix point is reached and
the shortest distance to all the vertices reachable from the source vertex are computed. The
Foreach statement in Lines 12-17 executes in parallel mode. It takes all the outgoing edges of
a vertex n, whose updated property is True and tries to reduce the distance of the destination
vertex s of the edge using the min reduction function (Lines 13-16). The weight of an edge
e is found out using Edge prop len. The min reduction operation can take more than one

argument and the one used in Line 15 takes two arguments. If there is a reduction in s.dist_nxt
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(ie s.dist_nzt=n.dist+e.len), then s.updated_nzt is set True. After the end of the outermost
ForEach loop, the updated distance stored in dist_nat is copied to dist for all the vertices. The
updated_nxt property is copied to updated and then updated_nxt property is set to Fulse for all
the vertices. The variable fin which is made Fulse at the beginning of while loop, will be True
if updated property is True for atleast one vertex. If this condition is not satisfied, the program
exits the while loop and the algorithm terminates.

Green-Marl does not support mutation of the graph object (i.e., adding and removing ver-
tices and edges to/from the graph object) and hence dynamic graph algorithms cannot be
written in Green-Marl. Green-Marl supports only multi-core CPUs, and graph algorithms tar-
geting GPU devices cannot be programmed in Green-Marl. Green-Marl does not have support

for worklist based implementations like A-stepping SSSP computation.

3.1.2 Galois

Galois [77] is a framework for implementing graph algorithms on multi-core CPUs. Galois
supports mutation of graph objects via cautious speculative execution. Galois uses a data-

centric formulation of algorithms called operator formulation. Galois defines

o Active Elements: which are the vertices or edges where computation needs to be performed

at a particular instance of program execution.

e Neighborhood: the vertices or edges which are read or written by active elements in a

particular instance of execution.
e Ordering of the active elements present at a particular instance of program execution.

In unordered algorithms, where any active element can be taken for processing (e.g DMR), but
ordered algorithms have an order of processing elements(e.g, A-Stepping SSSP).

Galois uses a worklist based execution model, where all the active elements will be in a
worklist and they are processed in ordered or unordered fashion. During the processing of active
elements, new active elements are created, which will be processed in the following rounds
of computation. Galois has a foreach operator to process active elements in parallel. The
foreach operator takes as argument an ordered or unordered worklist. If an argument is an
ordered worklist, the elements in the worklist are processed based on the order specified in the
program.

Galois classifies graph algorithms based on operator, active nodes and topology. An operator

is classified as
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e morph: if it modifies the structure of the input graph by addition or deletion of edges or

vertices.

e local computation: if it updates vertex and edge properties without modifying the graph

connectivity.

e reader: if it does not modify the graph in anyway. Operations can be traversal of graph

and reading property values of edges and vertices.

An algorithm classified based on active-nodes defines how vertices become active and also the

order of processing active elements.

e Topology-driven and data-driven: These two describe how vertices become active. In
some algorithms active elements are determined by the graph structure and they are
called topology- driven algorithms. Examples are algorithms which iterate over all the
edges, like the Bellman-Ford SSSP. But in data-driven algorithms, nodes become active
in a data-dependent manner, like the worklist based SSSP.

e Ordering: Some algorithms require ordering among active elements (e.g, A-Stepping

SSSP) while some algorithms do not need any ordering (e.g, DMR).
Galois classifies graphs based on topology as
e Unstructured: an example is a typical social network graph.
e Semi-structured: an example is a tree.
e structured: an example is a rectangular grid.

Algorithm 21 shows the pseudocode for SSSP in Galois. Galois uses an order by interger
metric (OBIM) bucket for A-stepping implementation of SSSP as declared in Line 28. The
operator in the InitialProcess struct reduces the distance of the neighbours of the source vertex
and adds to the OBIM buckets (Lines 20-23). This function is called from SSSP class in Line 31.
Then the parallel for_each_local iterator of Galois calls the operator of Process structure in
Line 32. This calls the operator of Process defined in Lines 9-12. The parallel iterator finishes
once all buckets are free and the SSSP distance of all the vertices are computed. The relazNode()
andrelaxEdge() functions are not shown in the algorithm. They are used to reduce the distance
values of vertices as done in other SSSP algorithms.

Galois also supports mutation of graph objects using cautious morph implementations and

also algorithms based on mesh networks. Galois implements Delaunay Mesh Refinement (DMR)
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Algorithm 21: SSSP in Galois C++ framework

© 0 N o oA W N

- e
N = O

13

struct UpdateRequest {

h

Vertex n;
Dist w;

typedef Galois::InsertBag<UpdateRequest>Bag;
struct Process {

AsyncAlgo™* self;
Graphé&s graph;

void operator()(UpdateRequestés req, Galois::UserContext< UpdateRequest> € ctzx) {

}

h

self->relaxNode(graph, req, ctx);

14 struct SSSP{

15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31

32
33
34
35

}

matiaad

struct InitialProcess {
AsyncAlgo* self;
Graphé&; graph;
Bag& bag;
Node& sdata;
void operator()(typename Graph::edge_iterator ii) {
self->relaxEdge(graph, sdata, ii, bag);

b
void operator()(Graphé graph, GNode source) {

using namespace Galois::WorkList;

typedef dChunkedFIFO<64> Chunk;

typedef OrderedBylIntegerMetric<UpdateRequestIndexer<UpdateRequest>, Chunk,
10> OBIM;

Bag initial;

graph.getData(source).dist = 0;

Galois::do_all( graph.out_edges(source, Galois::MethodFlag::NONE).begin(),
graph.out_edges(source, Galois::MethodFlag::NONE).end(), InitialProcess(this, graph,
initial, graph.getData(source)));

Galois::for_each_local(initial, Process(this, graph), Galois::wl<OBIM>());
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and Delaunay Triangulation (DT) as cautious morph algorithms. Galois does not support
multiple graph objects. Programming a new benchmark in Galois requires much effort, as
understanding the C++ library and parallel iterators are more difficult compared to a DSL

based approach. Galois neither supports GPU devices, nor distributed computing.

3.1.3 Elixir

Elixir [79] is a graph DSL to develop and implement parallel graph algorithms for analyzing
static (ie., non-mutable) graphs and it targets multi-core CPUs. Elixir uses both declarative
and imperative constructs for determining computations over a graph. Elixir does not support
structural transformation of the graph such as addition and deletion of vertices are not sup-
ported. Elixir has its own attribute grammar and the compiler converts the program in Elixir
to parallel C++ code with calls to the Galois framework routines. The main feature of Elixir
is the classification of operations over the graph.

Operations in Elixir depend on active-elements, operator, and ordering. Active-elements are
locations in the graph where computation needs to be performed (subgraphs) . An operator is
the computation that should be done on an active-element. An operator reads and writes graph
elements in the region containing the active-elements.

To specify how the operators (op) are applied to the graph, Elixir has the following expres-

sions
e foreach op: applies the operator to all the matched elements or subgraphs.
e for i = low..high op: applies the operator for each value of i between low and high.

e iterate op: iterate op applies the redex operator op until there is atleast one valid element

to be processed.

To specify the order in which the operations need to be performed on subgraphs, schedulers

are used. Elixir supports static and dynamic scheduling policies:

e Metric e ( approx Metric e): determines the strict ( approximate, allowing violation )
order of processing of the subgraphs in accordance with a given metric in the form of e (

smaller the value of the metric, higher the priority).

e Group V: specifies that the vertices in a group V, must be processed together. This

optimization improve the spatial and temporal locality of the vertices of the graph.

e Unroll k: comparisons that form chains of length k, successively one after another in the

same way as unfolding of cycles in imperative programming languages.
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Algorithm 22: SSSP algorithm in Elixir

Graphs [ nodes (node:Node, dist:int), edges(src:Node,dst:Node, wt:int) ]
source:Node

initdist= [ nodes ( node a, dist d)] —
d = if (a==source) 0 else +INF
relaxEdge= [ nodes ( node a ,dist ad )
nodes (node b, dist bd)

edges (node a, node b, wt w)

ad+w <bd | —

[ bd = ad+w |

9 init = foreach initdist

10 sssp = iterate relaxedge >>sched

® N O oA W N

11 main init; sssp

e (Opl or op2) >>fuse: transformation of the mapped subgraphs. The template for op1
and op2 are executed, opl followed by op2. Fusing improves locality and amortizes the

cost of acquiring and releasing locks necessary to guarantee atomic operator execution.

Algorithm 22 shows several possible SSSP implementations in Elixir (see the explanation in
the next paragraph). Line 1 defines the graph. Each vertex (Node) has a property dist of type
int. Each edge has a source (src) and destination (dst) vertex, and an integer weight (wt). The
source vertex for sssp computation is defined in Line 2. Line 11 defines the SSSP algorithm
which consists of calls to two functions, init followed by sssp. The init function (Line 9) calls
initdist using foreach and initializes the distance of source vertex to zero and the distance of all
other vertices to +INF (Lines 3-4). Then control comes to the sssp function (Line 10), which
calls the relaxedge function, that specifies the way distance has to be reduced. This reduction is
done with an iterate statement and sched specifies the scheduling mechanism. The relazedge
function will be called many times until a fixpoint is reached. The relaxEdge statement (Line
5-8) specifies a template, the structural part of which is defined as an edge, and the conditional
part of which reduces dist value of the vertex: If the sum of the dist (ad) value of source vertex
(a) and weight of the edge a — b (w) is less than the dist value (bd) of destination vertex (d), a
new path with a smaller cost has been found and dist attribute of destination vertex is updated.

The sched agrument of the iterate statement of sssp function (Line 10, Algorithm 22) defines
how the sssp function should be executed. Different values for sched will yield different SSSP

algorithm implementations in Elixir.

e Dijkstra’s [55] algorithm
sched = metric ad >>group b
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e A-stepping algorithm
DELTA : unsigned int
sched = metric (ad + w) / DELTA.

Elixir does not support mutation of graph objects, distributed computing and GPU devices.

3.1.4 Other works

X-Stream [82] uses edge-centric processing for graph applications rather than using vertex
centric processing for algorithms such as SSSP and Strongly Connected Component (SCC). It
supports both in-memory and out-of-core graph processing on a single shared-memory machine
using scatter-gather execution model. The Stanford Network Analysis Platform (SNAP) [63]
provides high-level operations for large network analysis including social networks and target
multi-core CPUs. Ligra [88] is a framework for writing graph traversal algorithms for multi-
core shared memory systems which uses two different routines, one for mapping vertices and
the other for mapping edges. Polymer [103] is a NUMA aware graph framework for multi-
core CPUs and it is built with a hierarchical barrier to get more parallelism and locality. The
CoRD [92] framework proposes methods for speculative execution on a multi-core CPU. It
supports rollback and morph algorithms which need not be cautious. A speculative execution
where the execution is restarted from previous consistent state up to which speculation was
correct is proposed in [93]. This has less overhead compared to the cost execution from scratch
on miss-speculation.

The frameworks mentioned in this section lacs completeness in terms of support for hetero-

geneous targets, dynamic algorithms, etc.

3.2 Frameworks for Machines with a multi-core CPU
and multiple GPUs

The GPU devices have a massively parallel architecture and they follow the SIMT model of
Execution. For example, the Nvidia K-40 GPU has 2,880 cores, 12 GB device memory and a
base clock rate of 745 MHz. Nowadays GPUs are being used for General Purpose computing
(GPGPU) also. Graph algorithms are irregular, require atomic operations, and can result in
thread divergence when executed on a Streaming Multiprocessor (SM). Writing an efficient
GPU program requires a deep knowledge of the GPU architecture, so that the algorithm can
be implemented with less thread divergence, fewer atomic operations, coalesced access etc.Past
research has shown that graph algorithms perform well on GPUs and much better than multi-

core CPU codes even though they have the limitations mentioned above. We look at some of
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the past works which deal with graph algorithms on GPUs.

Graph algorithm implementation on GPUs started with handwritten codes. Efficient im-
plementations of local computation algorithms such as Breadth First Search (BFS) and Single
Source Shortest Path (SSSP) on GPU have been reported several years ago [49, 50]. The BFS
implementation from Merril [68] is novel and efficient. There have also been successful imple-
mentations of other local computation algorithms such as n-body simulation [22], betweenness
centrality [85] and data flow analysis [66, 78] on GPU. Different ways of writing SSSP programs
on GPU along with their merits and demerits have been explored in [9] and it concludes that
worklist-based implementation will not benefit much on GPU compared to that on a CPU.

In the recent past, many graph processing frameworks have been developed which come
with structured APIs and optimizations enabling writing efficient graph algorithms on GPU.

We look at some of these.

3.2.1 LonestarGPU

The LonestarGPU [73] framework supports mutation of graph objects and implementation of
cautious morph algorithms. It has cautious morph implementations of algorithms like Delaunay
Mesh Refinement, Survey Propagation, Boruvka’s-MST and Points-to-Analysis. Boruvka’s-
MST algorithm has a local computation implementation using the Union-Find data structure
and the current version of LonestarGPU has modified the MST algorithm to a more efficient
local computation implementation. LonestarGPU also has implementations of algorithms like
SSSP, BFS, Connected Components etc, with and without using worklists. Since it is a frame-
work, a programmer who wants to write a new algorithms must learn CUDA, GPU architecture
and LonestarGPU framework data types. LonestarGPU does not provide any API based pro-
gramming style for GPUs and it does not support execution of an algorithm on multiple GPUs

by graph partitioning or running different algrorithms at the same time.

3.2.2 Medusa

Medusa [104] is a programming framework for graph algorithms on GPUs and multi-GPU
devices. It provides a set of APIs and a run time system to program graph algorithms targeting
GPU devices. The programmer is required to write only sequential C'++ code with these
APIs. Medusa provides a programming model called the Fdge-Message-Vertex or EMV model.
Medusa provides APIs for processing vertices, edges or messages on GPUs. A programmer can
implement an algorithm using these APIs. APIs provided by Medusa are shown in Table 3.1.
APIs on vertices and edges can also send messages to neighbouring vertices.

Medusa programs require user-defined data structures and implementation of Medusa APIs
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APIType | Parameter Variant Description

ELIST Vertex V,Edgelist el Collective | Apply to edge-list el of each vertex v

EDGE Edge e Individual | Apply to each edge e

MLIST Vertex v, Message-list ml | Collective | Apply to message-list ml of each vertex v

MESSAGE| Message m Individual | Apply to each message m

VERTEX | Vertex v Individual | Apply to each vertex v

Combiner | Associative Operation o | Collective | Apply an associative operation to all edge-
lists or message-lists

Table 3.1. Medusa API

for an algorithm. The Medusa framework automatically converts the Medusa API code into
CUDA code. The APIs of Medusa hide most of the CUDA specific details. The generated
CUDA code is then compiled and linked with the Medusa libraries. Medusa runtime system is

responsible for running programmer written codes (with Medusa APIs) in parallel on GPUs.

Algorithm 23: Pagerank Psuedo code

compute( p, graph) {
double val=0.0;

1

2

3 for (each innbr t of p) val += t.PR / t.outdegree;
4 p.PR = val * 0.85+ 0.15
5

6

N -

agerank(graph) {

for (eachtin V) t.PR=1/|V|;

int i = 0;

while( i <100 ){

for (each t in V) compute(t, graph);

9 ++Hi;
10 }
11 }

Algorithm 23 presents the sequential version of the pagerank algorithm for the reader’s quick
reference. Algorithm 24 shows the pagerank algorithm implementation using Medusa APIs.
The pagerank algorithm is defined in Lines 26 to 31. It consist of three user defined APIs,
SendRank (Lines 2-7) which operates on EdgeList, a vertex API UpdateVertexr (Lines 9-13)
which operates over the vertices and a Combiner() function. The Combiner() function is for
combining message values received from the Fdgelist operator, which sends the message using
the sendMsg function (Line 6). The Combiner() operation type is defined as addition (Line 36)
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Algorithm 24: Medusa Pagerank Algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

//Device code APIs:
struct SendRank{// ELIST API
__device__ void operator() (EdgeList el, Vertex v) {
int edge_count = v.edge_count;
float msg = v.rank/edge_count;
for(int i = 0; i <edge_count; i ++) eli].sendMsg(msg);
}

}
struct UpdateVertex{ // VERTEX API

__device__ void operator() (Vertex v, int super_step) {
float msg_sum = v.combined_msg();
vertex.rank = 0.15 + msg_sum™*0.85;

}
}

struct vertex{ //Data structure definitions:

float pg_value;

int vertex_id;

¥

struct edge{

int head_vertex_id, tail_vertex_id;

¥

struct message{

float pg_value;

}

Iteration definition:

void PageRank() {
InitMessageBuffer(0); /* Initiate message buffer to 0 */
EMV<ELIST>::Run(SendRank);/* Invoke the ELIST APT */
Combiner(); /* Invoke the message combiner */
EMV<VERTEX>::Run(UpdateRank);/* Invoke the VERTEX API */

}

int main(int arge, char **

argv) {

Graph my_graph;

//load the input graph.

conf.combinerOpType = MEDUSA _SUM;
conf.combinerDataType = MEDUSA _FLOAT;
conf.gpuCount = 1;

conf.maxlIteration = 30;

Init_Device_DS(my_graph);/*Setup device data structure.*/
Medusa::Run(PageRank);

Dump_Result(my_graph);/* Retrieve results to my_graph. */

return 0;
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and message type as float (Line 37) in the main() function. The main() function also defines
the number of iterations for pagerank() function as 30 (Line 39) and then the pagerank() function
is called using Medusa::Run() (Line 41). The main() function in Medusa code initializes the
algorithm specific parameters like msgtype, aggregator function,number of GPUs, number of
iterations etc. Then loads the graph on to the GPU/GPUs and calls the Medusa::Run function
which consists of the main kernel. After the kernel finishes its execution, the result is copied
using the Dump_Result function (Line 42).

The SendRank FEdgeList API takes an EdgelList el and a verter v as arguments and computes
a new value for v.rank and this value is sent to all the neighbours of the vertex v stored in Edgelist
el. The value sent using the sendMsg function is then aggregated using the Combiner() function
(Line 29) which is defined as the sum of the values received. The UpdateVertex Vertex API
then updates the pagerank using the standard equation to compute the pagerank of a vertex
(Line 12).

Medusa supports the execution of graph algorithms on multiple GPUs of the same machine,
by partitioning large input graph and storing them on multiple GPUs. Medusa uses the EMV
model, which is an extension of the Bulk Synchronous Parallel (BSP) Model. Medusa does not
support running different algorithms on different devices at the same, when a graph object fits

within a single GPU. Also it does not support distributed execution on GPU clusters.

3.2.3 Gunrock

The Gunrock [97] framework provides a data-centric abstraction for graph operations at a higher
level which makes programming graph algorithms easy. Gunrock has a set of APIs to express a
wide range of graph processing primitives. Gunrock also has some GPU-specific optimizations.
It defines frontiers as a subset of edges and vertices of the graph which are actively involved
in the computation. Gunrock defines advance, filter, and compute primitives which operate on

frontiers in different ways.

e An advance operation creates a new frontier from the current frontier by visiting the
neighbors of the current frontier. This operation can be used for algorithms such as SSSP

and BFS which activate subsets of neighbouring vertices.

e The filter primitive produces a new frontier from the current frontier, which will be a

subset of the current frontier. An example algorithm which uses such a primitive is the
A-Stepping SSSP.

e The compute step processes all the elements in the current frontier using a programmer

defined computation function and generates new frontier.
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The SSSP algorithm in Gunrock is shown in Algorithm 25. The SSSP algorithm starts
with a call to SET_PROBLEM_DATA() (Lines 1-6) which initializes the distance dist to oo
and predecessor preds to NULL for all the vertices. This is followed by dist of root node being
made to 0. Then the root node is inserted to the worklist frontier. The computation happens
in the while loop (Lines 20-24) with consecutive calls to the functions ADVANCE (Line 21),
FILTER (Line 22) and PRIORITYQUEUE (Line 23). The ADVANCE function with the call
to UPDATEDIST (Lines 7-10), reduces the distance of the destination vertex d_id of the edge
e_id using the value dist[s_id/+weight[e_id] where s_id is the source vertex of the edge. All
updated vertices are added to the frontier for processing in the coming iterations. Then the
ADVANCE function calls SETPRED (Lines 11-14) which sets the predecessor in the shortest
path of vertices from root node. The FILTER function removes redundant vertices from the
frontier using a call to REMOVEREDUNDANT, this reduces the size of the worklist frontier
which will be processed in the next iteration of the while loop. Computation stops when
frontier.size becomes zero.

In Gunrock, programs can be specified as a series of bulk-synchronous steps. Gunrock also
looks at GPU specific optimizations such as kernel fusion. Gunrock provides load balance on
irregular graphs where the degree of the vertices in the frontier can vary a lot. This variance
is very high in graphs which follow power-law distribution. Instead of assigning one thread to
each vertex, Gurnock loads the neighbor list offsets into the shared memory, and then uses a
Cooperative Thread Array (CTA) to process operations on the neighbor list edges. Gunrock
also provides vertez-cut partitioning, so that neighbours of a vertex can be processed by mul-
tiple threads. Gunrock uses a priority queue based execution model for SSSP implementation.
Gunrock was able to get good performance using the execution model and optimizations men-
tioned above on a single GPU device. Gunrock does not support mutation of graph objects

and mesh based cautious speculative algorithms. It does not support multi-GPU devices.

3.2.4 Totem

Totem [44, 45] is a heterogeneous framework for graph processing on a single machine. It
supports using a multi-core CPU and multiple GPUs on a single machine. When multiple
devices are used for computation, the graph is partitioned and stored in the devices used for
computation. Totem follows the Bulk Synchronous Parallel (BSP) model of execution. Compu-
tation happens in a series of supersteps called computation, communication and synchronization.
Totem stores graphs in the Compressed Sparse Row (CSR) format. It partitions graphs is a way
similar to edge-cut partitioning. It supports large-scale graph processing on a single machine.

Totem uses two buffers on each device for communication called as outboz and inbox buffers.
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Algorithm 25: SSSP algorithm in Gunrock
1 procedure SET_PROBLEM_DATA (G, P, root)
2 P.dist[1..G.verts] + oo

3 P.preds|1..G.verts] + NULL

4 P.dist[root] < 0

5 P.frontier.Insert(root)
6
7
8
9

end procedure
procedure UPDATELDIST (s.id, d.id, e_id, P )
new_dist < P.dist[s_id] + P.weights[e_id]
return new_dist <atomicMin(P.dist[d_id], new_dist)
10 end procedure
11 procedure SETPRED (s.id, d.id, P )
12 P.preds[d_id] «+ s_id
13 P.output_queue_ids[d_id] < output_queue_id
14 end procedure
15 procedure REMOVEREDUNDANT (node_id, P )
16 return P.output queue_id[node_id] == output_queue_id
17 end procedure
18 procedure SSSP(G, P, root)
19 SET_PROBLEM_DATA (G, P, root)

20 while P.frontier.Size() >0 do

21 ADVANCE (G, P, UPDATEDIST, SETPRED)
22 FILTER (G, P, REMOVEREDUNDANT)

23 PRIORITYQUEUE (G, P )

24 end while

25 end procedure

The outbox buffer is allocated with space for each remote vertex, while the inbox buffer has an
entry for each local vertex that is a remote vertex in another subgraph on a different device.
The communication buffer will have two fields, one for the remote vertex id and the other
for messages for the remote vertex. Totem partitions a graph onto multiple devices, with
less storage overhead. It aggregates boundary edges (edges whose vertices belong to different
master devices) to reduce communication overhead. It sorts the vertex ids in the inbox buffer
to have better cache locality. Totem does not have a feature to run multiple algorithms on
the same input graph using different devices on a machine. Such a feature is useful when we
want to compute some properties of an input graphs such as number of Connected Component,
maximum degree, pagerank etc., of by running different algorithms on the same input graph
using multiple devices.

Totem has inbuilt benchmarks which the user can specify as a numerical value. A User can

also specify how a benchmark should be executed:how many GPUs to use, the percentage of
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Algorithm 26: Totem Engine structure

1 totem_config config={
graph,
partitioning_algo,
init_func,

kernel _fun,
msg_reduce_func,
finalize_func,

N O gk 0N

8 };
9 totem_config(&config);
10 totem_execute();

th graph that should go to GPU etc. Heterogeneous computing is useful as some algorithms
does not perform well on GPUs. Examples are algorithms such as SSSP, BFS etc on GPU
for road-network. This happens as road-networks have a large diameter and less parallelism
is possible. So the user can decide where the algorithm should be executed (CPU or GPU).
Writing a new benchmark in Totem is very hard, as the programmer must understand the
low-level implementations of Totem framework in C++ and CUDA. The basic structure of the
Totem framework is shown in Algorithm 26, where a Totem benchmark defines parameters
in the totem_cofig class. Then the benchmark runs with a call to totem_config, followed by

totem_ezecute().

3.2.5 IrGL

IrGL [76] implements three optimizations namely, iteration outlining, cooperative conversion
and parallel execution of nested loops. IrGL is an intermediate code reperesentation, on which
these optimizations are applied and CUDA code is generated from it. Iteration outlining moves
the iterative loop from the host code to the device code and this eliminates the performance
bottleneck associated with multiple kernel calls in an iterative loop. Cooperative conversion
reduces the total number of atomic operations by aggregating functions over thread, warp and
thread-block level.

IrGL provides the constructs, ForAll, Iterate, Pipe, Invoke, Respawn etc. IrGL provides
nested parallelism for its parallel ForAll construct and provides a retry worklist to the kernel
which is hidden from the programmer. The Pipe statement can be invoked with an optional
argument Once and in that case the kernels inside the Pipe statement block will be excuted
once. Irgl, has a Respawn statement which adds an element to the retry worklist.

Algorithm 27 shows a A-stepping SSSP implementation in IRGL for GPU [9]. The INIT

function which is called using the Invoke statement in Line 11 initializesthe SSSP computation
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by making the distance of all the vertices oo, and then making the distance of the source vertex
zero, and adding it to the worklist using the push operation. The INIT function will be called
only once as it is enclosed inside the Pipe Once. Then the SSSP function (Lines 1-9) is called
using the Invoke statement (Line 13). SSSP function is nested inside Pipe (without once)
and SSSP has a Respawn statement in Line 4, which adds elements to the retry worklist. If
the distance value is greater than the current delta value, it is added to the worklist (different
from the retry worklist) using the push operation (Line 6). The Respawn operation makes the
SSSP call loop until the the retry worklist (bucket with current A value) becomes empty. After
that, duplicate elements are removed from other buckets and A is incremented. The Pipe loop
(Lines 12-16) exits when the worklist (all buckets) becomes empty.

IrGL provides worklist based implementation of algorithms where the retry worklist is trans-
parent to the programmer and constructs like Respawn, Pipe and Iterate are used to process
the elements. The ForAll statement iterates over all the elements of an object in parallel

(which is given as its argument). IrGL does not provide any support for clusters of GPUs.

Algorithm 27: SSSP using Pipe construct in IrGL
Kernel SSSP(graph, delta) {

1
2

3 if ( dst . distance < delta ){
4 Respawn ( dst )

5 else

6 WL.push ( dst )

7

8

9

}

10 Pipe Once {
11 Invoke INIT( graph , src)

12 Pipe {

13 Invoke SSSP( graph , curdelta ) ;
14 Invoke remove_dups( ) ;

15 curdelta += DELTA ;

16}

17 }

3.2.6 Other works

High Performance Vertex-Centric Graph Analytics on GPUs [36] presents Warp Segmentation
to improve GPU utilization by dynamically assigning appropriate number of threads to process

a vertex. This work supports large-scale graph processing on multiple GPUs with optimized
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communication where only the updated boundary vertices are communicated. Performance
efficiency is achieved by processing only active vertices in each iteration. For multi-GPU graph
computation, this work provides dynamic load balancing across GPUs. This work presents
Collaborative Context Collection (CCC) and Collaborative Task Engagement (CTE) techniques
for efficient implementation of other irregular algorithms. CCC is a compiler technique to
enhance the SIMD efficiency in loops that have thread divergence. The CTE library does load
balancing across threads in an SIMD group. GasCL (Gather-Apply-Scatter with OpenCL) [6]
is a graph processing framework built on top of OpenCL which works on several accelerators
and supports parallel work distribution and message passing.

The MapGraph [40] framework provides high-level APIs, making it easy to write graph
programs and obtain good speedups on GPUs. MapGraph dynamically chooses scheduling
strategies depending on the size of the worklist and the size of the adjacency lists for the
vertices in the frontier. Halide [80] is a programming model for image processing on CPUs
and GPUs. There has been works on speculative parallelization of loops with cross-iteration
dependences on GPUs [37]. The iGPU [67] architecture proposes a method for breaking a GPU
function execution into many idempotent regions so that in between two continuous regions,
there is very little live state, and this fact can be used for speculative execution.

Paragon [84] uses a GPU for speculative execution and on misspeculation, that part of the
code is executed on CPU. An online profiling based method [56] partitions work and distributes
it across CPU and GPU. CuSha [58] proposes two new ways of storing graphs on GPU called
G-Shards and Concatenated Windows, that have improved regular memory access patterns.
OpenMP to GPGPU [62] is a framework for automatic code generation for GPU from OpenMP
CPU code. There is no support from the CUDA compiler to have a barrier for the all threads
in a kernel blocks. Such a feature is needed in some cautious morph algorithm (e.g, DMR). A
barrier for all the threads in a kernel can be implemented in software, by launching the kernel
with less number of threads and with the help of atomic operations provided by CUDA, and
each thread processes a set of elements. Such an implementation can be found in [100].

Frameworks mentioned in this section lack completeness in terms of support for morph

algorithms, multi-GPU executions, and distributed execution on GPU clusters.

3.3 Frameworks for distributed systems

Natural graphs have very big sizes. Such large-scale graphs are sparse and follow the power-
law degree distribution. Such graphs are processed on a computer cluster. Programming for
a computer cluster requires learning the MPI library and explicit communication code has to

be inserted in the program, with proper synchronizations to preserve sequential consistency.
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To achieve good performance there should be work balance across machines in the cluster and
communication overhead should be minimum. Also the graph should be partitioned across
machines with less storage overhead. This is a very hard problem and there are many frame-
works which make programming on a computer cluster easy. Popular frameworks are Pregel,

GraphLab and PowerGraph. We look at features of these framework in brief.

3.3.1 GraphLab

GraphLab [64] is an asynchronous distributed shared memory abstraction in which vertex pro-
grams have shared access to a distributed graph with data stored on every vertex and edge.
Each vertex program may directly access information on the current vertex, adjacent edges, and
adjacent vertices irrespective of the edge direction. Vertex programs can schedule neighboring
vertex-programs to be executed in the future. GraphLab ensures serializability by prevent-
ing neighboring program instances from running simultaneously. By eliminating messages,
GraphLab isolates user defined algorithms from the movement of data, allowing the system
to choose when and how to move the program state. GraphLab uses edge-cut partitioning of

graphs and for a vertex v all its outgoing edges will be stored in the same node.

Algorithm 28: GraphLab Execution Model
Input: Data Graph G = (V, E, D)
Input: Initial vertex worklist T = {vy , v9 , ...}
Output: Modified Data Graph G = (V, E, D’)
while( (T'# ¢) ){

v + GetNext(T )

(T, S, ) < update(v, S, )

T+~ TuT

® N & ok Wy =

The Execution model of GraphLab is shown in Algorithm 28. The data graph G(V,E,D)
(Line 3) of GraphLab stores the program state. A Programmer can add data with each vertex
and edge based on the requirement of the algorithm requirement. The update function (Line 6)
of Graphlab takes as input a vertex v and its scope S, ( data stored in v, its adjacent vertices
and edges). The update function returns modified scope S, and a set of vertices T’ which require
further processing. The set T’ is added to the set T (Line 7), so that it will be processed in
upcoming iteration. Algorithm terminates when 7 becomes empty (Line 4).

GraphLab does not supports GPU devices. Programming new algorithms in GraphLab is

harder compared to a DSL based approach. The execution results in more data communication
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due to the asynchronous execution model.

3.3.2 PowerGraph

PowerGraph [46] gives a shared-memory view of computation and thereby programmer need
not to program communication between machines in a cluster. Graph properties should be
updated using commutative and associative functions. PowerGraph supports the BSP model
of execution and also the asynchronous model of execution. The graphs can have a user defined
vertex data D, for a vertex v and edge data D,, ,, for an edge © — v. PowerGraph follows Gather-
Apply-Scatter (GAS) model of execution as a state-less vertex-program which implements the

GAS-VertexProgram interface as shown in Algorithm 29.

Algorithm 29: Gather-Apply-Scatter-VertexProgram Interface of PowerGraph

interface GASVertexProgram(u) {

// Run on gather nbrs(u)

gather(D, , D (w,v), D, ) = Accum
sum(Accum left, Accum right) — Accum
apply(D,, ,Accum) — DI?

// Run on scatter_nbrs(u)

scatter(Dy,“ ,D(u,v) ,Dy ) — (D), Accum)

(u,v
}

o N & ok W =

The program is composed of functions gather, sum, apply and scatter. FEach function is
invoked in stages by the PowerGraph engine following the semantics in Algorithm 30. The
gather function is invoked on all the adjacent vertices of a vertex u. The gather function takes
as argument the data on an adjacent vertex and edge, and returns an accumulator specific to
the algorithm. The result is combined using the commutative and associative sum operation.
The final gathered result a, is passed to the apply phase of the GAS model. The scatter function
is invoked in parallel on the edges adjacent to a vertex u producing new edge values D, ). The
scatter function returns an optional value Aa which is used to update the accumulator a, for
the scatter_nbrs v of the vertex u. The nbrs in the scatter and gather phase can be none, innbrs,
outnbrs, or allnbrs.

If PowerGraph is run using the BSP model, the gather, apply, and scatter phases are
executed in order. Each minor-step is run synchronously on the active vertices with a barrier
at the end. A super-step consists of a single sequence of gather, apply and scatter minor-steps.
Changes made to the graph properties are committed at the end of each minor-step. Vertices
activated in each super-step are executed in the subsequent super-step. If PowerGraph is run

using the asynchronous engine, the engine processes active vertices as processor and network
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Algorithm 30: PowerGraph Program Semantics

1 Input: Center vertex u

2 if( cached accumulator a, is empty ){

3 foreach( neighbor v in gather_nbrs(u) ){
4 | @y < sum(a, , gather(D, , D (uv), D, ))
5 |}

6}

7 D, < apply(D, , a, )

8 foreach( neighbor v scatter_nbrs(u) ){

9 (D (u,v) , Aa) < scatter(Dy , D) , Dy )
10 if( a, €96 Aa are not Empty ){

11 | ay < sum(a, , Aa)

12 }

13 else{

14 ‘ a, < Empty

15 }

16 }

resources become available. Changes made to the graph properties during the apply and scatter
functions are immediately committed to the graph and visible to subsequent computations.

PowerGraph uses balanced vertex cut where edges of the graph object are assigned evenly
to all the to processes when program is run on p machines. This can produce work balance
but can result in more communication compared to random edge-cut partitioning. When a
graph object is partitioned using vertex cut, two edges with the same source vertex may reside
on different machines. So, if n machines are used for computation and if there are x edges
with a source vertex v and x > 1, then these edges may be distributed on p machines where
1 < p <min(x,n). PowerGraph takes one of the machines as the master node for vertex v and
the other machines as mirrors.

Vertex cut partitioing can result in computation balance, but this gives rise to a huge
increase in communication volume as a vertex will be present in many nodes, and update of

graph property values requires scatter and gather.

3.3.3 Pregel

The Pregel [65] framework uses random edge-cut to partition graphs. and follows the Bulk
Synchronous Parallel (BSP) Model [95] of execution, with the with execution being carried out
in a series of supersteps. The input graph G(V,E,D) can have mutable properties associated

with vertices and edges. In each superstep, vertices carry out the computation in parallel. A
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vertex can modify property values of its neighbouring vertices and edges, send messages to
vertices, receive messages from vertices, and if required change the topology of the graph. All
active vertices perform computation and all the vertices are as set active initially. A deactives
itself by calling the VoteToHalt() function and it gets reactivated when a message is received
from another vertex. Once all vertices call the VoteToHalt() function and no message is sent

across vertices, the algorithm terminates.

Algorithm 31: Vertex API of Pregel

1 template <typename VertexValue, typename EdgeValue, typename MessageValue>
2 class Vertex {

3 public:

4 virtual void Compute(MessageIterator™ msgs) = 0;

const string& vertex_id() const;

int64 superstep() const;

const VertexValue& GetValue();

VertexValue™ MutableValue();

OutEdgeIterator GetOutEdgelterator();

10 void SendMessageTo(const stringé dest_vertex,const MessageValue& message);
11 void VoteToHalt();

12 }

© 0 I & w;

Algorithm 31 shows the vertex class API in Pregel. The message, vertex and edge data types
are specified as templates in Line 1, and these types will be different for different algorithms.
A programmer needs to override the virtual Compute() function, which will be run on all
the active vertices in each superstep. The value associated with a vertex can be read using
the GetValue() function and values can be modified by the function Mutable Value(). Values
associated with out-edges can be read and modified using the functions given by the out-edge
iterator.

Vertices communicate by sending messages. Typically a message contains the destination
vertex which should receive the message and the message data. A message sent to a vertex v

will be available before the Compute() operation of next super-step.

3.3.4 Giraph

Giraph [29, 87] is an open source framework written in Java which is based on the Pregel
model and runs on the Hadoop infrastructure. Giraph has extended the basic Pregel model
with additional functionalities such as master computation, sharded aggregators, out-of-core
computation, composable computation etc. Giraph can be used to build machine learning and

data mining (MLDM) applications along with large scale processing [87].
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3.3.5 Other works

GPS (Graph Processing System) [83] is an open source framework and follows the execution
of model of Pregel. Green-Marl compiler was extended to CPU-clusters [54] and it gener-
ates GPS based Pregel like code. Mizan [57] uses dynamic monitoring of algorithm execution,
irrespective of graph input and does vertex migration at run time to balance computation
and communication. Hadoop [99] follows the MapReduce() processing of graphs and uses the
Hadoop distributed file system (HDFS) for storing data. HaLoop [21] is a framework which fol-
lows MapReduce() pattern with support for iterative computation and with better caching and
scheduling methods. Twister [34] is also a framework which follows the MapReduce() model
of execution. Pregel like systems can outperform MapReduce() systems in graph analytic ap-
plications. The GraphChi [60] framework processes large graphs using a single machine, with
the graph being split into parts (called shard) and loading shards one by one into RAM and
then processing each shard. Such a framework is useful in the absence of distributed clusters.
Graphine [101] uses the agent-graph model to partition graphs, uses scatter agent and combine
agent and it reduces communication overhead compared to that in PowerGraph. Graphln [86]
supports incremental dynamic graph analytics using incremental-GAS programming model.
The Parallel BGL is a distributed version of the Boost Graph Library (BGL). GRACE [96] E
provides a synchronous iterative graph programming model for programmers. It has a paral-
lel execution engine for both synchronous and user-specified built-in asynchronous execution
policies. Table 3.2 divides the major related works we disussed into different groups based on

target systems supported, kind of work (framework, DSL etc.) and support for speculation.
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Chapter 4

Overview of Falcon

4.1 Introduction

Falcon is a graph DSL targeting distributed heterogeneous systems including CPU cluster,
GPU cluster, CPU4+GPU cluster, multi-GPU machine in addition to machine with single multi-
core CPU and GPU. The programmer writes a single program in Falcon and with proper
command line arguments, it is converted to different high-level language codes (C++, CUDA)
with the required library calls (OpenMP, MPI/OpenMPI) for the target system by the Falcon
compiler (see Figure 4.1). These codes are then compiled with the native compilers (g++, nvcc)
and libraries to create executables. For distributed targets, the Falcon compiler performs static
analysis to identify the data that needs to be communicated between devices at various points
in the program (See Sections 6.6.5 and 6.6.9). Falcon extends the C programming language. In
addition to the full generality of C (including pointers, structs and scope rules), Falcon provides
the following types relevant to graph algorithms: Point, Edge, Graph, Set and Collection.
It also supports constructs such as foreach and parallel sections for parallel execution,
single for synchronization, and reduction operations.

Initial version of Falcon [24] required an optional <G PU> tag in the declaration statement,
which if present tells the compiler to allocate the variable on the GPU. But this requirement has
been removed in the new version Falcon [25], with a simple program analysis. The programmer
can specify the target system for which code needs to be generated as a compile time argument,
and the compiler allocates variables appropriately and code for the specified target is generated.
The generated code is then compiled with the appropriate compiler and libraries to create the
executable.

We begin with an explanation of DSL code in Falcon for SSSP computation. The special

data types, constructs and their informal semantics are discussed later. A brief summary of
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Figure 4.1: Falcon DSL overview

the special data types and constructs are provided in table 4.1.

4.2 Example: Shortest Path Computation

Single source shortest path (SSSP) computation is a fundamental operation in graph algorithms.
Given a graph G(V,E) with a designated source vertex s and nonnegative edge weights, it com-
putes the shortest distance from the source vertex s to every other vertex v € V. Algorithm 32
shows the code for SSSP computation in Falcon.

Lines 17-20 add four properties dist, uptd, olddist, pred respectively to each Point (vertex)
in the Graph object, hgraph. The algorithm first initializes dist, olddist and pred values of all
the vertices to a large value (Line 22). Also uptd property value is made false for all vertices.

The dist variable of the source vertex is then made zero (Line 23), followed by uptd values of
source vertex made true (Line 24). It then progressively relazes vertices to determine whether
there is any shorter path to a vertex via some other incoming edge (Line 27). This is done by
checking the condition ( Y(u,v) € E ) (dist[v]) > (dist[u] + weight(u,v)). If this condition is
satisfied, then the distance of the destination vertex v is changed to the smaller value via u
(Line 5), using an atomic operation (more on this later). An invariant is that a vetex’s distance
never increases (it monotonically reduces). This procedure is repeated until we reach a fix point
(lines 27-32).

The relazgraph() function is called repeatedly (Line 27) and it keeps on reducing dist value
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Data type | Description

Point Can be up to three dimensions and stores a float or int values in each dimension.

Edge Edge consist of source and destination Points, with optional nonnegative int
weight.

Graph Entire Graph. Consist of Points and Edges. new properties can be added to Graph,

which can be used to view graph as mesh of triangles or rectangles.

Set A static collection. Implemented as a Union-Find data structure.

Collection | A dynamic collection. Elements can be added to and deleted from Collection.

foreach A construct to process all elements in an object in parallel.

parallel A construct to execute codes concurrently on multiple devices.

sections

single A synchronization construct to lock an element or a Collection of elements.

Table 4.1. Data Types, parallel and synchronization constructs in Falcon

of each Point (Line 5). The foreach for relazgraph() is with a condition (t.uptd) that makes
sure that only points which satisfy the condition will execute the code inside the relaxgraph()
function. In the first invocation of relaxgraph(), only the source vertex will perform the compu-
tation. Since multiple threads may update the distance of the same vertex (e.g., when relaxing
edges (u1,v) and (us,v)), some synchronization is required across the threads. This is achieved
by providing atomic variants for commonly used operations. The MIN() function used by relaz-
graph() is an atomic function that reduces dist atomically (if necessary) and if it does change,
the third argument value will be set to 1 (Line 5).

So, whenever there is a reduction in the value of dist for even one Point, the variable changed
is set to 1. When the relaxgraph() function finishes the computation the uptd property value
of all the vertices is false as Line 3 resets uptd property value to false. After each call to
relazgraph(), the resetl() function makes uptd true only for points whose distance from the
source vertex was reduced in the last invocation of the relazgraph() function (Line 29).

The variable changed is reset to zero before relazgraph() is called in each iteration (Line 26).
Its value is checked after the call and if it is zero, indicating a fixed-point, the control leaves
the while loop (Line 28). At this stage, the computation is over.

The predecessor of each vertex on the shortest path from the source vertex is stored in the
property pred, using the for loop in Lines 31- 36, which iterates over edges P1—P2, with weight
W (Lines 32-34). pred[P2] is updated to P1, if the the two conditions dist[P2] = dist|P1]+ W
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Algorithm 32: Optimized SSSP code in Falcon
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int changed = 0;
relaxgraph(Point p, Graph graph) {
p.uptd=false;
foreach( t In p.outnbrs ){
‘ MIN(t.dist, p.dist + graph.getweight(p, t), changed);
}
}
reset( Point t, Graph graph) {
‘ t.dist=t.olddist=1234567890; t.uptd=false; t.pred=1234567890;
}
resetl( Point t, Graph graph) {
if( t.dist<t.olddist)t.uptd=true;
t.olddist=t.dist;
}
main(int argc, char *argvf]) {
Graph hgraph; // graph object
hgraph.addPointProperty(dist, int);
hgraph.addPointProperty(uptd, bool);
hgraph.addPointProperty(olddist, int);
hgraph.addPointProperty(pred, int);
hgraph.read(argv(1]);
foreach (t In hgraph.points)reset(t,hgraph);
hgraph.points[0].dist = 0; // source has dist 0
hgraph.points[0].uptd=true;
while( 1 ){
changed = 0; //keep relaxing on
foreach(t In hgraph.points) (t.uptd) relaxgraph(t,hgraph);
if(changed == 0)break;//reached fix point
foreach(t In hgraph.points)reset1(t,hgraph)
}
for( (int i=0;i<hgraph.nedges;i++) ){
Point(hgraph) P1=hgraph.edgesli].src;
Point (hgraph) P2= hgraph.edges|i].dist;
int W= hgraph.getWeight(P1,P2);
if(P2.dist== (P1.dist+W) && P2.pred!=1234567890)P2.pred=P1;
}
for(int i = 0; i <hgraph.npoints; ++i)
printf(”i=%d dist=%d\n”, i, hgraph.points]i].dist);
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and (pred|[P2] == 1234567890) are satisfied (Line 35).

4.3 Benefits of Falcon

Falcon DSL code for SSSP computation is shown in Algorithm 32. The program has no target

specific information. But during compilation of the DSL code, appropriate arguments can be

given to the compiler to generate code for heterogeneous targets: multi-core CPUs, GPUs,
multi-GPU machines, CPU clusters, GPU clusters and CPU+GPU clusters. This improves

programmer productivity who now writes a single program in Falcon. In the absence of such

a DSL, programmer will be forced to write separate codes in different languages (e.g., C++,
CUDA) and with different libraries (e.g., OpenMP, MPI/OpenMPI). This requires a lot of

programming effort and such codes are difficult to debug and also error prone.

Some features which are not available in CUDA and MPI are supported in software by the

Falcon compiler. Novelties of Falcon are mentioned below.

It supports a Barrier for the GPU kernel. (not supported by CUDA)
It supports Distributed locking across CPU and GPU clusters. (not supported by MPI)
A single DSL code converted to different targets by the Falcon compiler.

Falcon supports usage of a multi-GPU machine to run different benchmarks for a single
input graph on different GPUs. To the best of our knowledge this facility is not provided

by any other framework.

The Falcon compiler generates efficient code, making DSL codes match or outperform

state-of-the-art frameworks for heterogeneous targets.

Support for dynamic algorithms and GPU devices is another feature, which is absent in
recent powerful graph DSLs like GreenMarl [53] and Elixir [79].

A programmer need not be concerned with the details of device architectures, thread and

memory management etc., making Falcon novel, attractive, and easy to program.

4.4 Data Types in Falcon

Table 4.1 shows a list of special data types in Falcon with a short description.
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field type description

X,V,Z var stores Point coordinates in each dimension.
isdel var returns true if Point object is already deleted.
getOutDegree function returns number of outgoing edges of a Point
getInDegree function returns number of incoming edges of a Point
del function delete a Point

Table 4.2. Fields of Point data type in Falcon

4.4.1 Point

A Point data type can have up to three dimensions. A Point can store either int or float
values in their fields. The Delaunay Mesh Refinement(DMR) [26] algorithm has two dimensional
points, with floating point values. The Point data type needs multiple dimensions for such
mesh based algorithms. Algorithms like SSSP, BFS, MST etc., need only one dimensional
points with nonnegative integer Point identifier. The Falcon compiler does not have separate
data types for points with different dimensions. It is decided by command line arguments and
input. The number of outgoing (incoming) edges of a vertex can be found using getOutDegree()
(getInDegree()) function of the Point data type. A vertex can be deleted from the graph object
using del() function and isdel field can be used to check whether a vertex is already deleted.

The major fields of Point data type and their description is provided in Table 4.2.

4.4.2 Edge
field type description
src var source vertex of an Edge
dst var destination vertex of an Edge
weight var weight of an Edge
isdel var returns true if the Edge is already deleted.
del function delete an Edge

Table 4.3. Fields of Edge data type in Falcon

An edge in Falcon connects two Points in the Graph objects. Edges can have optional

nonnegative weight associated with it and edges can be directed or undirected. The src and dst
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field of an edge returns the source and destination vertex of an edge. The weight field returns
weight of the edge. The isdel field is set true if the edge is deleted and del() function is used
to delete an edge. The major fields of Edge data type and their description is provided in
Table 4.3.

4.4.3 Graph

field type description

npoints var number points in the Graph object (|V]).

nedges var number of edges in the Graph object (|E]).

read function read a Graph object.

getType compile time | Used to create a new Graph object with similar extra
function properties from a Graph object.

addPointProperty | function add a new property to each vertex of the Graph object.

addEdgeProperty | function add a new property to each edge of the Graph object.

addProperty function add a new property to the Graph object.

getWeight function get weight of an edge in the Graph object.

addPoint function add a new vertex to the Graph object.

addEdge function add a new edge to the Graph object.

delPoint function delete a vertex from the Graph object.

delEdge function delete an edge from the Graph object.

Table 4.4. Fields of Graph data type in Falcon

The major fields of Graph data type and their description is provided in Table 4.4. A Graph
stores its points and edges in vectors points/] and edges/l. The method addEdgePropery()
is used to add a property to each edge in a Graph object with the same syntax as that of
addPointProperty() used in Line 17 of Algorithm 32.

The addProperty() method is used to add a new property to the whole Graph object
(not to each Point or Edge). Such a facility allows a programmer to maintain additional data
structures with the graph which are not necessarily direct functions of points and edges. For
instance, such a function is used in DMR [26] code as the graph consists of a collection of
triangles, each triangle with three Points, three Edges along with a few extra properties. The
statement shown below illustrates the way DMR code uses this function for a Graph object,

hgraph.
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hgraph.addProperty(triangle, struct node);
The structure node has all the fields which are required for the triangle property for the DMR
implementation. This will add to hgraph, a new iterator triangle and a field ntriangle which
stores the number of triangles.

Some other statements with a Graph object hgraph and their description is given in the

table 4.5 with a short description.

statement description
hgraph.read(fname) read the Graph object with name of file stored in char array
fname.

hgraph.addEdgeProperty(cost,int) | add an int property cost to each Edge of Graph object.

hgraph.get Weight(src,dst) get weight of the Edge src — dst of the Graph object.
hgraph.addEdge(src,dst) add an Edge src — dst to the Graph object.
hgraph.addPoint(P) add a Point P to the Graph object.
hgraph.delEdge(src,dst) delete an Edge src — dst of the Graph object.
hgraph.delPoint(P) delete a Point P of the Graph object.

hgraph.getType() graph creates a new Graph object graph, which inherits properties

of the hgraph object.

Table 4.5. Falcon Statements with Graph fields

4.4.4 Set

A Set is a an aggregate of unique elements (e.g., a set of threads, a set of nodes, etc.). A
Set has a maximum size and it cannot grow beyond that size. Two important operations on
a Set data type that are used in graph algorithms are to find an element in a set and perform
a union with another disjoint set (other set operations such as intersection and complement
may be implemented in future versions of Falcon). Such a set is naturally implemented as a
union-find data structure and we have also implemented it as suggested in [70], with our own
optimizations. Falcon requires that union() and find() operations should not be called in the
same method, because this may give rise to race conditions. The compiler gives a warning to
the programmer in the presence of such codes. However we could not detect race condition.
The parent field of a Set stores the representative key of each element in a Set. A Set data
type can be used to implement, as an example, Boruvka’s MST algorithm [90].

The way a Set data type is declared in MST code is shown in Algorithm 33. Line 2 declare
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an object of Set data type. The Set object hset contains set of all the points in the Graph
object hgraph. As edges get added to the MST, the two end points of the edge are union-ed
into a single Set. The algorithm terminates when the Set has a single representative (assuming
that the graph is connected) or when no edges get added to the MST in an iteration (for a
disconnected graph, giving an MST forest). We mark all the edges added to the MST by using
the Edge property, mark of the Graph object. This makes the algorithm a local computation,

as the structure of the Graph does not change.

Algorithm 33: Set declaration in Falcon

1 Graph hgraph;
2 Set hset[Point(hgraph)];

Algorithm 34 shows how minimum weight edges are marked in the MST computation.
Function MinEdge() takes three parameters: a Point to operate on, the underlying Graph
object , and a Set of points. The Point which is the representative for the Set of p is stored
in t1 using the find() function in Line 11. Line 12 takes each outgoing neighbor of the Point p
and finds the representative for the Set of outgoing neighbour ¢ and stores it in ¢2 (Line 13).
Then algorithm checks whether those neighbors and p belong to different sets (¢t1 # ¢2). If so
(Line 15), the code checks whether the edge (p — t) has the minimum weight connecting the
two sets t1 and t2 (Line 16). If it is indeed of minimum weight, the code tries to lock the Point
t1 using the single construct (See Section 4.6.1) in Line 17. If the locking is successful, this
edge is added to the MST. After MinFEdge() completes, each end-point of the edge which was
newly added to the MST is put into the same Set using the union operation (performed in the

caller).

4.4.5 Collection

A Collection refers to a multiset. Thus, it allows duplicate elements to be added to it and
its size can vary (no maximum limit like Set). The extent of a collection object defines its
implementation. If its scope is confined to a single function, then we use an implementation
based on dynamic arrays. On the other hand, if a collection spans multiple function/kernel
invocations, then we rely on the implementation provided by the Thrust library [74] for GPU and
Galois worklist and its run time for multi-core CPU. Usage of Galois worklist for multi-core CPU
made it possible to write many efficient worklist based algorithms in Falcon. Implementation
of operations on Collection such as reduction and union will be carried out in the near
future.

Delaunay Mesh Refinement [26] needs local Collection objects to store a cavity of bad
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Algorithm 34: Finding the minimum weight edge in MST computation

1 manset(Point P,Graph graph, Set set[Point(graph)]) {

2 //finds an Edge with minimum weight from the Set to which Point P belongs to a
different Set

3

}

4 mstunion(Point P,Graph graph, Set set[Point(graph)]) {

5 //union the Set of Point P with the Set of Point P’ such that// Set(P)!=Set(P’) and
Edge(P,P’) is the minimum //weight edge of P,going to different Set Performed only
for the Point P that satisfies this condition.

MinEdge ( Point p, Graph graph, Set set/Point(graph)]) {
Point (graph) t1,(graph)t2;

int t3;

10 Edge (graph) e;

11 t1 = set.find(p);

12 foreach( t In p.outnbrs ){

© 0w N o

13 t2 = set.find(t);

14 t3 = graph.getweight(p, t);

15 if (t1 1=12) {

16 if (t3 == t1.minppty.weight) {
17 single (t1.minppty.lock) {

18 e = graph.getedge(p, t);

19 e.mark = true;

20 B

21 }
22 }

triangles and to store newly added triangles. Hence, it can be implemented using dynamic
arrays. Our implementation creates an initial array with a default size. When it gets full, it
dynamically allocates another array of larger size, copies all the elements from the old array
to the new array, and deallocates the old array. In general, repeated copying of elements is
expensive. However, we significantly reduce this cost by repeated doubling of the array size.
A Collection can be declared in the same way as a Set. A programmer can use add() and
del() functions to operate on it and the current length of a Collection can be found using
the size field of the data type. Algorithm 35 shows how Collection objects are used in DMR
code. Lines 7 declares a Collection object with the name pred which contains elements of
type struct node. struct node has fields to store values required for processing triangles in
DMR.
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Algorithm 35: Collection declaration in Falcon

1 struct node { //structure for triangle

2 Point nodes[3], neighedgestart[3];

3 struct_rec node neighbors[3];

4 int isbad,isdel,obtuse,owner,dims,index;
5 1

6 Graph hgraph;

7 Collection pred[struct node (hgraph)];

4.5 Variable declaration

Variable declarations in Falcon can occur in two forms as shown with Point variables PO and
P1 below (Edge declarations are similar). Given a Graph object g, we say that g is the parent

of the points and edges in g.
Point P1, (graph)P0; //parent Graph of PO is graph

When a point or edge variable has a parent Graph object, it can be assigned values from
that parent only and whatever modifications we make to that object will be reflected in the
parent Graph object. In the above example, PO can be assigned values that are Point objects
of graph only (see also line 8 of Algorithm 34). But If a variable is declared without a parent
and a value is assigned to it, it will be copied to a new location and any modification made to
that object will not be reflected anywhere else (e.g., P1 in the above example).

Falcon has a new keyword named struct_rec, that is used to declare recursive data struc-
tures. In C, a recursive data structure can be implemented using pointers and the malloc()
library function. With struct_rec, a programmer can support a recursive data structure
without explicitly using pointers, (like in Java). Line 3 of Algorithm 35 shows the usage of
struct_rec field which declares a field type node, same as that of parent struct in which it is

enclosed.

4.6 Parallelization and synchronization constructs

In Falcon we provide the single statement, foreach statement, parallel sections state-

ment and reduction operations.
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single(t1){ stmt blockl } else | The thread that gets a lock on item t1 executes stmt blockl
{stmt block2} and other threads execute stmt block2.

single(coll){ stmt blockl} else | The thread that gets a lock on all elements in the collection
{stmt block2} executes stmt blockl and others execute stmt block2.

Table 4.6. Single statement in Falcon

4.6.1 single statement

This statement is used for synchronization across threads. It ensures mutual exclusion for the
participating threads. In graph algorithms, we use a single statement to lock a set of graph
elements, as discussed later in this section.

When compared to other synchronization constructs such as synchronized construct of
Java or lock primitives in the pthreads library the single construct differs in two aspects: (i)
it has a non-blocking entry, and (ii) only one thread executes the code following it.

Falcon supports two variants of single, as given in Table 4.6: with one item and with a
Collection of items. In both the variants, the else block is optional (Algorithm 34, Line 17).
The first variant tries locking one item. As it is a non-blocking entry function, if multiple
threads try to get a lock on the same object, only one will be successful, others will fail. In the
second variant, a thread tries to get a lock on a Collection of items given as an argument.
This allows a programmer to implement cautious forms of algorithms wherein all the shared
data (e.g., a set of neighboring nodes) are locked before proceeding with the computation. A
thread succeeds if all the elements in the Collection object are locked by that thread. As
an example, a thread in DMR code tries to get a lock on a cavity, which is a Collection of
triangles. In both the variants, the thread that succeeds in acquiring a lock executes the code
following it and if the optional else block is present, all the threads that do not acquire the
lock execute the code inside the else block. If two or more threads try to get a lock on same
element (present in Collection object of those threads), Falcon makes sure that the thread
with the lowest thread-id always succeeds, by taking minimum with thread-id on the locking

element. This avoids live-lock and ensures progress.

4.6.2 foreach statement

This statement is one of the parallelizing constructs in Falcon. It processes a set of elements
in parallel. This statement has two variants as shown in Table 4.7. The condition and
advance_expression are optional for both the variants. If the condition is present, the

elements in the object which satisfy the condition will execute the stmit_block and others
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foreach(item (advance_expression) In object.iterator) | Used for Point, Edge and
(condition) { stmt_block } Graph objects

foreach(item (advance_expression) In object) (condition) | Used for Collection and Set
{ stmt_block} object

Table 4.7. foreach statement in Falcon

DataType Iterator Description
Graph points iterate over all points in graph
Graph edges iterate over all edges in graph
Graph pptyname iterate over all elements in new ppty.
Point nbrs iterate over all neighboring points
1terate over src point
Point innbrs incoming edges (Directed Graph)
iterate over dst point of
Point outnbrs outgoing edges (Directed Graph)
Edge nbrs iterate over neighbor edges
iterate over neighbor edges of Point
Edge nbrl P1 in Edge(P1,P2) (Directed Graph)
iterate over neighbor edges of Point
and Edge nbr2 P2 in Edge(P1,P2) (Directed Graph)

Table 4.8. Iterators for foreach statement in Falcon

will not do any operation. Use of a condition was explained in Algorithm 32, Section 4.2.
An advance expression is used to iterate from a given position instead of the starting or
ending positions. A + advance expression (- advance expression, respectively) makes the
iterations go in the forward (backward, respectively) direction, starting from the position given
by the value of advance_expression. advance_expression is optional and its default value is
taken as 0. If we want to iterate from the end position to the beginning position and from an
offset before the end, (- offset) and if we want to iterate from the beginning to the end from an
offset after the begin, we use (+ offset) as advance_expression. The object used by foreach
can be also be dereferencing of a pointer to an object. The Boruvka’s MST implementation
uses advance_expression and dereferencing of a pointer to an object in foreach statements. A
foreach statement gets converted to a CUDA kernel call or an OpenMP pragma or Galois::worlist
call based on the object on which it is called and the target system. Iterators used in foreach

statement for different Falcon data types are shown in Table 4.8.
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In a Graph, we can process all the points and edges in parallel using points and edges iterator
respectively. An iterator called pptyname is generated automatically when a new property is
added to a Graph object using addProperty() function. This is used in the morph algorithms.
When a property named triangle is added to a Graph object using addProperty (), it generates
an iterator called triangle. Similarly, the Point data type has iterators outnbrs, which processes
all outgoing neighbors in parallel. Iterators nbrs and innbrs process all the neighbors and
incoming neighbors respectively in parallel. The Edge data type has iterator which processes
all neighboring edges in parallel. There is no nested parallelism in our language. A nested
foreach statement is converted to simple nested for loops in the generated code, except for the
outermost foreach that is executed in parallel. The outermost foreach statement (executed

in parallel) has an implicit global barrier after it (in the generated code).

4.6.3 parallel sections statement

Algorithm 36: parallel sections syntax in Falcon

1 parallel sections {
2 section {

3 statement_block
4}

5

6

one or more section statements //(Lines 2-4) above

The Syntax of this statement is shown in Algorithm 36. Each section inside the parallel
sections statement runs as a separate parallel region. With this facility, Falcon can support
multi-GPU systems and concurrent execution of CUDA kernels and parallel execution of CPU

and GPU code is possible.

Algorithm 37: parallel sections example code in Falcon

1 parallel sections {
section {

SSSP(graph);
}

section {

BFS(graph);
}

® N o oA WN

The code in Algorithm 37 shows an example of parallel sections. In the code there are
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two parallel regions enclosed in two section statements ( Lines 2-4 and Lines 5-7) with calls
to the functions SSSP and BFS on the same input graph object graph. If there is more than
one device (say 2 GPUs) on a machine, each section will be scheduled on a different device

(separate GPU) concurrently and running time will be maximum of the running time of SSSP
and BFS.

4.6.4 Reduction operations

Reduction operators such as ReduxSum, which sums a set of items and ReduxMul which multi-

plies a set of items are provided by Falcon. The syntax of the reduction operation is given below.
if(cond) res ReduxOp=obj.ppty;

Here, all the elements in the object obj are taken and for the elements which satisfy the
condition cond specified in the if statement, the Redux0Op is assigned on the object property
ppty. The condition cond is optional and if it is not present, ppty value of all elements in the
object obj are used for the ReduxOp. The result is stored in variable res. An example Falcon

DSL code is given below.
if(graph.edges.mark==1)mst ReduxSum=graph.edges.weight;

The above DSL code is from Boruvka’s MST algorithm. The above code accumulates MST
cost, after all the edges of the MST are computed. The Graph variable graph has an Edge
property mark, which is set to 1 for an edge if the edge is a part of the MST. So, the above code
accumulates the MST cost in the variable mst by adding the weight of the edges whose mark
property value is set to 1 using the ReduxSum operation. Reduction makes finding properties
on Graphs easy with a single DSL statement. We leave the support for arbitrary associative

functions as reduction operations for future work.

4.7 Library functions

We provide atomic library functions MIN,MAX ,SUB,AND, etc., which are abstractions over
similar ones in CUDA [75] and GCC [5] . MIN atomic function was used in Algorithm 32,
Section 4.2. We also provide a barrier() function which acts as a barrier for the entire group
of threads in a CUDA kernel and OpenMP parallel region. A genericbarrier() which supports
barriers for a group of related threads is also available. A barrier() is required for the entire ker-

nel in algorithms like DMR. This is done automatically using the single construct of Falcon.
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But in some graph algorithms, a barrier() may be required for the entire parallel region (out-
ermost foreach loop), or for a set of threads (genericbarrier()), for example, after processing

out-neighbours of a point.
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Chapter 5

Code Generation for Single Node
Machine

5.1 Overview

This chapter explains how the Falcon compiler generates code for a single node machine with
multi-core CPU and one or more GPUs (0STARGET<2, See Figure 4.1, Chapter 4). Dis-
tributed execution of graph algorithms using multiple GPUs on large-scale graphs are discussed
in next chapter. This chapter discusses how Falcon can be used to run different algorithms on
different GPUs at the same time, where the graph object fits within a single GPU. The Falcon
compiler generates CUDA or C++4 code from the input DSL code based on the target device
given as an argument during compiling the DSL code.

Currently, Falcon supports two types of graph representation: (i) Compressed Sparse Row
(CSR) format, and (ii) Coordinate List (COO) or Edge List format. Graphs are stored as C++
classes in Falcon generated code. The GGraph and HGraph C++ classes are used to store graph
objects on the GPU and the CPU respectively, and both inherit from a parent Graph class. The
Graph class has a field named extra (of type void *) which stores all the properties added to a
Graph object using addPointProperty(), addEdgeProperty(), and addProperty() methods of the
Graph class. The Point and Edge data types can have either integer (default) or floating point
values and are stored in a union type with the fields ipe and fpe respectively. The generated
code is compiled with nvcc or g++ compiler. The Falcon compiler names for all data types
and functions specific to CPU and GPU start with H(Host) and G(Gpu) respectively in the
generated code.

Figure 5.1 gives an overview of how parallelization and synchronization constructs are con-
verted to CUDA (C++) high-level language code with appropriate libraries for GPU (CPU).
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Figure 5.1: Falcon Code Generation overview for Parallelization and Synchronization Con-
structs for Single Node Device

As shown in the figure only outer the most foreach loop is parallelized. If the foreach loop is
over a Collection object, Falcon generates a code which uses Galois library for the multi-core
CPU and CUDA code with thrust library for the GPU. Galois has efficient parallel iterators
over worklists and it has worklist based implementations many graph and mesh refinement
algorithms. For foreach statements over other data types, OpenMP based code is generated
for CPU and CUDA code is generated for GPU. If the single statement is on one element
compare and swap (CAS) based code is generated for GPU and GPU. For single on collection
parallel code with barrier for all the threads is generated.

Falcon is strongly typed. The compiler checks for undeclared variables, type mismatch
involved in an assignment, invalid iterator usage, invalid field-access, invalid property, and
usage of the supported data-types (such as Collection). Falcon just gives a warning when an
undefined function is called in the DSL code. It does not treat this as an error, as a programmer
is free to call any C library function. It is mandatory for the programmer to write the main()
function in Falcon DSL code. If it is missing, it is treated as an error. Graph objects are

passed by reference to all the functions in the generated code.
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5.2 Code generation for data structures

5.2.1 Point and Edge

Each Edge in Falcon stores the destination Point and the weight (if required) of the Edge in
edges array of the Graph class. When a program uses the innbrs and the outnbrs iterators,
the inedges array of the Graph class stores two fields: source Point of the incoming Edge and
an index into the edges array, that is used to get the weight of the incoming Edge which is
stored in edges array. A Point can have upto three dimensions and have fields z, y and z to
store the value of each dimension. In the DMR algorithm, Point data type is two dimensional
with z and y fields.

Algorithm 38: Extra properties added to Graph object graph

1 graph.addPointProperty(dist,int);
2 graph.addPointProperty(olddist,int);
3 graph.addPointProperty(uptd,int);

5.2.2 Allocation of extra-properties

Point and Edge of a Graph object are converted to integer ids. All the extra-properties of a
Graph object are stored in the extra field, and can be type cast to any structure. By default,
extra-properties of a Graph object are stored in a structure with the name struct_objectname
and are assigned to the extra field of a Graph object. If a Graph object is created by the
getType (), a compile time function, its extra-properties are assigned to a structure with the
name struct_parentobjectname, which will have fields for extra-properties of the parent object
and all the objects created by the getType() compile time function.

By default extra-properties are stored in a structure with the name struct_objectname and
assigned to the extra field of the graph object. If two objects have the same extra-properties,
both use the same structure. In the SSSP example, Graphs on the GPU and the CPU have
the same extra-properties and are allocated in a structure with the same name. Algorithm 39
shows how extra-properties of a graph object on the GPU and the CPU are allocated for the
statements in Algorithm 38. Same properties were used in SSSP example of previous chapter
(Algorithm 32, Section 4.2). The extra-properties of the CPU (GPU) graph object are allocated
using the malloc() (cudaMalloc()) function and are assigned to the extra field of the CPU (GPU)
graph object.

When a property is added to a graph object using addProperty() method of the Graph data
type, a function is generated by the Falcon compiler which gets the size of the property added
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Algorithm 39: Allocating extra-property for Graph object on GPU and CPU

1 #define ep (struct struct_hgraph )
2 struct struct_hgraph {
3 int *dist, *olddist;
bool *uptd;
b
struct struct_hgraph tmp;
alloc_extra_graph(GGraph E&graph) {
cudaMalloc((void **) &(graph.extra), sizeof (ep ));
cudaMemcpy(&tmp, (ep *)(graph.extra), sizeof (ep),cudaMemcpyDeviceToHost);
10 cudaMalloc((void **) &(tmp.dist), sizeof (int)* graph.npoints);
11 cudaMalloc((void **) &(tmp.olddist), sizeof (int)* graph.npoints);
12 cudaMalloc((void **) &(tmp.uptd), sizeof (bool)* graph.npoints);
13 cudaMemcpy(graph.extra, &tmp, sizeof(ep), cudaMemcpyHostToDevice);
14 }
15 alloc_extra_graphcpu(HGraph €graph) {
16 graph.extra= ( ep *) malloc(sizeof(ep));
17 ((ep *)(graph.extra))—dist=(int *) malloc(sizeof(int)*graph.npoints);
18 ((ep *)(graph.extra))—olddist=(int *) malloc(sizeof(int)*graph.npoints);
19 ((ep *)(graph.extra))—uptd=(bool *) malloc(sizeof(bool)*graph.npoints);

20 }

© W N e o

from command line argument stored in argv[] array. An example for the generated code is given
in Algorithm 40 for the statement shown in the first two lines of the same Algorithm, which
adds an int property changed to the Graph object hgraph and creates a new Graph object graph
using getType() method.

The hgraph and graph objects are stored on the CPU and the GPU respectively. The
read_hgraph_pptysize() (Line 9) reads the size (number of elements) of the Graph property
changed using the command line arguments given by the user (arguv[]). This value is read into
nchanged field of the structure used to store extra-properties of hgraph (Line 10). Then in
the alloc_extra_hgraph() (Line 12) function the extra-property changed is allocated using the
value of nchanged (Line 14). In the main() function the extra field of hgraph object is allocated
(Line 25) first, followed by calls to read_hgraph_pptysize() (Line 27) and alloc_extra_hgraph()
(Line 28) respectively. Then the extra field of the GPU variable graph is allocated (Line 30),
the value of nchanged is copied from hgraph to graph (Line 33). Then the graph object extra

properties are allocated using a call to alloc_extra_graph (Line 35).
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Algorithm 40: Property allocation for addProperty () method of Graph class
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34
35
36

hgraph.addproperty(changed,int);

hgraph.getType() graph;

#define ep (struct struct_hgraph )

struct struct_hgraph {

int nchanged;

int *changed ;

b

void read_hgraph_pptysize(HGraph &hgraph, char *argv[],int pos) {

‘ (((ep *)(hgraph.extra))—nchanged)=atoi(argv[pos]);

}

void alloc_extra_hgraph(HGraph Ehgraph,int flag) {
if(lag==0)hgraph.extra= (ep *) malloc(sizeof(ep)) ;
((ep *)(hgraph.extra))—changed=(int *)malloc(sizeof(int ) * ((ep
*)(hgraph.extra))—nchanged) ;

}

void alloc_extra_graph(GGraph Egraph,int flag) {
struct struct_hgraph temp;
if(lag==0)cudaMalloc((void **)&(graph.extra),sizeof(ep));
cudaMemcpy (&temp,((ep *) (graph.extra)),sizeof(ep),cudaMemcpyDeviceToHost);
cudaMalloc((void **)&( temp.changed),sizeof(int )* temp.nchanged);
cudaMemcpy (graph.extra,&temp,sizeof(ep),cudaMemcpyHost ToDevice);

}

main(int arge, char *argv[]) {
hgraph.extra= ( ep *) malloc(sizeof(ep));
read_hgraph_pptysize(hgraph,argv,pos);
alloc_extra_hgraph(hgraph,1);
cudaMalloc((void **)(&graph.extra),sizeof(ep ));
struct struct_hgraph ftempl;
cudaMemcpy (&ftempl,graph.extra,sizeof(ep ),cudaMemcpyDeviceToHost);
ftempl.nchanged=((ep *)(hgraph.extra))—nchanged;
cudaMemcpy (graph.extra,&ftempl,sizeof(ep ),cudaMemcpyHostToDevice);
alloc_extra_graph(graph,1);
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5.2.3 Collection

A Collection that spans across multiple functions is implemented using the Thrust Library
for GPU, and the Galois worklist along with its runtime code for CPU. This made it possible
to have worklist based implementation of Boruvka’s MST and A-Stepping SSSP algorithms in
Falcon DSL for multi-core CPU.

Usage of a Collection in Falcon is shown in Algorithm 41 and the code generated by
Falcon that uses the Thrust library (for GPU) is shown in Algorithm 42.

Algorithm 41: Collection declaration in Falcon

1 Graph graph;
2 Collection colll[Point(graph)];

Algorithm 42: Code generated for Collection on GPU by Falcon

1 int *colll;
2 thrust::device_vector<int>collfalctemp(graph.npoints);

3 colll= thrust::raw_pointer_cast(&collfalctemp[0]);

Algorithm 43: Falcon DSL code for Collection on Multi-core CPU

1 Graph hgraph;

2 struct node{

3 Point(hgraph) nl;

4 int w;

5 1

6 Collection pred[struct node];

7 pred.OrderByIntValue(w,10);

8 foreach(t In pred)relaxNodel(t,hgraph,pred);

Algorithm 43 shows how the Collection data type is used in the A-stepping SSSP imple-
mentation and the code generated by the Falcon compiler is shown in Algorithm 44. Galois
InsertBag is a worklist with OBIM (Order By Integer Matrix) (Line 16, Algorithm 44) and
it is a set of buckets. This is specified in Falcon DSL code using OrderBylIntValue() func-
tion (Line 7, Algorithm 43) of Collection data type. The value 10 given as an argument to
OrderByIntValue() is converted to 21=1024 in the generated code (Line 3, Algorithm 44), mak-
ing the value of A=1024. The function relaznodel() gets called using Galois:for_each_local()
(Line 18, Algorithm 44) iterator which calls the operator() function of struct Process0 using
OBIM scheduling policy. This is a parallel call and Process0() will call relazNodel(), which is
the argument to foreach call on Collection object pred (Line 8, Algorithm 43) in the DSL
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code.

Algorithm 44: Code generated for Collection on Multi-core CPU

struct nodelndexer:public std::unary function<struct node,unsigned int> {
unsigned int operator()(const struct node &val)const {

unsigned int t=val.w/1024;

return t;

}

template< typename PusherO>

1

2

3

4
5}
6

7

8 struct Process0 {
9

Process0(){}
10 void operator () (struct node &req,Pusher0 &pred ){
11 relaxNodel (req,hgraph,pred);
12}
13 J;

14 using namespace Galois::WorkList;

15 typedef dChunkedFIFO0<64> Chunk;

16 typedef OrderedByIntegerMetric<struct nodeIndexer,Chunk,10> OBIM,;
17 Galois::InsertBag<struct node> pred ;

18 Galois::for_each local(pred,Process0(),Galois: :wl<OBIM>());

5.2.3.1 Support for collection without duplicates

Algorithm 45: Falcon code for Collection without duplicates

Collection coll[Point(graph)];

//add function, make sure the no duplicates in Collection
add(Graph graph, Collection coll[Point(graph)], Point p) {
‘ single(pl.lock)coll. add(pl);

}

//delete Point

7 del( Graph graph, Collection coll[(graph)], Point p) {

Point (graph) P1=coll.del();

9 pl.lock=0;

10 }

SO R W N -
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An example Falcon code is shown in Algorithm 45. There is a property by name lock asso-
ciated with Collection, which is automatically added by the Falcon compiler. Add and del
are user defined functions collection on top of the add and del function of the Collection class.
The add function first tries to get the lock on adding Point’s lock property, using he single

statement. If successful the basic add function of the Collection is called. This ensures that
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each Point is added only once. Similarly del function first deletes the point from Collection

and resets the lock property to zero after processing the element, so that it can be added later.

Algorithm 46: Pseudo Code for Set

Algorithm 47: Pseudo Code for Set

[uny

Linkset(int t1,int t2) {

2 | if( t1<t2 ){
3 x1=CAS(&(parent[t1]),t1,t2);
4 if(x1==t1&& parent[t1]==t2)return t2;
5 return 0;
6 | }
7| if( te< t1 )
8 x1=CAS(&(parent[t2]),t2,t1);
9 if(x1==t2&&parent[t2]==t1)return t1;
10 return 0;
11 }
12 }
13 FindSet(int n1) {
14 if(parent[nl]!=nl)
15 parent[nl]=Findset(parent[nl]);
16 return parent[nl];
17 }
18 wvoid allocate(int n) {
19 size=n;
20 parent=(int *)malloc(sizeof(int)*(n));
21 for( (int i=0;ijn;i++) ){
22 ‘ (parent[i])=i;
23 }
24 }
5.2.4 Set

=

=W

(]
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23

Findcompress(int n1) {
if(parent[nl]==nl)return nl;
int rep=parent[nl];

int prev=-1;

while( parent/rep/#£rep ){
int next=parent[rep|;
if(prev>0 && par-

ent[prev]==rep)parent|prev]=next;

prev=rep;
rep=next;
}
return rep;

}

Union(int n1,int n2) {
int t1,t2;
t1=nl;t2=n2;
do {

do {

t1=Findcompress(t1);
t2=Findcompress(t2);
if(t1==t2) return ;
}while(t1#£parent[t1]||
t2#parent[t2)]);
}while(!(LinkSet(t1,t2)));

The Falcon compiler has two C++ classes HSet and GSet which implement the CPU and GPU

Set data types (resp.). Each of these classes has the same functions named, union() to union

two sets and £ind () to find the representative key of an element, called parent. By default, the

parent for a set will be an integer number, which denotes the maximum value of an element in
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that set. For example, for a set of first ten Points (0-9) in a graph object, all the elements will
have the parent as 9. When the union of two sets with parents V1 and V2 is performed, a single
set with parent being max(V1,V2) is formed. The code for updating the parent of individual
elements to max(V1,V2) is automatically generated by the Falcon compiler.

The Set data type is implemented as a Union-Find [42] data structure. The CPU and
GPU versions are stored in HSet and GSet C++ classes. Both these classes have the functions
Allocate(), LinkSet(), FindSet() and Union() as given in psuedo codes of Algorithms 46 and
47. The FindSet() and Union() correspond to find and union operations of Union-Find data
structure. The FindSet() function is used to find the parent of an element in the set. It is
also used to update the parent value of elements after a Union() operation of two or more sets.
The LinkSet() function is used to update the parents of two sets in a Union() operation to the
maximum of the parent values of the two sets. The allocate() function allocates the parent field

of the set whose size is argument to the function. Then it sets for each i, 0<size, parent[i]=i.

5.3 Translation of statements

5.3.1 Foreach statement code generation

Code generation for a foreach statement depends on the object on which it is called and where
(GPU/CPU) the object is allocated. Nested parallelism using foreach is not supported. We
convert inner foreach statements of nested foreach statements to simple for loop statements
during code generation. The foreach statement inside the relaxgraph() function (Algorithm 32,
Section 4.2) processes all the neighbors of a Point serially, using a simple for loop. The
outermost loop is converted to a CUDA kernel call / OpenMP pragma (except for a Collection
on CPU) in the generated code. Falcon stores the beginning index of neighbors of a Point p in
the index field of the Graph class and the total neighbors of the Point p is calculated by taking
the difference of index/p+1] and index/p/.

We explain the code generation of foreach using an example. We present the Falcon
DSL code for Breadth First Search (BFS), with no atomic operations and the BFS distance
is calculated on a level base (Algorithm 48). The Graph object graph is added with a Point
property dist (Line 13) and then the input graph object is read (Line 14). The BFS distance
of all the vertices is made oo (a maximum value), by the parallel foreach call on all points of
the graph object (Line 15).

Algorithm begins with initialization of the BF'S distance of the source-vertex to zero (Line 16).
Then the algorithm computes the BFS distance of all the vertices in the while loop (Lines 17-

22). For the computation of the BFS distance, an integer variable lev is used, which is ini-
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Algorithm 48: Level Based BFS code in Falcon

1 int changed = 0;

2 relaxgraph(Point p, Graph graph,int lev) {
3 foreach( t In p.outnbrs ){

4 if( t.dist> (lev+1) ){

5 t.dist=lev+1;

6 changed=1;

7 }

8 | }

o }

10 main(int arge, char *argv[]) {

11 Graph graph; // graph object

12 int lev=0;

13 graph.addPointProperty(dist, int);

14 graph.read(argv[l]);

15 foreach (t In graph.points)t.dist=1234567890;
16 graph.points[0].dist = 0; // source has dist 0
17 while( 7 ){

18 changed = 0; //keep relaxing on

19 foreach(t In graph.points) (t.dist==lev) relaxgraph(t,graph,lev);
20 if(changed == 0)break;//reached fix point

21 lev4+-+;

22 }

23 for(int i = 0; i <graph.npoints; +-+i)printf(”i=%d dist=%d\n", i, graph.points|i].dist);
24 }

tialized to zero and incremented by 1 at the end of each iteration. All the vertices whose
distance is equal to lev are processed in each iteration of the while loop. This is done by
the foreach statement which contains a call to the relazgraph() function (Line 19) with the
condition (t.dist == lev). In the relazgraph() function a Point p which has dist value lev takes
all its neighbouring (outnbrs) and reduces their dist value to (lev+1), if it is currently greater
than (lev+1) implying that the neighbour is still unexplored (Line 5). At the beginning of
the while loop, variable changed is made zero (Line 18). The variable changed is made 1, if
dist value of any one vertex is reduced (Line 6). The loop iterates until BFS distance of all
the reachable vertices from the source vertex are computed. Once the BFS distance of all the
reachable vertices is computed, there will be no vertex whose distance gets reduced in next
iteration of loop, and the value of the variable changed is not modified and loop exits.

In this algorithm, there will be two or more threads which may write to the same location.
This can happen in an iteration when the lev value is x, and there are two vertices u and v

with value of dist 2 and both vertices have a common outneighbour outnbr w which is currently

87



not visited (dist value is 00). Then the threads for u and v will modify the dist value of the
vertex w simultaneously using the edges u—w and v—w to (lev+1). Here an atomic operation
is not required as all the threads write the same value for all the vertices whose dist value is
reduced. This concept originates from Concurrent Read Concurrent Write (CRCW) of PRAM
model [90], which says: as far as all threads are writing same value, the atomic operation can be
removed. BFS can be computed in a similar manner as given in Algorithm 32, Section 4.2 with

the MIN atomic operation and weight of edge p—t replaced by 1 in the relaxgraph() kernel.

Algorithm 49: Code generated for GPU BF'S relaxgraph() and its call.

1 #define t (((struct struct_hgraph *)(graph.extra)))

2 __global__ void relaxgraph(GGraph graph,int lev, int x) {
3 int id = blockIdx.x * blockDim.x + threadldx.x + x;
4 if( id <graph.npoints €€ t— distfid] == lev ){

5 int falcft0 = graph.index[id];

6 int falcftl = graph.index[id+1]-graph.index[id];

7 for( (int falcft2 = 0; falcft2 <falcft1; falcft2++) ){
8 int ut0 = (falcftO + falcft2); //edge index

9 int utl = graph.edges[ut0].ipe; //dest point
10 if( t—dist[ut1]> (lev+1) ){

11 t—dist[utl]=lev+1;

12 changed=1;

13 }

14 }

15 }

16 }

17 int fleBlocks=(graph.npoints/TPB+1)>MAXBLKS?MAXBLCKS:(graph.npoints/ TPB+1);
18 for(int kk=0;kk<graph.npoints;kk+=TPB*flcBlocks)
19 relaxgraph <<<flcBlocks,TPB >>>(graph,lev, kk);

Algorithm 49 shows the code generated for the relazgraph() function and its foreach state-
ment in the main() function in Algorithm 48, with the target being a GPU. Since foreach
statement inside relazxgraph() is nested inside another foreach statement from main(), the
foreach statement in relaxgraph() is converted to a simple for loop. The index field of the
graph object stores, for a vertex v, an index into the edges array, whose value is the position of
the first outgoing edge with source vertex v. The edges array stores the edges sorted by source-
vertex-id of the edges in the graph. It stores destination the vertex and weight (if required)
of the edge in adjacent locations. So the size of (edges) will be 2 x |E| (with weight) or |E)|
(without weight). In algorithms such as PageRank and Connected Components, the weight of
the edges are not required. Also in Algorithm 48 for BF'S, edge weight is not needed and in the

generated code shown in Algorithm 49, weight is not stored in the edges array.
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Algorithm 50: Code generated for CPU BF'S relaxgraph() and its call

1 #define t (((struct struct_hgraph *)(graph.extra)))

2 votd relaxgraph(int €p ,HGraph Egraph) {

3 if( id <graph.npoints EEt— distfid] == lev ){

4 int falcftO = graph.index|[id];

5 int falcftl = graph.index[id+1]-graph.index[id];
6 for( (int falcft2 = 0; falcft2 <falcft1; falcft2++) ){
7 int ut0 = (falcftO + falcft2); //edge index
8 int utl = graph.edges[ut0].ipe; //dest point
9 if( t—dist[ut1]> (lev+1) ){

10 t—dist[utl]=lev+1;

11 changed=1;

12 }
13 }
14 }
15 }
16 #pragma omp parallel for num_threads(TOT_CPU)

=
~

for (int i = 0; i <graph.npoints; i++)relaxgraph(i, graph);

The starting index of the edges of the vertex id is found from the index array and stored in
the variable falcft0 (Line 5). Total number of outgoing edges for the vertex id is obtained by
taking the difference of indez/(id+1)] and indez[id] and is stored in the variable falcft1 (Line 6).
The for loop (Line 7) processes all the outgoing edges of the vertex id stored in the index
faleft0 to (falcftO+falcfti-1) of the edges array. The edge index is first copied to the variable
ut0 (Line 8), and then the destination vertex is stored in the variable ut! (Line 9). Then the
distance of the destination vertex is reduced (Line 11), if it is currently greater than (lev+1).

The foreach statement which calls the relazgraph() (Line 19, Algorithm 48) gets converted
to the CUDA code shown in (Lines 17-19, Algorithm 49), which calls the relazgraph() function
in a for loop. The variable TPB (Threads Per Block) corresponds to
(MaxThreadsPerBlock - MaxThreadsPerBlock % CoresPerSM)
for the GPU device on which the CUDA kernel is being called. For example, the Nvidia
Kepler GPU with MaxThreadsPerBlock=1024 and CoresPerSM=192, value of TPB=(1024-
1024%192)=960. We also make sure that a kernel executes by splitting a kernel call into
multiple calls, if the number of thread-blocks for the kernel call is above the allowed value for
the device, which is stored in MAXBLKS variable. Falcon uses the cudaGetDeviceProperty()
function of CUDA to read the device parameters. These are needed in deciding the maximum
threads within a single block in a CUDA kernel call and the maximum number of threads in a

CUDA kernel call which require a barrier() for the entire kernel.
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Algorithm 50 shows the code generated for the relazgraph() function and its parallel call
(Line 19, Algorithm 48) when the target is a multi-core CPU. The variable TOT_CPU (Line 16)
stores the number of CPU cores available. The parallel call gets converted to an OpenMP pragma
for a multi-core CPU (Line 16). Graph type is converted to HGraph or GGraph based on where

it is allocated. This convention is used throughout Falcon.

Algorithm 51: Function generated by Falcon for foreach call in Line 15, Algorithm 48
__global__ void falctfun0(GGraph graph, int x) {

int id = blockIdx.x * blockDim.x + threadldx.x + x;

if( id <graph.npoints ){

‘ (((struct struct_hgraph *)(graph.extra)))—dist[id]=1234567890;

}
}
int flcBlocks=(graph.npoints/TPB+1)>MAXBLKS?MAXBLCKS:(graph.npoints/TPB+1);
for(int kk=0;kk<graph.npoints;kk+=TPB*flcBlocks)

falctfun0 <<<flcBlocks,TPB >>>(graph, kk);

© 0w N O Ok W N -

Line 15 of Algorithm 48 initializes the dist property of all the vertices of the graph object
to oo using a foreach statement, which is a structure access t.dist, that is not enclosed inside
a function. For GPU devices, such a code should be converted to a kernel call and a kernel
should be a function. The Falcon compiler creates a new function named falctfun0 which takes
as argument a graph object. Inside the function the dist property is initialized to co and this
function is called from the host (CPU). The generated code and the kernel call are shown in
Algorithm 51. Similar code is generated for other iterators.

We have experimented with warp-based code generation as well. However, we found that

performance improvement is not always positive across benchmarks.

5.3.2 Inter-device communication

Copying data between the CPU and the GPU is translated to cudaMemcpy operation which
has different forms for the various assignment statements in Falcon. When an entire property
of a Graph object , say Point or Edge property is copied from GPU or to GPU, a cudaMemcpy
operation is called to transfer a block of data. Falcon allows direct usage of GPU variables
of basic types such as int, bool etc. inside CPU code. These statements will be converted
to cudaMemcpyFromSymbol (Line 20,Algorithm 48) and cudaMemcpyToSymbol (Line 18, Al-
gorithm 48) for data transfer from GPU and to GPU respectively, using compiler generated

temporary variables.
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In the BFS() example, dist property of all the points are printed after BFS computation
(Line 23, Algorithm 48). So if the computation happens on GPU device, the dist value of
all the points of the graph object are copied to temporary array FALCtempist as shown in
Algorithm 52. Then the printf prints value in FALCtempdist array. The FALCtempdist array
is allocated on the CPU using the malloc() function.

Algorithm 52: Prefix code generated for Line 23 in Algorithm 48

1 #define ep (struct struct_hgraph)

2 struct struct_hgraph temp3;

3 cudaMemcpy(temp3, (ep *)(graph.extra), sizeof(ep), cudaMemcpyDeviceToHost);

4 cudaMemcpy(FALCtempdist, temp3.dist, sizeof(int) * graph.npoints,
cudaMemcpyDeviceToHost);

The above statement needs two cudaMemcpy operations because graph.extra is a device
(GPU) location and we cannot access graph.eztra.dist in cadaMemcpy, as this implies derefer-

encing a device location (something that cannot be done from the host).

Algorithm 53: Code generated for Line 20 in Algorithm 48

1 int falctemp4;

2 cudaMemcpyFromSymbol((void *)&falctemp4,changed,
sizeof(int),0,cudaMemcpyDeviceToHost);

3 if( falctemp4==0 )break;

The statement
if(changed==0)break //( Line 20, Algorithm 48)
will be preceded by a cudaMemcpyFromSymbol operation which copies value of changed variable
on device to a temporary variable falctemp/ on host (CPU) and the if statement uses this

temporary variable in condition instead of changed as shown in Algorithm 53.

Algorithm 54: Code generated for Line 18 in Algorithm 48

1 int falevt3=0;
2 cudaMemcpyToSymbol(changed,&(falcvt3), sizeof(int),0,cudaMemcpyHostToDevice);

Similarly the statement
changed=0; // (Line 18, Algorithm 48)
assigns the GPU variable changed a value 0. In the generated code a temporary variable falcvt3

initialized to zero is copied to the GPU variable changed as shown in Algorithm 54.
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Recent advances in GPU computing allow access to a unified memory across CPU and GPU
(e.g., in CUDA 6.0 and Shared Virtual Memory in OpenCL 2.0 and AMD’s HSA architecture).
Such a facility clearly improves programmability and considerably eases code generation. How-
ever, concluding about the performance effects of a unified memory would require detailed
experimentation. For instance, CUDA’s unified memory uses pinning pages on the host. For
large graph sizes, pinning several pages would interfere with the host’s virtual memory pro-
cessing, leading to reduced performance. We defer the issue of unified memory in Falcon to a

future work.

5.3.3 parallel sections, multiple GPUs and Graphs

Falcon supports concurrent kernel execution using parallel sections. Falcon also supports
multiple GPUs and multiple Graphs. When multiple GPUs are available and multiple GPU
Graph objects exist in the input program, each Graph object will be assigned a GPU number in
a round robin fashion by the Falcon compiler. A GPU is assigned more than one Graph object if
the number of GPU Graph objects exceeds the total number of GPUs available. Falcon assumes
that a Graph object fits completely within a single GPU and proceeds with code generation. If
there is more than one GPU Graph object, object allocation and kernel calls will be preceded
by a call to cudaSetDevice() function, with the GPU number assigned to the object as its
argument. It is possible to execute either the same algorithm or different algorithms on the
Graph objects in the various GPUs.

For parallel kernel execution on different GPUs, each foreach statement should be placed
inside a different section of the parallel sections statement. The parallel sections
statement gets converted to an OpenMP parallel region pragma, which makes it possible for
the code segments in different sections inside the parallel sections to run in parallel. The
method that we use for assigning Graphs to different GPUs is not optimal and the search for
a better one is part of future work. The code fragment in Algorithm 55 shows how SSSP and
BFS are computed at the same time on different GPUs using a parallel sections statement
of Falcon. An Important point to be noted here relates to how the variable changed is used
in the code. if we declare changed as shown in Line 1 of Algorithm 55 , it will be allocated
in GPU device 0. So, to ensure that changed appears in each device, it is added as a graph
property (Line 5). The allocation of changed extra-property on CPU and GPU follow the code
pattern given in Algorithm 40, Section 5.2.2. The device on which each graph object needs to

be allocated can be specified as a command line argument during Falcon code compilation.
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Algorithm 55: Multi-GPU BFS and SSSP in Falcon.
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int changed;

SSSPBFS(char *name) { //begin SSSPBFS
Graph graph;//Graph object on CPU
graph.addPointProperty(dist,int);
graph.addProperty(changed,int);
graph.getType() graph0;//Graph on GPUO
graph.getType() graphl;//Graph on GPU1
graph.addPointProperty(dist1,int);
graph.read(name);//read Graph from file to CPU
graphO=graph;//copy entire Graph to GPUO
graphl=graph;//copy entire Graph to GPU1
foreach(t In graph0.points)t.dist=1234567890;
foreach(t In graphl.points)t.dist=1234567890;
graph0.points|0].dist=0;
graphl.points[0].dist=0;

parallel sections { //do in parallel

section {//compute BFS on GPU1
while(1){
graphl.changed[0]=0;
foreach(t In graphl.points)BFS(t,graphl);
if(graphl.changed[0]==0) break;
}
}
section {//compute SSSP on GPUOQ
while(1){
graph0.changed[0]=0;
foreach(t In graph0.points)SSSP(t,graph0);
if(graph0.changed[0]==0) break;
}
}
}
}//end SSSPBFS
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Algorithm 56: Usage of single statement in DMR(Pseudo code)

1 refine(Graph graph,triangle t) {

2 Collection triangle[pred];

3 if( t is a bad triangle and not deleted ){
4 find the cavity of t(set of surrounding triangles)
5 add all triangles in cavity to pred

6 | }

7 single(pred){

8 //statements to update cavity

9 telse
10 {
11 //abort
12 }

13 }

5.3.4 Synchronization statement

The single statement is used for synchronization in Falcon. The second variant of the single
statement (Secton 4.6.1, Chapter 4) is needed in functions which make structural modifications
to graphs (cautious morph algorithms) and it requires a barrier for the entire function to be
inserted automatically during code generation. The total number of threads inside a CUDA
kernel with a grid barrier cannot exceed a value specific to the GPU device and so these functions
run in such a way that one thread processes more than one element. Cautious functions need
single to be called on a collection object, which can contain a set of points or edges of the
graph object. single should be called before any modification to the graph object elements
(points, edges etc.), properties stored in the collection object, and no new elements can be
added to the collection object after the single statement. The Falcon compiler performs this
check and if this condition is violated the user is warned about possible incorrect results.

There is no support for grid barrier in CUDA and we have implemented it as given in [100].
The CPU code uses the barrier provided by OpenMP, which acts as a barrier for all the worker
threads. The way a single statement is used in DMR is shown in Algorithm 56. Here pred is
a Collection object which stores the set of all triangles in the cavity. If a lock is obtained on
all the triangles in pred by a thread, then it updates the cavity else it aborts.

Pseudo Code in Lines 7-12 of Algorithm 56 get converted to the CUDA code shown in
Algorithm 57. Both GPU and CPU versions follow the above code pattern, with appropriate
GPU and CPU functions. We lock the triangles based on the thread-id and if two or more
cavities overlap, only the thread with the lowest thread-id will succeed in locking the cavity

and others abort. The global barrier makes sure that the operations of all the threads are
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Algorithm 57: Generated CUDA code

#define t ((struct struct_graph *)(graph.extra))
for(int i=0;i<pred.size;i++) t—owner[pred.D_Vec[i]]=id;
gpu_barrier(++goal,arrayin,arrayout);//global barrier
for( (int i=0;i<pred.size;i++) ){
if((t—owner[pred.D_Vec[i]]<id) break;//locked by lower thread,exit
else if(t—owner[pred.D_Vecli]]>id) t—owner|cavl]=id;//update lock with lower id

}

gpu_barrier(+-+goal,arrayin,arrayout);//global barrier
int barrflag=0;
for( (int i=0;i<pred.size;i++) ){

© 0N O ok W N

=
o

11 if( t— owner[pred. D_Vec[iJ[#id ){
12 ‘ barrflag=1;break;

13 }

14 }

15 if(barrflag==0 ){ //update cavity }

=
[=2]

else { //abort }

complete up to the barrier before any thread can proceed. This generated code is similar to
that used in LonestarGPU [73].

Algorithm 58: semantics of CAS operation
CAS(T *loc, T old, T new);

CAS(T *loc, T old, T new) {
if( *loc==old ){
*loc=new;
return old;

}

return *loc;

© 00 N O Ok~ W N

Before going to the code generation of first variant of single statement, we define the
semantics of compare_and_swap() (CAS) operation available in different devices. Syntax and
semantics of CAS is given in Algorithm 58. T is the data type given as an argument to CAS
and CAS is an atomic operation, which makes sure that only one thread will update the value

of the memory location loc.
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Algorithm 59: single on one element- Falcon DSL code

1 Point(graph) P;
2 single(P.lock){
3 //block of code

4}
Algorithm 60: GPU code for Algorithm 59 Algorithm 61: CPU code for Algorithm 59
1 F£define hcas __sync__val__compare__and_swap 1 Fdefine dcas atomicCAS
2 #define ep (struct struct_graph) 2 #define ep (struct struct_graph)
3 #define gx graph.extra 3 #define gx graph.extra
4 int P; 4 int P;

(4]

5 if( heas(€((ep *)(g9x))—lock[P],0,1)==0 ){
6 ‘ //block of code

7 } 7}

if( dcas(é((ep *)(g9x))—lock[P],0,1)==0 ){
//single GPU code //block of code

[

The first variant of single statement that locks a single object does not need a barrier. It uses
the compare_and_swap (CAS) variant of CUDA [75] and GCC [5] for GPU and CPU respec-
tively. Algorithm 59 shows the DSL code for single on one element. This converts to CAS
operations with CUDA function being atomicCAS (dcas) (Algorithm 60) and GCC function
being __sync__val_compare__and_swap (hcas) (Algorithm 61). The lock value is reset to zero,
before C'AS is called on the lock element. The effect of an operation

CAS(lock,0,1)

is as follows : if multiple threads try to lock a Point object P at the same time, only one thread
will succeed and it will execute the cod inside the single block and others just do nothing. This
type of single statement is normally used in local computation algorithms such as Boruvka’s
MST computation. In order for the single to work properly, the property value must be reset

to zero before entering the function in which single is executed.

5.3.5 Reduction functions

Reduction operations have been implemented in Falcon. Translation of reduction functions to
CUDA functions is straightforward [51]. An example reduction operation ReduxSum in Falcon
is shown below.

if(graph.edges.mark==1) mstcost ReduxSum=graph.edges.weight;

Here, for each Edge object of the GPU Graph object graph, if the value of the boolean

extra-property mark is true, its weight is added to mstcost.
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Algorithm 62: MST reduction Operation CUDA code
#define DH cudaMemcpyDeviceToHost

=

2 #define HD cudaMemcpyHostToDevice

3 __device__ unsigned int dreduxsumO0;

4 __global__ void RSUMO(G Graph graph,int FALCX) {

5 int id = blockIdx.x * blockDim.x + threadldx.x+FALCX;

6 _shared__ volatile unsigned int Reduxarr[1024];

7 if( id <graph.nedges ){

8 if (((struct struct_graph *)(graph.extra))—mark[id]==true)
9 Reduxarr|threadldx.x]=graph.edges[2*id+1];

10 else

11 Reduxarr|threadldx.x]=0;

12 __syncthreads();

13 for( (int i=2;i<=TPB;i=i*2) ){

14 if (threadldx.x==0) Reduxarr|threadldx.x]+=Reduxarr|threadldx.x+i/2];
15 __syncthreads();

16 }

17 if(threadldx.x==0)atomicAdd(&dreduxsum0,Reduxarr[0]);
18 }

19 }

20 //host (CPU) code

21 main(int arge, char *argvf]) {
22
23 unsigned int hreduxsum0=0;

24 cudaMemcpy ToSymbol(dreduxsum0,&hreduxsum0,sizeof(unsigned int),0,HD);
25 for( (int kk=0;kk<graph.nedges;kk+=flcBlocks*TPB) ){

26 | RSUMO<<<flcBlocks, TPB>>>(graph,kk);
27 }
28 cudaDeviceSynchronize();

29 cudaMemcpyFromSymbol(&hreduxsum0,dreduxsum0,sizeof(unsigned int ),0,DH);

30 mstcost=hreduxsumo; ....

31 }
Algorithm 62 shows the generated CUDA code for above statement. Variables hreduxsum0

and dreduxsum( are CPU and GPU variables automatically generated by Falcon. The kernel
block size is 1024 and if an edge e; in a thread block is a part of mst (markfi/==true), where
0<i<1024, the edge weight is stored Reduxarr[i] (Line 9). Each block of the CUDA kernel
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stores the sum of the weights of the edges processed by that block and present in MST, in
Reduxarr[0] (Lines 13-16). Then this value is added to the MST cost of the graph by adding
Reduxarr[0] to dreduxsum0 atomically (Line 17). The value of the dreduxsum0 variable, which
has the MST cost of the graph object is then copied to the mstcost variable on the CPU (host)
after the RSUMO kernel finishes its execution.

5.4 Modifying graph structure

Deletion of a graph element is by marking its status. Each point and edge has a boolean flag
that marks its deletion status. We provide an interface that enables a programmer to check if
an object has been deleted by another thread.

Addition of Point and Edge to a graph object is performed using atomic operations. For
a Graph object with the name say graph, we add global variables falcgraphpoint, falcgraphedge
which will be initialized to the number of points and edges in the graph(resp.). When we call
graph.addPoint in a Falcon program, that code will be replaced by a call to an automatically
generated function falcaddgraphpointfun(). This function atomically increments falcgraphpoint
by one. Analogous functions exist for Edge and properties added using the addProperty func-
tion. Currently, none of the properties (attributes) associated with graph elements are auto-
matically deleted (including the one added using addProperty); their deletion must be explicitly
coded by the programmer. DMR implementation deletes triangles by storing a boolean flag in
the property triangle and making that flag value true for deleted triangles.

Automatic management of size is also needed for morph algorithms. For example in DMR,
the Graph size increases and the pre-allocated memory may not be sufficient. A call to the
compiler generated realloc() function is inserted automatically after the code that modifies the
Graph size. This realloc() function considers current size, the change in size and the available
extra memory allocated and performs Graph reallocation, if necessary.

While it is true that graph algorithms exhibit irregularity, overall, the following aspects help

us achieve better coalescing and locality

e CSR representation enables accessing the nodes array in a coalesced fashion. It also helps

achieve better locality as the edges of a node are stored contiguously.

e Shared memory accesses for warp-based execution and reductions help improve memory

latency.

e Optimized algorithms. Note that a high-level DSL allows us to tune an algorithm easily,

such as the SSSP optimization discussed in Section 4.
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5.5 Experimental evaluation

To execute the CUDA codes, we have used an Nvidia multi-GPU system with Four GPUs (One
Kepler K20c GPU with 2496 cores running at 706 MHz and 6 GB memory, two Tesla C2075
GPUs each with 448 cores running at 1.15 GHz and 6 GB memory, one Tesla C2050 GPU with
448 cores running at 1.15 GHz and 6 GB memory). Multi-core codes were run on Intel(R)
Xeon(R) CPU, with two hex-core processors (total 12 cores) running at 2.4 GHz with 24 GB
memory. All the GPU codes were by default run on Kepler K20c¢ (device 0). The CPU results are
shown as speedup of 12-threaded codes against single-threaded Galois code. We used Ubuntu
14.04 server with g++-4.8 and CUDA-7.0 for compilation.

We compared the performance of the Falcon-generated CUDA code against LonestarGPU-
2.0 and Totem [45][44], and the multi-core code against that of Galois-2.2.1 [77], Totem and
GreenMarl [53]. LonestarGPU does not run on multi-core CPU and Galois has no implemen-
tation on GPU. While Totem supports implementation of an algorithm on multiple GPUs using
graph partitioning, which is useful for extremely large graphs that do not fit on a single GPU. We

have shown results with Totem executing only on a single GPU so as to make fair comparison.

Input Graph Type Total | Total | BFS Max Min
Points | Edges | distance | Nbrs Nbrs
randl Random 16M 64M 20 17 1
rand2 Random 32M 128M | 18 17 1
rmat1 Scale Free 10M 100M | o 1873 0
rmat2 Scale Free 20M 200M | o0 2525 0
roadl(usa-ctr) Road Network 14M 34M 3826 9 1
road2(usa-full) Road Network 23M 58M 6261 9 1

Table 5.1. Inputs used for local computation algorithms

Results are shown for three cautious morph algorithms (SP, DMR and dynamic SSSP) and
three local computation algorithms (SSSP, BFS and MST). Falcon achieves close to 2x and
5x reduction in the number of lines of code (see Table 5.2) for morph algorithms and local
computation algorithms respectively compared to the hand-written code. Morph algorithms
DMR and SP have a read function that a user is required to write in Falcon, which increases the
code length. This could have been added as a function of the Graph class (as in LonestarGPU
and Galois), but it differs much (reading triangles) from reading a normal graph which has just

points and edges. If we look at the lines of code leaving out the code for the read function,
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Algorithm | Falcon Green-| Galois Totem Falcon Lonestar | Totem

CPU Marl CPU GPU GPU GPU
BFS 26 24 310 400 28 140 200
SSSP 35 24 310 60 38 170 330
MST 113 N.A. | 590 N.A. 103 420 N.A.
DMR 302 N.A. | 1011 N.A. 308 860 N.A.
SP 198 N.A. | 401 N.A 185 420 N.A.
Dynamic | 51 N.A. | NA. N.A. 56 165 N.A.
SSSP

Table 5.2. Lines of codes for algorithm in different frameworks / DSL

there is a significant reduction in the size of Falcon code for morph algorithms also, when
compared to hand written code. We have measured the running time from the beginning of the
computation phase till its end. This includes the cost of communication between the CPU and
the GPU during this period. We have not included the running time for reading and copying
the Graph object to the GPU and for copying results from the GPU.

5.5.1 Local computation algorithms

Figure 5.2 shows the speedup of SSSP on GPU over LonestarGPU and on CPU over Galois-
single. Figure 5.3 shows the speedup of BFS on GPU over LonestarGPU and on CPU over
Galois-single. We experimented with several graph types (such as the Erdés-Rényi model
graphs [35], road networks, and scale-free graphs) and have shown results for two representative
graphs from each category, with several million edges. Details can be seen in Table 6.3. Road
network graphs are real road networks of USA [33], have less variance in degree distribution,
but have large diameter. Scale-free graphs have been generated using GTGraph [11] tool, have
a large variance in degree distribution but exhibit small-world property. Random graphs have

been generated using the graph generation tool available in Galois.

SSSP. The speedup for SSSP on GPU is shown for Totem and Falcon with respect to Lon-
estarGPU in Figure 5.2(a). Results for SSSP on GPU have been plotted as speedup over best
time reported by LonestarGPU variants (worklist based SSSP and Bellman-Ford style SSSP).
Falcon also generates worklist bases and optimized Bellman-Ford algorithms. We find that
Falcon SSSP (Algorithm 32, Section 4.2) is faster than LonestarGPU. This is due to the op-

timization used in the Falcon program using the uptd field, which eliminates many unwanted
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Figure 5.2: SSSP speedup on CPU and GPU

computations. For rmat2 input worklist based SSSP of LonestarGPU went out of memory and
speedup shown is over slower Bellman-Ford style SSSP of LonestarGPU.

The results for SSSP on CPU are plotted as speedup over Galois single threaded code (Figure
5.2(b)). Falcon and Galois use a Collection based A-stepping implementation. Totem and
GreenMarl do not have a A-stepping implementation. Hence, Totem and GreenMarl are always
slower than Galois and Falcon for road network inputs. GreenMarl failed to run on rmat input
giving a runtime error on std: :vector: :reverse(). It is important to note that Bellman-Ford
variant of the SSSP code (Algorithm 32, Chapter 4) on CPU with 12 threads is about 8 x slower
than that of the same on GPU. It is the worklist based A-stepping algorithm which made CPU
code fast. BFS and MST also benefit considerably from worklist based execution on CPU.

BF'S. The speedup for BF'S on GPU is shown for Totem and Falcon with respect to LonestarGPU
in Figure 5.3(a). Results for BF'S on GPU are compared as speedup over the best running times
reported by LonestarGPU. We took the best running times reported by worklist based BFS and
Bellman-Ford variant BFS implementations. The worklist based BF'S performed faster only for
road network input. Falcon also has a worklist based BF'S on GPU which is slower by about 2x
compared to that of LonestarGPU. Totem framework is too slow on road network due to lack
of worklist based implementation.

Falcon BFS code on CPU always outperformed Galois BF'S, due to our optimizations (Figure
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Figure 5.3: BFS speedup on CPU and GPU

5.3(b)). Totem and GreenMarl are again slower on road inputs. Totem performed better than
Falcon for scale free graphs on GPU. GreenMarl failed to run on rmat input giving a runtime

error on std: :vector: :reverse().

MST. The Speedup for MST on GPU is shown in Figure 5.4(a) and same for CPU is shown in
Figure 5.4(b). LonestarGPU has a Union-Find based MST implementation. Falcon GPU code
for MST always outperformed that of LonestarGPU for all inputs, with the help of a better
implementation of Union-Find that Falcon has for GPU. But our CPU code showed a slowdown
compared to Galois (about 2x slowdown). Galois has a better Union-Find implementation

based on object location as key.

Multi-GPU. Figure 5.4(c) shows the speedup of Falcon when algorithms BFS, SSSP and
MST are executed on three different GPUs in parallel for the same input, when compared to
their separate executions on the same GPU. The running time of Falcon is taken as the maximum
of the running times of BF'S, SSSP and MST, while the running time of LonestarGPU is the sum
of the running times of BFS, SSSP and MST. One should not get confused with speedup values
in Figure 5.4(c) and values in Figures 5.2 and 5.3, because for road networks, SSSP running
time was very high compared to the MST running time, and for other inputs(random, rmat)

MST running time was higher. It is also possible to run algorithms on CPU and GPU in parallel
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using the parallel sections statement. A Programmer can decide where to run a program
by allocating a Graph object on GPU or CPU, by giving proper command line arguments. He/She
can then place appropriate foreach statements in each section of the parallel sections
statement of Falcon. For example, SSSP on road network inputs can be run on CPU (because
it is slow on GPU) and for random graph inputs, on GPU. The effort required to modify codes

for CPU or GPU is minimal with Falcon.

5.5.2 Morph algorithms
We have specified three morph algorithms using Falcon: DMR, SP and dynamic SSSP. All

these algorithms have been implemented as cautious algorithms and we have compared the
results with implementations using LonestarGPU and Galois (other frameworks do not support

mutation of graphs).

Delaunay Mesh Refinement (DMR). DMR implementation in LonestarGPU relies on a
global barrier, which can be implemented either by returning to the CPU and launching another
kernel, or by emulating a grid-barrier in software [100]. LonestarGPU uses the latter approach
as it allows saving the state of the computation in local and shared memory across barriers
inside the kernel (which is infeasible in the first approach where the kernel is terminated) and
this approach is used in Falcon DSL code as well. Unfortunately, grid-level barriers pose

a limit on the number of threads with which a kernel can be launched, as all the thread-

103



25 25

120.91

E] LonestarGPU Galois-12

1.5 #l Falcon-cPU 20 Falcon-12 20

B Falcon-GPU
@ LonestarGPU
B Falcon-cPU

g 18.1

3 16.1

114.16

]
0
0
~ 11
~~~111.69
312.95
11.49
11.26

Speedup

FTSTrrIT IS 10.72

&

(a) DMR speedup over Lones- (b) DMR speedup over Ga- (¢) DynamicSSSP- Self relative speedup
tarGPU lois single

Figure 5.5: Morph Algorithm Results -DMR and DynamicSSSP

blocks need to be resident and all the threads must participate in the barrier; otherwise, the
kernel execution hangs. Therefore, both LonestarGPU and Falcon-generated codes restrict
the number of launched threads, thereby limiting parallelism. This is also observable in other
morph algorithm implementations needing a grid-barrier. Figure 5.5(a) and 5.5(b) show the
performance comparison of DMR code for GPU and CPU on input meshes containing a large
number of triangles in the range 0.5 to 10 million. Close to 50% of the triangles in each mesh
are initially bad (that is, they need to be processed for refinement). Galois goes out of memory
for 10 million triangles or more, and terminates. Falcon code is about 10% slower compared
to LonestarGPU code and both used the same algorithm. This can be due to the inefficiency
arising from conversion of DSL code to CUDA code as compared to the hand written codes of
LonestarGPU. Speedup shown is for mesh refinement code (including communication involved

during that time), after reading the mesh.

Survey Propagation (SP). Survey Propagation algorithm [17] deletes a node when its as-
sociated probability becomes close to zero and this makes SP a morph algorithm. In this
implementation, we implemented the global barrier on a GPU by returning to the CPU, as no
local state information needs to be carried across kernels (the carried state of variables is stored
in global memory). A similar approach is used in LonestarGPU as well.

The first four rows of Table 5.3 show how SP works for a clause(M)-to-literal(N) ratio of

4.2 and 3 literals-per-clause(K) for different input sizes and the last three rows are for different
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Galois TFalcon Lonestar

Input(K, N, M) 12 threads | 12 threads GPU Falcon GPU
,1xX , 4.2x

3,1x106. 4.2x106 67 46 26 23

(3,2x10°,8.4x106) 147 76 55 47

(3,3x106,12.6x106) 232 114 86 69
,4x ,10.0x

3,4x109.16.8x106 322 147 117 93

(4,4x10°,9.9x106) 1867 149 118 95
,1x ,21.1x 1lle

5,1x106,21.1x10° killed 356 414 314
,1x ,40.4X 1lle

6,1x10° 43.4x10° killed 1322 1180 928

Table 5.3. Performance comparison for Survey Propogation (running time in seconds)

values for the clause(M)-to-literal(N) ratio. We observe that Falcon-generated code always
performs better than both multi-core Galois with 12 threads and LonestarGPU. Note that
performance has been compared with LonestarGPU-1.0 and Galois-2.1 codes. New versions of
both these frameworks use a new algorithm, which is yet to be coded in Falcon. Multi-core
Galois goes out-of-memory for higher values of (K, N, M), whereas LonestarGPU and Falcon
versions complete successfully. LonestarGPU allocates each property of clause and literal in
separate arrays whereas in Falcon, each property of clause and literal is put in structures, one
each for clause and literal. Galois has a worklist based implementation of the algorithm. Also
both Galois and LonestarGPU work by adding edges from clauses (Point in Graph) to each
literal (Point in Graph) in the clause. But Falcon takes a clause as an extra property of the
Graph (like triangle was used in DMR) and that property stores literals (Points) of the clause
in it. So our Graph does not have any explicit edges, and literals of a clause (which correspond
to edges) can be accessed very efficiently from the clause property of the Graph. We find
that Falcon code runs faster than that of both Galois and LonestarGPU. Writing an algorithm

that maintains a clause as a property of a Graph in LonestarGPU and Galois is not an easy task.

Dynamic SSSP. In the dynamic Single Source Shortest Path (SSSP) algorithm, edges can
be added or deleted dynamically. A dynamic algorithm where only edges get added (deleted)
is called as an incremental (decremental) algorithm, whereas algorithms where both insertion
and deletion of edges happen are called fully dynamic algorithms [39]. We have implemented
an incremental dynamic algorithm on GPU and CPU using Falcon. We have used a variant of

the algorithm by [81]. Insertions are carried out in chunks and then SSSP is recomputed. We
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found it difficult to add dynamic SSSP to the Galois system, because no Graph structure that
allows efficient addition of a big chunk of edges to an existing Graph object was available in
Galois. LonestarGPU code has been modified to implement dynamic SSSP, and we compare
it with our CPU and GPU versions. Falcon looks at functions used in programs that modify
a Graph structure (addPoint(), addEdge(), etc.) and converts a Graph read() function in
Falcon to the appropriate read() function of the HGraph class. For dynamic SSSP, the read()
function allocates more space to add edges for each Point and makes the algorithm work faster.
LonestarGPU code has also been modified in the same way. Results are shown in Figure 5.5(c),
which shows the speedup of the incremental algorithms with respect to their own initial SSSP
computation. SSSP on GPU was an optimized Bellman-Ford style algorithm that processes all the

elements and so does many unwanted computations, while CPU code is A-stepping algorithm.
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Chapter 6

Code Generation for Distributed

Systems

6.1 Introduction

This chapter explains how the Falcon compiler converts a Falcon DSL code to CUDA/C++
codes with MPI/OpenMPI library targeting distributed systems. Falcon supports the following
types of distributed systems.

e CPU cluster - A set of inter-connected machines with each machine having a multi-core

CPU.

e GPU cluster - A set of inter-connected machines with each machine having one or more

GPUs used for computation and a multi-core CPU on which the operating system runs.

e Multi-GPU machine - A single machine with a multi-core CPU and two or more GPU

devices.

o CPU+4CPU cluster - A set of inter-connected machines with multi-core CPU and GPU

and both used for computation.

A graph is taken as a primary data structure for representing relationships in real world data
and social network systems such as Twitter, Facebook etc. These graphs have billions of ver-
tices and trillions of edges. Such large-scale graphs do not fit on a single machine and are stored
and processed on a distributed computer system or clusters. Algorithms which process these
distributed data must incure less communication overhead and work balance across machines

to achieve good performance. There are many frameworks for large-scale graph processing
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targeting only CPU clusters like Google’s Pregel [65], Apache Giraph [87], GraphLab [64],
PowerGraph [46]. Pregel and Giraph follows the Bulk Synchronous Parallel (BSP) model of
execution, and GraphLab follows the asynchronous execution model. PowerGraph supports
both synchronous and asynchronous execution with Gather-Apply-Scatter (GAS) model of ex-
ecution. The important contributions of Falcon for large-scale graph processing are mentioned

below.

e A programmer need not deal with the communication of data across machines as it is

taken care by the Falcon compiler.

e The Message Passing Interface (MPI) library does not support distributed locking. Falcon
provides support for distributed locking which is used in implementing the single con-

struct of Falcon.
e The Union-Find Set data type has also been extended for distributed systems.

e To the best of our knowledge there is no DSL other than Falcon which targets hetero-
geneous distributed systems with multi-core CPU and GPU devices for large-scale graph

processing.

e Falcon supports dynamic graph algorithms for distributed systems with multi-core CPU
and/or GPU devices.

Falcon uses random edge-cut cut graph partitioning as optimal graph partitioning is an NP-
Complete problem and similar methods have been used in other frameworks also (e.g, Pregel).
A single DSL code with proper command line arguments gets converted to different high-level
language codes (C++, CUDA) with the required library calls (OpenMP, MPI/OpenMPI) for
the distributed systems by the Falcon compiler (see Figure 4.1). These codes are then compiled
with the native compilers (g++, nvcc) and libraries to create the executables. For distributed
targets, the Falcon compiler performs static analysis to identify the data that needs to be
communicated between devices at various points in the program (see Sections 6.6.5 and 6.6.9).

The graph is partitioned and stored as subgraphs, namely localgraph on all the devices in-
volved in the computation. The Falcon compiler generates code for communication between
subgraphs after a parallel computation (if required), in addition to the code for parallel compu-
tation on each device which is almost similar to the strategies discussed Chapter 5. A foreach
statement is converted to CUDA kernel call for GPU and OpenMP parallel loop for CPU. These
codes will be preceded and/or succeeded by extra code (if required), which perform communi-

cation across devices involved in parallel computation.
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Figure 6.1: Comparison of Falcon and other distributed graph frameworks

Performance of Falcon is compared with PowerGraph for CPU clusters and Totem [44] for
a multi-GPU machine. Falcon was able to match or outperform these frameworks and for some

of the benchmarks, Falcon gave a speedup of up to 13x over them.

6.2 Requirements of large-scale graph processing and

demerits of current frameworks

Distributed graph processing follows a common pattern:

e A vertex gathers values from its neighboring vertices on remote machines, and updates

its own value.
e [t then modifies property values of its neighboring vertices and edges.
e [t broadcasts the modified values to the remote machines.

Figure 6.1 shows a comparison of GraphLab, PowerGraph, Pregel and Falcon, related to graph
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storage and communication patterns on vertex v3 in the directed graph on Figure 6.1(a).

6.2.1 PowerGraph

PowerGraph uses balanced p-way vertex cut to partition graph objects. This can produce work
balance but can result in more communication compared to random edge-cut partitioning.
When a graph object is partitioned using vertex cut, two edges with the same source vertex
may reside on different machines. So, if n machines are used for computation and if there are x
edges with source vertex v and > 1, then these edges may be distributed on p machines where
1 <p < min(xz,n). PowerGraph takes one of the machines as the master node for vertex v and
the other machines as mirrors. As shown in Figure 6.1(d), edges with v3 as source vertex are
stored on Machine2 ((v3,v7)) and Machine3 ((v3,v4)), and Machine2 is taken as the master
node.

Computation follows the Gather-Apply-Scatter (GAS) model and needs communication
before and after a parallel computation (Apply). PowerGraph supports both synchronous and
asynchronous executions. Mirror vertices (v3m) on Machinel and Machine3 send their new
values and notification messages to the master node v3 on Machine2 and activate vertex v3.
Vertex v3 then reads the values received from the mirrors and v6 (Gather), updates its own
value and performs the computation (Apply). Thereafter, v3 sends its new data and notification

message to mirror v3m on Machinel and Machine3 (Scatter).

6.2.2 GraphLab

The GraphLab framework uses random edge cut to partition graph objects and follows the
asynchronous execution model. Due to asynchronous execution it has more storage overhead as
each edge with one remote vertex is stored twice (e.g., v1 — v3m on Machinel and vim — v3
on Machine2). It also has to send multiple messages to these duplicate copies which results
in more communication volume. When edge cut is used for partitioning, all the edges with a
source vertex v will reside on the same machine, as shown in Figure 6.1(c). Here, before vertex
v3 starts the computation, remote vertices (v1,v2) send their new values to their mirrors in
Machine2 and activate vertex v3m. v3m on Machinel then sends a notification message to
v3. Now, vertex v3 reads values from vlm,v2m and v6, updates its own value and performs
the computation. Thereafter, it sends its new data to the mirrors in Machinel and Machine3.

Vertices vdm and v5m send a notification message to activate v4 and v5 in Machine3.
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Item PowerGraph GraphLab Pregel Falcon
multi-GPU device

X X X v
CPU cluster

v v v v
GPU cluster

X X X v
GPU+GPU cluster

X X X Vv
Synchronous execution

v X v v
Asynchronous execution

Vv v x x
Dynamic algorithms

v v v v
Graph Partitioning vertex-cut edge-cut edge-cut edge-cut
Message Volume high high low low

Table 6.1. Comparison of various distributed frameworks

6.2.3 Pregel

The Pregel framework uses random edge-cut to partition the graph object (Figure 6.1(e)).
Pregel follows the Bulk Synchronous Parallel (BSP) Model [95] of execution and there is syn-
chronization after each step, with execution being carried out in a series of supersteps. Commu-
nication happens with each vertex sending a single message to the master node of the destination
vertex of the edge. Pregel sends two messages from Machinel, (vl — v3) and (v2 — v3). By
default, it does not aggregate the two messages to v3 to a single message. This needs to be
done by the programmer by overriding the Combine() method of the Combiner class [65] and
the Combine() method should be commutative and associative. Pregel in a superstep S; reads
(Gather) values sent in the superstep S;_ 1, performs the computation (Apply) and sends the

updated values to remote machines (Scatter) which will be read in superstep S;, ;.

6.2.4 Falcon

Falcon follows the BSP model of execution and uses random edge cut to partition graph objects
(Figure 6.1(f)). The execution is carried out as a series of supersteps similar to Pregel. Falcon
combines messages to v3 as a single message and the amount of data communicated is less
than that of all the three frameworks mentioned above. The Falcon compiler also requires that
operations which modify mutable graph properties be commutative and associative.

Pregel and Falcon have barrier as an overhead after each step, but this helps in reducing
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communication volume. PowerGraph and GraphLab have more communication volume due
to vertex-cut partitioning and asynchronous execution respectively. Table 6.1 compares the

frameworks mentioned above.

6.3 Representation and usage of Falcon data types

Storage of Falcon data types for a distributed system differs from that for a single device (GPU
or CPU) system.

6.3.1 Point and Edge

In a distributed setup, a Point object has a global-vertex-id, as well as a local or a remote
vertex-id in a localgraph object. The programmer can only view and operate on a Point
based on the global-vertex-id. The local vertex-id is used for storing and processing localgraph
objects on each machine/device and the remote vertex-id is used for communication between
machines/devices in each superstep of the BSP model of execution. Edges are stored in the
localgraph with modified values for source and destination vertex-id, which will be the local or

remote vertex-id within that localgraph.

6.3.2 Graph and distributed graph storage

When an algorithm is run on n nodes for a Graph G, the graph object is partitioned into
n subgraphs (localgraphs) Go, G, .., Gn-1) and node/device i stores the localgraph G;. Each
localgraph G; will be processed by a process P; with rank ¢, 0 < ¢ < n, among the n processes
created during program execution. FEach edge and its properties in the Graph G is stored
in exactly one subgraph Gy,0 < k < n and every vertex (point) is assigned a master node
(m-node).

A master node k stores all the edges e(u, v), with vertex u (v) of the edge having m-node(u) =
k (m-node(v) = k) when Gy, is stored in edge-list (reverse-edge-list) format. In that case, the
destination vertices may have a different master node and such a vertex becomes a remote-
vertex(rv) in Gy. In a localgraph object Gy, the global-vertex-id of each vertex p is converted
to local vertex-id (m-node(p) = k) or remote-vertex-id(m-node(p) # k).

The Falcon compiler assigns a local vertex-id for each master vertex in the subgraph. There
is an ordering among local vertex-id and remote vertex-id in the localgraph. For any local vertex
x and any remote vertex y in any subgraph Gy, we set id(x) < id(y). If two remote vertices x
and y in a subgraph G}, belong to different master nodes ¢ and j respectively, and if 7 < 7, we set
id(x) < id(y). This gives a total ordering between localpoints and remotepoints in a localgraph

Gy, of G. It helps in sending updated remote vertex property values of each remotepoint with
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master node p in a localgraph Gy, to the localgraph G, (p # k,0 < p < n) on node p, as the
boundaries for remote vertices of each node are well defined. The communication happens after
a parallel computation. The local vertex properties need to be communicated in algorithms
which modify the local vertex properties, like the pull-based computation (See Algorithm 66)
instead of push-based computation. The Falcon performs static analysis to determine this,

and generates efficient code with minimal communication overhead (See Section 6.6.9).

Vo U1 V2 U3 (% Us Ve U7 Us Vg V1o | Y11 | V12 | V13 | V14
Machinel ; o o
vo(lo) | vi(ly) | va(le) | ws(l3) | va(la) | vs(rs) | vs(re) | volrs) | vir(rs)| v13(rg)
Machine2 ; o . o )
vs(lo) | welly) | vrlla) | vs(ls) | volls) | va(rs) | va(re) | via(r7)| vis(rs)
Machine3 o ,
vi0(lo) | vi1(l1) | via(l2)| vis(ls)| via(la)| vs(rs) | vs(re) | v7(r7)

offset
Machine0 Machinel Machine2

positions (0, 5, 8, 10) (0, 5,7,9) (0, 5, 6, 8)
(0 to 3)

Table 6.2. Conversion of global vertex-id to local and remote vertex-id on three machines.
[ stands for local and r stands for remote.

Table 6.2 shows an example of how a global-vertex-id is converted to local vertex-id and
remote vertex-id, when a graph which has 15 vertices and E edges is partitioned across three
machines. The local vertices on each machine is given below, which is the master node for those

vertices.

e Machinel - vy, v, va, v3, V4.

e Machine2 - vs, vg, v7, Vg, Vg.

113



e Machine3 - V10, V11, V12, U13, U14.

The 10 vertices of the localgraph on Machinel are vy, vy, vo, V3, V4, Vg, Vs, Us, Vg, V11, U13. Lhe
first 5 vertices are local vertices as the master node of these vertices is Machinel. The master
node of vertices vg, vg and vg is Machine2 and that of the vertices v1; and v3 is Machine3. These
are remote vertices for the localgraph on Machinel and given vertex-id’s from 5 to 9. Boundaries
of beginning of local and remote vertices belonging to the localgraph on each machine are stored
in an array of fset|] (last row, Table 6.2). The same is shown for Machine2 and Machine3 also
in Table 6.2. A remote vertex rv becomes a part of the vertices in a machine M;, if there are
one or more edges from the local vertices of the subgraph in M; with the other end point of the
edge as the vertex rv, and master node of rv # M;. The vertex-id in the edges|| array of each

localgraph is modified to have the local and remote vertex-id’s.

Algorithm 63: Distributed-Union in Falcon

1 if( rank(node)!=0 ){

add each union request Union(u, v) to the buffer
Send the buffer to node with rank==0

receive parent value from node zero

update local set

2

3 if( rank(node)==0 ){

receive Union(u, v) request from remote nodes
perform union; update parent of each element
send parent value to each remote node

1}

6.3.3 Set

Falcon implements distributed Union-Find on top of the Union-Find of Falcon [24]. In a
distributed setup, the first process (rank = 0) is responsible for collecting union requests from
all other nodes. This node performs the union and sends the updated parent value to all other

nodes involved in the computation as given in the pseudo-code of Algorithm 63.

6.3.4 Collection

A Collection can have duplicate elements. The add() function of Collection is overloaded
and also supports adding elements to a Collection object where duplicate elements are not
added. This avoids sending the same data of remote nodes to the corresponding master nodes
multiple times. It is up to the programmer to use the appropriate function. The global

Collection object is synchronized by sending remote elements in a Collection object to
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Algorithm 64: Collection synchronization in Falcon

1 foreach( item in Collection ){
if (item.master-node#rank(node))
add item to buffer[item.master-node] and delete item from Collection

2 }
foreach (i € remote-node) send buffer to remote-node(i)
foreach (i € remote-node)receive buffer from remote-node(i)
foreach( i € remote-node ){

3 foreach( j € bufferfi/ ){
update property values using buffer[i].elem]j]
addtocollection(buffer|i].elem[j])

+ ]y
5 }

the appropriate master mode. Collection object is synchronized as shown in the pseudo-code
of Algorithm 64.

6.4 Parallelization and synchronization constructs

6.4.1 foreach statement

A foreach statement in a distributed setup is executed on the localgraph of each machine.
A foreach statement gets converted to a CUDA kernel call or an OpenMP pragma based on
the target device. There is no nested parallelism and the inner loops of a nested foreach
statement are converted to simple for loops. The Falcon compiler generated C++/CUDA
code has extra code before and after the parallel kernel call to reach a global consistent state
across a distributed system, and this may involve data communication. A global barrier is
imposed after this step.

To iterate over all the edges of a localgraph, either the points or edges iterator can be used. If
a points iterator is used, then a foreach statement using the outnbrs or innbrs iterator (nested
under points iterator) on each point will be needed and this second foreach statement gets
converted to a simple for loop. This can create thread divergence on GPUs for graphs that
have power-law degree distribution. If iterated over edges, each thread receives the same number
of edges to operate on, thereby minimizing thread divergence and improving GPU performance.
For example, when the SSSP computation is performed on a partitioned twitter [59] input on a
single machine with 8 GPUs, it showed a 10x speedup while iterating over edges compared to
iterating over points. In the twitter input, half of the edges are covered by 1% of the vertices
and the out-degree varies from 0 to 2,997,469.
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6.4.2 Parallel sections statement

This statement is used with multi-GPU machines, when there are enough devices and the
programmer wants to run a different algorithm on each device, with the graph being loaded

from the disk only once for all the algorithms [24]. This has been discussed in Section 4.6.3.

6.4.3 Single statement

single statement is the synchronization construct of Falcon. It can be be used to lock a
single element or a Collection of elements in a distributed system. The Falcon compiler
implements distributed locking based on the rank of the process on both CPU and GPU. The
details of the implementation can be found in Section 6.6.7 and it is used in our implementation
of Boruvka’s-MST algorithm [90].

Algorithm 65: Single Source Shortest Path in Falcon

1 int changed = 0;

2 relaxgraph (Edge e, Graph graph) {
3 Point (graph) p=e.src;

4 Point (graph) t=e.dst;

5 MIN(t.dist,p.dist+graph.get Weight(p,t),changed);
6 }
7 maan(int argc,char *argu[]) {

8 Graph graph;

9 graph.addPointProperty(dist,int);

10 graph.read(argv[l]);

11 foreach (t In graph.points) t.dist=1234567890;
12 graph.points|0].dist=0;

13 while( 7 ){

14 changed = 0; //keep relaxing

15 foreach(t In graph.edges) relaxgraph(t,graph);
16 if(changed == 0)break;

17 }

18 for(int i=0;i<graph.npoints;i+-+)printf(i=%d dist=%d\n, i, graph.points|i].dist);

19 }

6.5 Examples: SSSP and Pagerank

Algorithm 65 shows the Falcon code for SSSP (Single Source Shortest Path) computation in
Falcon for multiple platforms or target devices. An extra-property dist is added to the Graph
object graph (Line 9). Before the parallel foreach call in Line 11 initializes the dist property
of each vertex to oo, the graph object is read from the disk (Line 10). The read() function
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gets converted to different versions of read() based on the command line argument given for
target system to the Falcon compiler. For example, if the target system is a GPU cluster, this
converts to a read() function which reads the graph to the CPU memory and then partitions
the graph and copies the localgraph object on each node from its CPU memory to its GPU
device memory. The SSSP computation happens in the while loop (Lines 13-17), by repeatedly
calling the relazgraph() function. The dist property value is reduced atomically using MIN()
function (Line 5) and changed variable will be set to one if dist value is reduced for at least one
vertex. The computation finishes when a fixed-point reached, which is checked in Line 16. The
relazgraph() function is called using the edges iterator (Line 15), which performs better on GPUs
for large-scale graphs. Large-scale graphs follow power-law distribution and can create thread
divergence when iterated over points, as the out-degree of vertices have a large variance. When
iterated using the edges iterator each thread processes exactly one element, which eliminates
thread divergence.

Pagerank code in Falcon is shown in Algorithm 66. This algorithm follows a pull-based
computation by iterating over innbrs of each Point, where values are fetched by destination
vertex of an edge from its source vertex. (Line 3, Algorithm 66). The ADD() function used in

the algorithm (Line 4) is not atomic as Point p modifies its own value.

Algorithm 66: Pagerank in Falcon

pagerank(Point p, Graph graph) {

ddouble val=0.0;

foreach (t In p.innbrs) val += t.PR / t.outDegree();
p.PR = ADD(val * d, (1 - d) / graph.npoints);

main(int arge, char *argvf]) {

Graph graph;

graph.addPointProperty(PR,double);
graph.read(argv[1]);

foreach (t In graph.points) t.PR = 1 / graph.npoints;

1
2
3
4
5 }
6
7
8
9

int cnt = 0;
10 while( cnt <ITERATIONS ){
11 foreach (t In graph.points) pagerank(t, graph);
12 +--cnt;
13 }

14 }
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6.6 Code generation

6.6.1 Overview

The Falcon compiler takes a Falcon program and converts it to high-level language code for
distributed systems, based on command line arguments. The generated high-level language code
is then compiled with a native compiler (nvec/g++) and libraries (OpenMPI/MPI, OpenMP).
The target systems supported by Falcon are (i) single machine with multi-core CPU (ii) single
machine with multi-core CPU and one or more GPUs iii) distributed systems with each machine
of type (i) or (ii).

The generated code for distributed systems will contain MPI Isend() (non-blocking send)
and MPI_Recv() calls for communication of updated mutable graph object properties among
localgraph object on each machine or device. Code generated for a multi-GPU system supports
communication with cuda-aware-mpi support of OpenMPI. This allows device (GPU) variables
as arguments to the MPI functions. For other distributed systems with GPUs, the Falcon
compiler disables the cuda-aware-mpi feature and code with explicit copy of data between CPU
and GPU memory is generated along with MPI _Isend() and MPI_Recv() operations.

There is no distributed locking support across multiple GPU devices in MPI or OpenMPI.
The Falcon compiler implements distributed locking across multiple GPUs and CPUs. This is

required for the synchronization statement (single statement) of Falcon.

6.6.2 Distributed graph storage

The first part the compiler should handle is support for partitioning the input Graph object into
N pieces, where N is the number of tasks created to execute on the devices of the distributed
system. Falcon uses random edge-cut partitioning for graph objects. The partitioning algo-
rithm of Falcon takes the values |V| and degree of each vertex and assigns each vertex, a master
node randomly, and makes sure that each localgraph object has almost similar number of ver-
tices and edges, but the number of inter-partition edges cannot be controlled by such a naive
partitioning scheme. Falcon uses this algorithm, as available efficient partitioning tools [7]
failed to partition large-scale graphs. Falcon uses C++ classes DHGraph and DG Graph for
storing graph object on CPU and GPU respectively. The DHGraph class has functions which
read partition-ids of each point and then assign edges to localgraphs with localpoints and remote-
points. For communication between remote nodes each remotepoint is mapped to its master
node and local vertex-id in the master node using a hash table. These hash tables are stored in
the CPU and/or GPU based on the target system. A localpoint value is mapped to its global-

vertex-id and vice versa. This is needed when a localpoint mutable property value needs to be
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scattered to remote nodes.

6.6.3 Important MPI functions used by Falcon

Most of the MPI function calls require a communicator of type MPI_Comm as an argument and
MPI processes can only communicate using a shared communicator. The major MPI functions

used by Falcon are listed below.
1. MPLINT( int arg, char **argv) - Initializes the MPI execution environment.
2. MPI_Comm_rank( MPI_Comm comm, int *rank ) - Used to find the rank of a process.

3. MPI_Comm size( MPI_Comm comm, int *rank ) - Finds the number of processes involved in

program execution.

4. MPI Isend(const void *buf, int cnt, MPI Datatype dtype, int dst, int tag, MPI_Comm com,
MPI Request *req) - Send cnt number of elements of type dtype to the process with rank dst
without blocking.

5. MPI_Recv(void *buf, int cnt, MPI Datatype dtype, int src, int tag, MPI_Comm com, MPI_Status
*stat) - Receives from process with rank sre, a maximum of cnt elements of type dtype in buf.
The status of the receive operation such as the number of elements received or buffer overflow

can be found using the stat variable.

6. MPI_Get_count( const MPI_Status *stat, MPI Datatype dtype, int *cnt ) - Gets the number
of elements of type dtype received in an M PI_Recv() operation to which the stat variable was

given as an argument and stores it in variable cnt.
7. MPI_Barrier( MPI_.Comm comm) - Barrier for all the processes.

8. MPI Finalize( ) - All the processes must call this function before program termination.

6.6.4 Initialization for distributed execution

The distributed system codes are executed using the mpirun command, to which a user should
specify the number processes, the number of processes per nodes e.t.c. These arguments are
captured in the argv[] array argument of main() function. The initialization of distributed
code in Falcon is shown in Algorithm 67.

The Falcon compiler uses variables of type M PI_Status and M PI_Request with names
FALCstatus and FALCrequest respectively. The variables FALCsize and FALCrank are
used in the program code for allocation of communication buffers, sending and receiving data

across nodes etc. The main() function calls the FALCmpiinit() function at the beginning.
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Algorithm 67: Initializing distributed code before algorithm execution

1 int FALCsize, FALCrank;
2 MPI_Status *FALCstatus;
3 MPI_Request *FALCrequest;
4 void FALCmpiinit(int argc,char **argv) {
5 MPI_ Init(&arge,&argv);
6 MPI_Comm rank(MPI.COMM_WORLD, &FALCrank);
7 MPI_Comm _size(MPI_.COMM_WORLD, &FALCsize);
8 FALCstatus=(MPI_Status *)malloc(sizeof(MPI_Status)*FALCsize);
9 FALCrequest=(MPI_Request *)malloc(sizeof(MPI_Request)*FALCsize);
10 gethostname(FALChostname,255);
11 cudaMalloc(&FALCsendbuff,sizeof(struct FALCbuffer )*FALCsize);
12 cudaMalloc(&FALCrecvbuff sizeof(struct FALCbuffer ));
13 cudaMalloc(&FALCsendsize,sizeof(int ) *FALCsize);
14 cudaMalloc(&FALCrecvsize,sizeof(int) *FALCsize);
15 for( (int i=0;i< FALCsize;i++) ){
16 int temp=0;
17 cudaMemcpy (&FALCsendsizeli],&temp,sizeof(int),cudaMemcpyHost ToDevice);
18 cudaMemcpy (&FALCrecvsizeli],&temp,sizeof(int ) ,cudaMemcpyHost ToDevice);
19 }
20 }
21 main(int arge,char *argv[]) {
22 | ... //code not relevant for distributed execution.
23 FALCmpiinit(argc,argv);
24
25 }

Variables FALCsendbuf f and FALCrecvbuff (of type FALCbuf fer) are used as variables
for sending and receiving data in the auto generated MPI code. FALCbuf fer has fields (pointer
variables) which are required for sending and receiving graph properties among processes. These

fields are allocated later in the main() function. In Algorithm 67 lines 11-19 allocate and
initialize the buffer for a TARGET, which is a GPU luster or a multi-GPU machine.

Algorithm 68: Generated code for global variable changed
int changed; //for CPU and CPU cluster
__device__ int changed; //GPU, Multi-GPU and GPU cluster
__device__ int changed;int FCPUchanged; // CPU+GPU cluster

6.6.5 Allocation of global variables

Line 1 of Algorithm 65 declares a global variable changed. This variable is accessed inside the

function relaxgraph(), which is called inside the foreach statement in Line 15. The allocation
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of the variable changed depends on the target system. Its declaration gets converted to one of

the three different code fragments given in Algorithm 68 depending on the value of TARGET.

Algorithm 69: Global variable allocation in Falcon

1 for( each parallel_region p in program ){

2 for( each var in globalvars ){
if (def(var,p) or use(var,p))
allocate var on target device/devices of parallel code

s | )
1}

For a target system with CPU and GPU devices, the variable changed will be duplicated to
two copies, one each on CPU and GPU (Line 3, Algorithm 68). The Falcon compiler generates
CUDA and C++ version of the relazgraph() function for the above target system. The CPU
and GPU copies of the variable changed will be used in C++ and CUDA code (respectively).

The analysis carried out by the Falcon compiler for global variable allocation is shown
in Algorithm 69. The Falcon compiler take each parallel region of code (target of outermost
foreach statement) and each global variable stored in the symbol table. Algorithm checks
whether a global variable is accessed inside a parallel region and if so the variable is allocated
on the target device where the parallel code is run. A user gives (target as an input to the

compiler while compiling the program.

Algorithm 70: Pseudo code for synchronizing variable changed

for(each remote node i) sendtoremotenode(i, changed);
int tempchanged = 0;
1 for( (each remote node i) ){
receivefromremotenode(i, tempchanged);
changed = changed + tempchanged;

2}

6.6.6 Synchronization of global variables

Line 16 of Algorithm 65 reads the global variable changed to check the exit condition, as shown
below.
if(changed==0)break;

Here the value of the variable changed should be synchronized across all the nodes before the

read access. The code generated by Falcon for this access, for heterogeneous systems, follows
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the code pattern in Algorithm 70. Algorithm 71 shows the way global variables are synchronized
based on the commutative and associative function using which the global variable was modified

before a read access.

Algorithm 71: Pseudo code for synchronizing global variable var

for (each remote node i) sendtoremotenode(i, var);
Type tempvar = 0;// Type = Data type of var
1 for( (each remote node i) ){
receive from remote node(i, tempvar);
update var using tempvar
based on function used to modify var.(MIN,MAX,ADD etc).

2 }

Algorithm 72 shows how the changed variable is synchronized in a CPU cluster. The value
of the variable changed is sent by each process to each other process using the M PI_ISend))
function (Lines 6-8). Then each process receives the values in the variable compiler generated
temporary variable falctv using the M PI_Recv() function and received values are added to
the changed variable (Line 11) in the for loop (Lines 9-12. If the value of the variable changed
is zero, the break statement is executed (Line 13).

Code in the Algorithm 72 is for a CPU cluster. If it is a GPU cluster the send operation will
be preceded by an operation of copying the value of variable changed from GPU to CPU and
the receive operation will be succeeded by an operation of copying the value of changed to GPU,
using cudaMemcpy. For multi-GPU devices, Falcon uses OpenMPI, which has cuda-aware-mpi
support and allows device (GPU) addresses as arguments to send and receive operations. Hence

Falcon auto-generated code for multi-GPU device will not have the cudaMemcpy operations.

6.6.7 Distributed locking using single statement

The usage of a single statement in a function fun() is shown in Algorithm 73. Assume that
in a distributed execution, the point p may be present as a local vertex in one node and as
a remote vertex in multiple nodes, as edges (u,p), (v,p) and (z,p) on nodes N1, N2 and N3.
The single statement converts to a Compare and Swap (CAS) (see Section 5.3.4) operation in
the generated code for each node, and exactly one thread will succeed in getting a lock on p in
each of the nodes N1, N2 and N3. However, only one thread across all nodes should succeed
in getting the lock on p as per the semantics of the single statement. The Falcon compiler
generated code ensures that a function with a single statement is executed in two phases and

the semantics is preserved. In the first phase, the function is executed only up to and including

122



Algorithm 72: CPU cluster code for synchronization of global variable changed

1 #define MCW MPI_COMM_WORLD
2 #define MSI MPI_STATUS_IGNORE
3 MPI_Status status[16];//assuming maximum processes is 16
4 MPI_Request request[16];
int falctv4;
for( (int i=0;i< NPARTS;i++) ){
‘ if(i!=rank) MPI_Isend(&changed, 1, MPI_INT, i,messageno, MCW &requestli]);
}
for( (int i=0;i< NPARTS;i++) ){
1 if(i'=rank)MPI_Recv(&falctv4,1, MPIINT, i,messageno, MCW ,MSI);
11 changed=changed+falcvt4;

12 }

13 if(changed==0)break;

© W I & !

o

Algorithm 73: single statement in Falcon

1 fun(Point t, Graph graph) {
2 foreach( p In t.outnbrs ){

3 if( single(p.lock) ){
| stmt_block{}
4 }
5 |}
6 }
7 main() {
8
9 foreach (Point p In graph) fun(p, graph);
wy

the single statement which tries to get the lock. Then, all the processes send to process with
rank zero (Py), all the successful CAS operations using MPI_Isend(). Thereafter, the process
Py collects the messages from remote nodes (MPI_Recv()) and sets lock value for all the points
to the least process rank among all the processes which succeeded in getting the lock. For the
Point p mentioned above, if the nodes N1, N2 and N3 have the ranks 1, 2, and 3, respectively,
the lock value will be set to 1 by process F,. After this, the process F, sends the modified
lock value back to each remote node, and they update the lock value. In the second phase, the
single statement will be executed with a CAS operation checking for each Point p, whether
the current lock value equals the rank of the process, and if so, stmt_block{} will be executed.

A successful single statement on a Point p will have the value (MAX_INT-1) for the property
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Algorithm 74: Code generation for single statement Falcon
Input: Function fun() with single statement
Output: Functions funl() and fun2(), synchronization code

(I) Reset lock.
forall (Point t in Subgraph G; of G) t.lock - MAX_INT

(IT) Generate code for funi() from fun()
(a) In funl() remove statements inside single statement.
(b) Convert single(t.lock) to CAS(t.Jlock, MAX_INT rank).

(III) Synchronize lock value.
(a) Send successful lock values to process with rank zero.
(b) At rank zero process
Make lock value to MIN of all values.
Send lock value to all remote nodes.
(¢) On nodes with rank ; zero
Receive lock value from rank zero process.
Update lock value.

(IV) Generate code for fun2() from fun() .
(a):- Convert single to CAS(t.lock,rank, MAX INT-1).
(b):- Generate code for fun2() from fun() including all statement.

(V) At call site of fun(), generate code with parallel call to fun() and fun2() in order.

lock, after the second CAS operation. Otherwise value could be MAX_INT or a value less than
the number of processes (rank) used in the program execution.

The pseudo code for distributed locking code generation is shown in Algorithm 74. Function
fun() is duplicated to two versions, funl() and fun2(). funl() simply tries to get the lock. Code
for combining the lock values of all the element to produce the minimum rank value (by the
process ) follows. fun2() executes stmt_block{}, as now lock is given to the process with the
least rank and only one thread across all nodes will succeed in getting the lock for a Point p.
Such an implementation is used in the Boruvka’s-MST implementation.

A sample code generated for distributed locking on a GPU cluster is shown in Algorithm 75
for the code shown in Algorithm 73. The Falcon compiler generates the functions updatelock()
(Lines 1-10) and sendlock() (Lines 11-21). The function sendlock() is used to add the points
whose lock value is modified. In the generated code, lock value is reset to MAX_INT and copied
to templock[] array. Then funl() (Lines 22-31) is called and it tries to make the lock value of
the destination vertices of an edge equal to the rank of the process (Line 28). These functions

are invoked from the main() function. Then using the sendlock() function, values which are
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Algorithm 75: Code generated for GPU cluster for distributed locking
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__global__ void updatelock(GGraph graph,struct buff1 buffrecv,int size) {

}

S“v—’

int id= blockIdx.x * blockDim.x + threadldx.x;
if( id <size ){
int vid=buffrecv.vid[id];
int lock=buffrecv.lock[id];
if( ((struct struct_hgraph *)(graph.extra))->minppty[vid].lock>lock ){
‘ ((struct struct_hgraph *)(graph.extra))->minppty[vid].lock=lock;

}
}

__global__ void sendlock(GGraph graph,int *templock,struct buff1 buffisend,int rank) {

int id= blockIdx.x * blockDim.x + threadldx.x;
int temp;
if( id <graph.npoints ){
if( templockfid]!= ((struct struct_hgraph *)(graph.extra))->minpptyfid].lock ){
temp=atomicAdd(&locklsendsize,1);
bufflsend.vid[temp|=id,;
bufflsend.lock[temp]=((struct struct_hgraph *)(graph.extra))->minppty[id].lock;

}

_global__ void funl ( GGraph graph, struct sendnode *sendbuff,int rank ) {

int id= blockIdx.x * blockDim.x + threadldx.x;
if( id <graph.localpoints ){
int falctl=graph.index[id+1]-graph.index[id]; int falct2=graph.index[id]; for( int
falet3=0;falct3;falctl;falct3++ ){
int ut1=2*(falct2+falct3);
int ut2=graph.edges[utl].ipe;
atomicCAS( &(((struct struct_hgraph
*)(graph.extra))->minppty[ut2].lock),MAX_INT rank);

//copy current lock value to templock[] array.
funl<<<graph.localpoints/TPB+1,TPB>>>funl(graph, FALCsendbuff, FALCrank);
cudaDeviceSyncrhonize();

MPI_Barrier(MPI.COMMWORLD);

//synchronize lock var by all process sending lock value to rank zero process.

// Then rank zero process updates lock value of all points (minimum of received values)
and send to all nodes.

fun2<<<graph.localpoints/TPB+1,TPB>>>funl(graph, FALCsendbuff, FALCrank);
cudaDeviceSyncrhonize(); MPI_Barrier(MPI.COMMWORLD);
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modified (lock[id]! = templock[id]) are added to FALCsendbuf f[] and sent to the rank zero
process. The rank zero process collects requests from all the remote nodes and updates the lock
value of a point to the minimum of the values received using the updatelock() function. Then
rank zero process sends the modified values to each remote node. Remote nodes then update
the lock value to the value received from the rank zero process. At this point, the lock value is
the same for a point v which is present in multiple nodes, and the value will be equal to the
rank of the least ranked process which succeeded in locking v. Then the single operation in
function fun2() will be if(CAS(&lock, rank, MAX _INT — 1) == rank), and this condition

will be true for only that process.

6.6.8 Adding prefix and suffix codes for foreach Statement

Algorithm 76: Prefix and suffix code for relazgraph call for CPU cluster (Algorithm 65,
Section 6.5)

1 //prefixcode
2 #pragma omp parallel for num_threads(FALC_THREADS)
3 for( (int i=graph.nlocalpoints;i<graph.nremotepoints;i++) ){
a | tempdist[i]= (( struct struct_graph *)(graph.extra))->dist[il;
5
}
6 #pragma omp parallel for num_threads(FALC_THREADS)
7 for( (int i=0;i<graph.nlocaledges;i++) ){
8 ‘ relaxgraph(i,graph);
o }
10 //suffixcode
11 for( (int kk=1;kk< FALCsize;kk++) ){
12 #pragma omp parallel for num_threads(FALC_THREADS)
13 | for( (int i=graph.offset[kk-1];i<graph.offset[kk];i++) ){
14 ‘ addto_sendbuff(i,graph, FALCsendsize,FALCsendbuff kk-1);
15 }
16 }

Extra code is generated by Falcon at the call site of parallel foreach, if it updates all
the remote nodes. The relazgraph() function (Linel5, Algorithm 65, Section 6.5) updates dist
value of destination point (7') of an edge E using MIN function (Lines 5) and 7" could be a
remotepoint. The Falcon compiler adds extra code before and after the relaxgraph() parallel
call, similar to the code in Algorithm 76. The code first copies current dist value to a temporary
buffer tempdist (Line 4) and then calls relaxgraph() (Line 8). The number of remotepoints for
a remote node kk is (of fset[kk] — of fset[kk — 1]). The add_to_sendbuff() (Line 14) function
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checks for the condition (tempdist[i]! = dist[i)) and remotepoints of remote node(kk) which
satisfy this condition are added to FALCsendbuf flkk]. FALCsendbuf f[kk] will be filled
with (dist,localid[kk]) in remote node kk. Then these buffers are sent to the respective remote
nodes. Each node receives these (dist,localid|[kk]) pairs from all the remote nodes. and updates
its dist value.This is done by sending the sendbuf f[i] values to remote node/process i, followed
by a receive operation which receives each sendbuf f|[| values sent by the remote processes in a
recvbuf f[| and updating the dist value by taking the minimum of the current and the received

values.

Algorithm 77: Update dist property for SSSP ( Algorithm 65, Section 6.5)

1 #define MCW MPI_.COMM_WORLD
2 Fdefine MSI MPI_STATUS_IGNORE
#define graphep ((struct struct_graph * )(graph.extra)) int totsend=0;

w

4 for( (int i=0;i< FALCsize;i++) ){

5 if( (/=FALCrank) ){

6 totsend+=sendsizel[i];

7 MPI_Isend((sendbuft]i].vid), sendsize[i], MPI_LINT, i ;messageno, MCW &request[i] );

8 MPI Isend((sendbuff]i].dist), sendsize[i], MPI_INT, i ,messageno+1, MCW,&request|[i]);

o |}

10 }

11 for( (int kk=0;kk< (FALCsize);kk++) ){

12 if( (kk!=FALCrank) ){

13 MPI_Recv(recvbuff]0].vid,graph.hostparts[0].npoints, MPI_INT i, messageno,
MCW,&FALCstatusl[i]);

14 MPI_Recv(recvbuff]0].dist,graph.hostparts[0].npoints, MPI_INT,i, messageno+1,
MCW,MSI);

15 MPI_Get_count(&FALCstatus[kk], MPI_INT, &FALCnamount);

16 #pragma omp parallel for num_threads(FALC_THREADS)

17 for( (int i=0;i< FALCnamount;i++) ){

18 int vertex= FALCrecvbuff[0].vid[i];

19 if ( graphep->dist|vertex] >FALCrecvbuff[0].dist[i])

20 graphep->dist[vertex] = FALCrecvbuff]0].dist[i];

21 }

22 }

23 }

6.6.9 Optimized communication of mutable graph properties

The relazgraph() function (Line 15, Algorithm 65, Section 6.5) updates dist value of the desti-
nation point which could be a remotepoint of an edge using the MIN function (Lines 5). This

requires communication of dist properties from remote nodes of a vertex v to its master node
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and update the dist[v] value on master node of v to minimum of values at the remote and the
master node. The code generated for updating dist property for a CPU cluster is shown in
Algorithm 77. Each process sends the modified dist value of remote vertices and the local-id
of the vertices in the corresponding remote node (Lines 4-10). Then the processes receives the
values sent in a receive buffer one by one (Lines 13- 14) and updates the dist value to the
minimum of the current value and the received value (Lines 17-21).

The Falcon compiler generates optimized code for such an update. The analysis is as
shown in Algorithm 78. Each function which is the target of a foreach statement, stores used
and modified mutable graph properties in the arrays use[] and def][] (Step 1). Each function
checks whether the values modified by the elements in def[] are used by any successor of the
function, before they are modified again (Step 3). If so, code to synchronize all such properties is
generated (Step 4). The property values to be communicated can be remote points (push-based
update) or local points (pull-based update). Falcon DSL code for SSSP and auto-generated
code targeting multi-GPU devices can be found in the appendix. This reduces communication
volume, as only the modified graph properties are communicated and out of the modified

properties only the elements which are modified are communicated.

6.6.10 Storage Optimizations

The Falcon compiler generates code to store edge weights only if they are accessed in the
program using get Weight() functions. Pagerank, K-CORE, and BFS computation do not use
edge weights. This optimization saves space, as a weighted Graph G(V,E) requires 2x|E| space
for edges|[] array, while an unweighted graph requires only | E| space. The receive buffer (to get
updated values) is allocated only for one node, as updates are done synchronously. But the
send buffer is allocated for all the remote nodes as the send operation is asynchronous. This
optimization also saves space and the saved space depends on the number of processes involved

in the computation.

6.7 Experimental evaluation

We have used large-scale graphs available in the public domain for result analysis and they
are listed in Table 6.3. For checking scalability we have generated RMAT graphs of bigger
size with the GT-Graph [11] tool with parameter values a=0.45, b=0.25, ¢c=0.15 and d=0.15.
Different RMAT graphs were used for GPU and CPU devices due to the considerable difference
in memory size of each device, and the difference in the number of GPU devices and CPU
devices used. RMAT graphs used for CPU and GPU clusters are shown in Tables 6.5 and 6.4

respectively.
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Algorithm 78: Code generation for synchronization of graph properties in Falcon

(I) store use and def.
forall Functions fun in the program do
store mutable graph properties read by fun in vector fun.usel].
store mutable graph properties modified by fun in vector fun.def]].
end

(IT) create call-string(C'S) of the parallel functions in program.

(III) findout data to be communicated.
forall Functions fun in the C'S do
forall properties p in fun.def[] do
forall successor succ of fun in C'S do
if ( succ.usel] contains p, before p is modified again )
| add p to fun.comm]]

}

end

end

end

(IV) prefix and suffix code for communication.
(a):-prefix code.
forall Functions fun in the C'S do
forall properties ppty in fun.comm|| do
| copy ppptyli] to temppptyli] for all elements i.
end

end

4(b):-forall Functions fun in the C'S do
forall properties ppty in fun.comm|| do
forall remote nodes rn, of Subgraph Gy, do
if (temppptyli] # pptyli])
add pptyli] to buf fery

end

end

forall( remote node rn;)send buf fery to node rny.

end
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max max avg
Input Type | Points (|V|) | Edges (|E|) in-degree out-degree degree
ljournal [28] | social | 5,363,260 | 77,091,514 | 19,409 2,469 14.73
arabic [14] | web 22,744,080 | 631,153,669 575,618 9,905 28.14
uk2005 [15] | web 39,460,000 921,345,078 1,776,852 5,213 23.73
uk2007 [15] | web 105,896,555 | 3,738,733,602 | 975,418 15,402 35.31
twitter [59] | social | 41,652,230 | 1,468,364,884 | 770,155 2,997,469 35.13
frontier [102] | social | 65,608,366 1,806,067,135 | 4,070 3,615 27.53

Table 6.3. Input graphs and their properties

6.7.1 Distributed machines used for the experimentation

To evaluate the generated distributed code, we used three different systems.

CPU cluster - We used a sixteen node CRAY XC40 cluster. Each node of the cluster
consists of two CPU sockets with 12 Intel Haswell 2.5 GHz CPU cores each, 128 GB RAM and
connected using Cray Aries interconnect.

GPU cluster - We used an eight node CRAY cluster. Each node in the GPU cluster has
Intel IvyBridge 2.4 GHz based single CPU socket with 12 cores and 64 GB RAM, and single
Nvidia-Tesla K40 GPU card with 2,880 cores and 12 GB device memory and connected using
Cray Aries high-speed interconnect. This cluster is also used for heterogeneous execution with
i) first four nodes using only CPU and other four nodes using GPU, and ii) four nodes using
both CPU and GPU.

Multi-GPU machine - A single machine with eight Nvidia-Tesla K40 GPU cards, each
GPU with 2,880 cores and 12 GB memory, Intel(R) Xeon(R) CPU multi-core CPU with 32

cores and 100 GB memory.

6.7.2 CPU cluster execution

6.7.2.1 Public inputs

Figure 6.2 shows the speedup of Falcon over PowerGraph on a sixteen node CPU cluster for
public inputs in Table 6.3. The benchmarks used are Single Source Shortest Path (SSSP),
Breadth First Search (BFS), Pagerank (PR), Connected Components (CC) and K-CORE. The
PowerGraph running time is taken as the best of the coordinated and the oblivious ingress
methods (two different ways of partitioning graphs) [46]. It is found that the amount of data

communicated by PowerGraph is high and is up to 5x to 30X more compared to Falcon.
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Figure 6.3: Falcon Vs PowerGraph- on UK-2007

Falcon is able to outperform PowerGraph for most of the (benchmark, input) pairs. The
major reason being the amount of data communicated by Falcon code much is lesser compared
to PowerGraph as Falcon uses edge-cut partitioning and optimized communication. Pagerank
and k-core implementations of Falcon send more amount of data compared to BFS, SSSP and
CC. The pagerank algorithm showed less speedup, as the algorithm modifies value of each point
in the subgraph and this has to be scattered to all the remote nodes. K-core running time is
calculated as the average time of running the algorithm for 11 iterations for (kmin = 10) to
(kmaz = 20). The Falcon implementation of K-core also communicates more volume of data.
Figure 6.3 shows the running time for SSSP and CC on wk-2007 input for number of nodes

ranging from two to sixteen. PowerGraph failed to run on two nodes.
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Input G(V,E) | rmat100 rmat200 rmat250
4 100M 200M 250M
B 1000M 2000M 2500M

Table 6.4. Input for GPU cluster and Multi-GPU machine scalability Test

Input G(V,E) | rmat300 rmat600 rmat900 rmat1200
V] 300M 600M 900M 1200M
|E| 3000M 6000M 9000M 12000M

Table 6.5. Input for CPU cluster scalability Test

6.7.2.2 Scalability test

Falcon and PowerGraph codes were run on four big RMAT inputs generated using GT-Graph.
The inputs have 300, 600, 900, 1200 million vertices and number of edges being ten times the
number of vertices (see Table 6.5). Scalability was compared for the benchmarks SSSP, BFS
and CC and the results are shown in Table 6.6. The PowerGraph framework failed to run on

the rmat1200 input. Here also, Falcon was able to outperform PowerGraph.

Algorithm Framework rmat300 rmat600 rmat900 rmat1200

SSSP PowerGraph 158.2 358.9 442.4 segfault
Falcon 112 238.9 384.7 478.7

CC PowerGraph 107 305 324 segfault
Falcon 34.9 72.9 92.4 188.8

BFS PowerGraph 24.8 49.7 93.2 segfault
Falcon 15.8 33.2 42.9 75.1

Table 6.6. Running time (in Secs) of rmat graph on fixed 16 node CPU cluster.

6.7.3 GPU execution

For GPU execution of Falcon we used two different device configurations, a multi-GPU ma-

chine and a GPU cluster.
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Figure 6.4: Speedup of Falcon over Totem

6.7.3.1 Multi-GPU machine

Falcon codes were executed for all the public inputs and Falcon performance is compared with
Totem [44]. The results are shown in Figure 6.4 when all the benchmarks were run using all
the eight GPUs. Out of the eight GPUs, two sets with four GPUs (devices (0 to 3) and (4 to
7)) each have peer-access capability. Totem showed a sharp increase in running time when the
number of GPUs is changed from four to five and thereby showing non-linear scalability as it
uses peer-access capability which is possible between all the devices when the number of GPUs
is four or less. The Falcon compiler does not use the peer-access capability and showed linear
capability. So if the inputs fit within four GPUs, Totem was able to achieve better performance
for some inputs and benchmarks compared to Falcon. The Falcon compiler uses OpenMPI
with cuda_aware_ mpi feature for communication between GPUs. Falcon allows iterating over
edges in a localgraph object using the edges iterator, which provides work balance across threads
in each GPU. The special behaviour of Totem when increasing number of GPUs from 4 to 6 is
shown in Figure 6.5 for SSSP on uk-2007 input and for CC on frontier input. Increasing the
number of GPUs from x to y, will have a huge impact on the running time, when the input
graph object which fits on p GPUs where p > z, has enough size and parallelism to use y
GPUs. We saw in Chapter 4 that road networks perform poorly on GPUs due to the lack of

parallelism. Parallelism normally decreases as the number of GPUs is increased.
6.7.3.2 GPU cluster

Figure 6.6 shows relative speedup of Falcon on an 8 node for GPU cluster over an 8 node
CPU cluster, on public inputs. BFS algorithm shows less speedup on the GPU cluster as BFS

does not have a compute-bound kernel and communication between GPUs on different nodes
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Figure 6.6: Relative speedup of 8 node GPU cluster over 8 node CPU cluster

has to go through the CPU. In BFS, nearly 90% time is spent on communication on the GPU
cluster. The CPU cluster codes on an average spend 35% time for communication. But in the
GPU cluster the computation finishes fast and more than 60% of the time (on an average) is
spent for communication. This is also due to the fact that communication between GPUs of
two nodes has to go through the CPU and so GPU cluster communication will take more time

compared to CPU cluster communication for the same volume of data.

6.7.4 Scalability test

We conducted scalability tests on multi-GPU machines, GPU clusters, and CPU4+GPU clusters.
For scalability analysis on distributed systems with GPUs three rmat graphs with 100, 200
and 250 million vertices were created with each graph having edges equal to ten times of

number of vertices (see Table6.4). Table 6.7 shows the running time for different systems on
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the benchmarks BFS, CC and SSSP. First two columns show the running time of Falcon and
Totem on a multi-GPU machine. The other two columns show the running time on distributed
systems with each machine having one GPU (column III) and one GPU or CPU (column
IV). The multi-GPU system has a better running time as there is very little communication
overhead between GPUs on a single machine. The GPU cluster running time is high as the
communication time from GPU to GPU on two different nodes is very high. The CPU+4+CPU
cluster has the worst performance as there is mismatch in computation time for parallel code

in GPU and CPU devices.

Input Algorithm multi-GPU | Totem GPUcluster | GPU4+CPUcluster
BFS 1.2 1.2 3.72 8.4
rmat100 | CC 1.1 2.98 2.74 8.3
SSSP 4.99 6.18 9.3 31.6
BFS 1.8 1.5 6.89 16.7
rmat200 | CC 2.4 5.0 5.7 17.4
SSSP 10.9 10.36 18.1 66.9
BFS 2.9 2.1 8.65 20.1
rmat250 | CC 3.46 5.7 7.21 20.9
SSSP 12.30 13.1 21.9 39.6

Table 6.7. Running time (in Secs) of rmat graph on fixed 8 devices (8 GPUs or four GPU~+
four CPU).

6.7.5 Boruvka’s MST

The Boruvka’s MST algorithm uses the Union-Find Set data type of Falcon. This algorithm
also uses the single statement of Falcon. The single statement is used to add only one edge
connecting two disconnected components among the many possible edges with the same weight.
Running time of the algorithm for public inputs is shown below in Table 6.8. The outermost
foreach statements used the points iterator and the kernel with single statement was similar
to the one given Algorithm 74. The twitter input has a similar running time on a multi-GPU
machine and a GPU cluster as the iterator points was used and it created thread divergence.
A code with edges iterator can be written like the SSSP example in Algorithm 65, which will

improve running time for twitter input. The memory available on 8 GPUs was not sufficient to
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run MST on uk-2007 input.

System ljournal | arabic uk2005 twitter frontier
Multi-GPU machine | 9.05 27.98 62.3 279.1 112.7
GPU cluster 19.4 49.6 105.7 287.3 150.9
CPU cluster 44 141 278 709 1275

Table 6.8. Running time of MST (in Seconds) on different distributed Systems.

6.7.6 Dynamic graph algorithms

The Falcon compiler allows mutation of graph objects and hence supports programming dy-
namic graph algorithms. The Falcon compiler looks at algorithms which add edges and points
to the graph object and allocates more space to store edges for each vertex. A programmer can
specify as command line arguments, minimum (min) and maximum (maz) space to be allocated
per vertex. The read() function allocates extra space which is equal to the second highest in
the 3-tuple (min, max, outdegree) for each vertex. The deletion of edges and points is done

using marking (Section 5.4).
6.7.6.1 Dynamic-SSSP

The incremental dynamic-SSSP gives a speedup of around 4.5x on GPU cluster, 11x on multi-
GPU machine and 7.5x on CPU cluster. The rmat graphs of Table 6.7 and Table 6.6 were used
for GPU and CPU systems respectively. After the initial SSSP computation upto 5% edges were
added during the experimentation to the RMAT graphs and SSSP was computed incrementally
from previous computation. Other vertex-centric incremental dynamic algorithms can also be

programmed in Falcon in a similar fashion.
6.7.6.2 Delaunay Mesh Refinement (DMR)

We have implemented distributed DMR based on the PCDM algorithm [27]. The DMR algo-
rithm has a graph with a mesh of triangles. This algorithm is totally different from the other
algorithms discussed above, where the graph is collection of triangles. So in the distributed im-
plementation of DMR in Falcon, each triangle in the localgraph, which contains a constrained
edge is added to a Collection object colll. An edge e is a constrained edge if it present in
two subgraphs G; and G, © # j. Then triangles with constrained edges which are refined in
a superstep 9;, are added to another Collection object coll2. The coll2 object will be syn-

chronized by Falcon using colll. Then triangles in coll2 will be refined in the remote node
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which contains the same constrained edge. The refinement algorithm is the same as that of
the PCDM algorithm. The triangular mesh is partitioned using the ParMetis [7] Tool, which
provides a good partitioning with very few constrained edges. When the mesh size increases,
there is an increase in the percentage of constrained edges produced by ParMetis. Table 6.9
shows the running time on different systems for the DMR algorithm with 8 devices, for meshes

with 5, 10 and 15 million triangles.

System r5M r10M r15M
Multi-GPU machine 1.2 1.7 4.3
GPU cluster 3.1 4.1 9.5
CPU cluster 20.1 30.2 51.8

Table 6.9. Running time of DMR (in seconds) on different distributed systems.

137




Chapter 7

Conclusions and Future Directions

7.1 Conclusions

In this research, we have introduced the Falcon graph manipulation language, which targets
heterogeneous systems which include multi-core CPUs, GPUs, multi-GPU machines, CPU clus-
ters, GPU clusters. To the best of our knowledge this is the first framework which facilitates
graph manipulation for such wide range of targets. The attractive features of Falcon are listed

below.

e [t supports a wide range of target systems.

e A Falcon DSL program can be converted to these heterogeneous targets, without mod-
ifying the program. The programmer is required to give only different command line
arguments to the compiler to emit the codes for different target systems. This increases

productivity.

e [t supports mutation of graph objects, barrier for GPU Kernels and distributed locking

on clusters, all of which enable programming complex graph algorithms.
e [t supports mesh refinement algorithms, which are widely used in computational geometry.

e Falcon compiler generates very high quality code. Performance of Falcon programs were
compared with the state-of-the-art frameworks and it matched those frameworks for most

of the benchmarks and outperformed some of them.

Table 7.1 compares Falcon with the state-of-the-art graph frameworks.
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Properties GreenMarl Elixir | Totem | PowerGraph | GraphLab Lonestar Falcon
GPU
CPU v v v v v X v
GPU X X 4 X X v Vv
multi-GPU | X X Vv X X X Vv
CPU cluster | v/ X X N4 V4 X v
GPU custer | X X X X X X Vv
DSL vV v X X X X Vv
Dynamic
Algorithms | X X X Vv v Vv Vv

Table 7.1. Comparison of Falcon with other DSLs/Frameworks

7.2 Future directions

e Falcon supports GPU devices. But there are no GPU-specific optimizations provided in
Falcon. For example, RMAT graphs or social graphs which follow the power-law will
have thread divergence when all the edges are processed using two foreach statements,
with the outermost iterator being points and the inner one iterating over outnbrs. This
can be avoided by iterating over edges (see Algorithm 65 ,Section 6.5). This forces the
programmer to write different codes for the same algorithm (for GPU devices), for different
input graph classes (see Section 2.8). An optimization which converts points+outnbrs
iterator pair to edges iterator will avoid writing separate codes. In the future we wish to

explore similar optimizations which benefit some types of graph classes.

e Similarly, the current implementation of distributed locking using a single statement,
and distributed union of Set data type in Falcon have high overhead as all the requests are
collected at the first process (rank == 0). The possibility of optimizing these operations

is also part of future work.

e Currently, mesh based algorithms are programmed in Falcon using the addProperty()
function of the Graph class. Providing data types Mesh, Hypergraph etc., and adding

support in the compiler for writing algorithms for such data types is desirable.

e Falcon currently supports only cautious morph algorithms, which we would like to extend
to speculations which require rollbacks to the previous consistent state on mis-speculation.

Targeting other devices like Xeon-Phi coprocessor, FPGAs are also on the cards.
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Chapter 8

Appendix

8.1 Absolute Running Time- Single Machine CPU and
GPU

From initialization to

Input Copy Graph to GPU end of while While loop CopyResult to CPU

Falcon | Lonestar | Totem | Falcon [ Lonestar [ Totem | Falcon | Lonestar | Totem | Falcon [ Lonestar | Totem

GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU
randl 192.1 210.7 418.7 404.7 463.8 651.4 401.8 459.1 591.7 42.84 43.5 55.7
rand2 | 460.3 541.7 848.2 845.7 1149 1303 840 1142.7 1190 84.33 85.3 137.6
rmatl | 246.77 252.5 250.1 697 1252.7 1051.3 695.26 1248.4 1011.3 26 25.8 35.4
rmat2 | 489.5 508.8 498.7 | 1558.9 10424.7 | 2549.9 | 1555.7 | 10371.7 2483 51.7 62.3 73.1
roadl | 158.7 225.9 464 333086 | 45647.7 | 74220.5 | 33083.9 | 45646.7 | 74047.5 | 31.7 26.15 163
road2 | 192.2 324.3 7596.6 | 78127.3 | 152321.5 | 134688 | 78123.6 | 1522817 | 134613 45.9 48.7 70

Table 8.1. Running Time(in Ms) SSSP on GPU(Falcon-GPU,LonestarGPU, Totem-GPU)
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From initialization to

Input Copy Graph to GPU end of while While loop CopyResult to CPU

Falcon | Lonestar | Totem | Falcon | Lonestar | Totem | Falcon | Lonestar | Totem | Falcon | Lonestar | Totem

GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU
randl 192 495.3 418 100.84 153.1 215.3 99.15 149.7 176.1 51.8 45 40.2
rand2 433 664 839 199 323,7 419 196.3 318,7 350.4 | 85.77 85.7 63.6
rmatl | 279.1 568.2 251,4 158.6 324.5 121.6 157.1 319 97.4 26.0 25.8 20.1
rmat2 | 474.7 704.7 498.7 319.2 3246.4 250.7 317.3 3244.6 219.8 51.8 45 40.2
roadl 151.7 379.7 462.7 380.1 263.7 5304 379.1 260.5 5191 35.3 26.7 39.7
road2 | 424.4 785.3 597.3 601.4 405 11492.5 | 632.3 400 11523 45.8 47.1 38.92

Table 8.2. Running Time(in Ms) BFS on GPU(Falcon-GPU,LonestarGPU, Totem-GPU)

From initialization to
Input | Copy Graph to GPU end of while While loop CopyResult to CPU
Falcon Lonestar Falcon Lonestar Falcon | Lonestar | Falcon Lonestar
GPU GPU GPU GPU GPU GPU GPU GPU
different different
randl | 632.5 837.7 1521.3 3763.7 1512 code 179 code
different different
rand2 | 1298.7 1217 4511 9379.2 4495 code 440 code
different different
rmatl 663 653.1 3641.1 3782.4 3632.6 code 238.8 code
different different
rmat2 | 1262.2 1241.1 7889.7 7907 7873 code 525 code
different different
roadl 566.9 189.3 881.4 3146.4 874.3 code 88.5 code
different different
road2 | 923.6 743.7 1072.67 4333.4 1061.3 code 155.3 code

Table 8.3. Running Time(in Ms) MST on GPU(Falcon-GPU,LonestarGPU)

Input | Galois-1 | Galois-12 | Falcon-CPU | Totem-CPU | Green-Marl
randl | 20025 2314.3 2743.3 2620.7 3451
rand2 | 52283 4375.7 5327 5322 7578
rmatl | 18683 2566 2677 4011 killed
rmat2 | 47779 5693 5691.3 9663 killed
roadl 3600 735 734 103981 122651
road2 5699 1023 1012 183619 197512

Table 8.4. Running Time(in Ms) for SSSP on CPU
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Input | Galois-1 | Galois-12 | Falcon-CPU | Totem-CPU | Green-Marl
randl | 5832.5 680.5 420.5 716 1017
rand2 | 12074.5 1464.3 949.3 1468.1 1952
rmat1 3345 501.4 397.6 512.1 killed
rmat2 | 7133.5 995 825.9 1009.1 killed
roadl 2042 320 325.5 2387.7 1225.2
road2 | 3063.5 520 482.7 4686.2 6127

Table 8.5. Running Time(in Ms) for BFS on CPU

Input | Galois-1 | Galois-12 | Falcon-CPUI
randl | 49861.8 5036 9795
randl | 110804 11419 20827
rmatl | 29188 6910 14503
rmat2 | 63372 14972 36784
roadl 11180 1402 1421
road2 12013 1510 1615

Table 8.6. Running Time(in Ms) for MST on CPU
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8.2 Absolute Running Time- Distributed Systems

Input | BenchMark | Falcon | PowerGraph
ljournal BFS 0.6 8.1
ljournal SSSP 1.32 14.3
ljournal CC 0.8 9

arabic BFS 1.08 11.5

arabic SSSP 6.8 49.8

arabic CC 1.32 16
uk2005 BFS 3.36 42.6
uk2005 SSSP 22 101
uk2005 cC 5.16 26
uk2007 BFS 4.9 32.2
uk2007 SSSP 33.5 108.1
uk2007 cC 6.72 60
twitter BFS 3.1 7.3
twitter SSSP 9.5 4.8
twitter CC 5.04 22
frontier BFS 5.63 17.2
frontier SSSP 31.4 49.6
frontier CC 10.56 49

Table 8.7. Absolute Running Time in Seconds on 16 node CPU cluster Falcon and PowerGraph
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Input | BFS | SSSP | CC
ljournal | 0.4 0.9 0.4

arabic 1.6 5.1 1.45

uk2005 | 124 | 16.8 10

uk2007 | 8.1 30.1 | 89

twitter | 13.1 | 25.3 | 10.9

frontier | 3.5 9.4 3.2

Table 8.8. Absolute Running Time in Seconds of Falcon 8 node GPU cluster

Input | BenchMark | Falcon | Totem
ljournal BFS 0.13 A4
ljournal SSSP 44 .84
ljournal CcC 0.15 7

arabic BFS .24 45

arabic SSSP 1.9 5.4

arabic CC 0.7 2.12
uk2005 BFS .75 1.15
uk2005 SSSP 5.3 8.76
uk2005 CcC 94 7.85
uk2007 BFS 1.3 1.3
uk2007 SSSP 10.7 20.4
uk2007 CcC 6.8 15.8
twitter BFS 2.7 3.2
twitter SSSP 2.67 4.1
twitter cC 2.69 3.2
frontier BFS 1.2 .87
frontier SSSP 10.6 23.9
frontier CC 10.56 49

Table 8.9. Absolute Running In Seconds on Multi-GPU machine with 8 GPUs Falcon and
Totem
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8.3 Example Falcon Programs

This section gives some sample Falcon programs.

More programs can be found in, Unnikrishnan Cheramangalath, Rupesh Nasre, and Y. N.

Srikant. Falcon Graph DSL Compiler Version 1, Jan 2017. [Online|. Available at https://github.com/falc
graphdsl/ .

8.3.1 SSSP in Falcon

Algorithm 79: Bellman-Ford SSSP code in Falcon

1 int changed=0;

2 relaxgraph( Point p,Graph graph) {

3 foreach( t In p.outnbrs ){

4 ‘ MIN(t.dist,p.dist+graph.get Weight(p,t),changed);
5 |}

6 }

7 SSSP(char *name) {

8 Graph hgraph;

9 hgraph.addPointProperty(dist,int);

10 hgraph.read(name);

11 foreach(t In hgraph.points)t.dist=1234567890;
12 hgraph.points[0].dist=0;

13 while( 7 ){

14 changed=0;

15 foreach(t In hgraph.points)relaxgraph(t,hgraph);
16 if(changed==0) break;

17 }

18 for(int i=0;i<hgraph.npoints;i++)

19 printf(“%d\n” ,hgraph.points[i].dist);

20 return;

21 }

22 main(int arge,char *argvf]) {

23 ‘ SSSP (argv[1]);

24 }
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The Algorithm 80 is the optimized variant program shown in the Algorithm 79. Here the
code is optimized to mak sure that only the nodes on which there is a need to take atomic MIN
operation will do the same. To be more precise, all points which have the uptd property false
will not execute the code inside relazgraph() function, reducing running time. The optimized
code has extra-properties dist, olddist, uptd. So this code will produce correct output, but takes

less time than that of algorithm given in 8.3.1.
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Algorithm 80: Optimized Bellman-Ford SSSP code in Falcon
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int changed = 0;
relaxgraph(Point p, Graph graph) {
foreach( t In p.outnbrs ){
MIN(t.dist, p.dist + graph.getWeight(p, t), changed);
if(t.dist<t.olddist)t.uptd=true;
}
}
reset( Point t, Graph graph) {
| t.dist=t.0lddist=1234567890; t.uptd=false;
}
resetl( Point t, Graph graph) {
if(t.uptd==true && t.dist==t.olddist)t.uptd=false;
t.olddist=t.dist;
}
main(int arge, char *argvf]) {
Graph graph; // graph on CPU
graph.addPointProperty(dist, int);
graph.addPointProperty(upt, bool);
graph.addPointProperty(olddist, int);
graph.read(argv[l]) // read graph on CPU
// initialize graph object properties
foreach (t In graph.points)reset(t,graph);
graph.points[0].dist = 0; // source has dist 0
graph.points[0].uptd=true;
while( 7 ){
changed = 0; //keep relaxing
foreach(t In graph.points)
(t.uptd) relaxgraph(t,graph);
if(changed == 0)break;//reached fix point
foreach(t In graph.points)reset1(t,graph)
}
for(int i = 0; i <graph.npoints; +-+i)
printf(“i=%d dist=%d\n”, i, graph.points[i].dist);

147



Algorithm 81: A-stepping SSSP in Falcon
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Graph hgraph;
struct node {
Point(hgraph) nl;
int w;
}s
Collection pred[struct node];
relaxEdge(Point p,Graph hgraph, Point p1,int weight, Collection pred[struct nodef) {
int changed=0;
int ddata=hgraph.points[p].dist;
int newdist=hgraph.points[p1].dist+weight;
while( newdist < (olddist=hgraph.points[p].dist) ){
MIN (hgraph.points[p].dist,newdist,changed);
struct node tt1;
tt1l.w=newdist;
tt1l.nl=p;
pred.add(tt1);
}
}
relazNodel (struct node req, Graph hgraph, Collection pred[struct node]) {
Point (hgraph) pl;
struct node temp;
temp=req;
pl=temp.nl;
foreach( ¢ In p1.outnbrs ){
int weight=hgraph.get Weight(p1,t);
relaxEdge(t,hgraph,pl,weight,pred);
}
}
int main(int arge,char *argvf]) {

hgraph.addPointProperty(dist,int);

Point (hgraph) p;

hgraph.read(argv(3]);

pred.OrderByInt Value(w,10);

foreach(t In hgraph.points)t.dist=1234567890;

p=nhgraph.points[0];

hgraph.points[p].dist=0;

foreach( t In p.outnbrs ){
int weight=hgraph.get Weight(p,t);
relaxEdge(t,hgraph,p,weight,pred);

}

foreach(t In pred)relaxNodel(t,hgraph,pred);

int maxdist=0;

for( int i=0;i<hgraph.npoints;i++ ){

‘ if (hgraph.points|i].dist >maxdist )maxdist=hgraph.points|i].dist;

printf(“MAX DIST=%d \n”, maxdist);
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Algorithm 82: Worklist Based SSSP in Falcon

1 int changed=0, colllcnt=0, coll2cnt=0,hchanged;
2 relaxgraph(Point p,Graph graph, Collection colll[Point(graph)] ,Collection coll2[Point(graph)] ,
int val) {
3 int ch;
4 foreach( t In p.outnbrs ){
5 int newdist=graph.get Weight(p,t);
6 if( t.dist>newdist+p.dist ){
7 MIN(t.dist,newdist+p.dist,ch);
8 coll2.add(t);
9 changed=1;
10 }
11 }
12 }
13 SSSP(char *name) {
14 Graph graph;
15 graph.addPointProperty(dist,int);
16 int xx=0,temp=0;
17 graph.read(name);
18 Collection colll[Point(graph)],coll2[Point(graph)],coll3[Point(graph)];
19 foreach(t In graph.points)t.dist=1234567890;
20 colll.add(graph.points|0]);
21 graph.points|[0].dist=0;
22 foreach(t In colll)relaxgraph(t,graph,colll,coll2,xx);
23 while( 7 ){
24 changed=0;
25 coll3=coll1;
26 colll=coll2;
27 coll2=coll3;
28 temp=coll2.size;
29 colll.size=temp;
30 temp=0;
31 coll2.size=temp;
32 foreach(t In colll)relaxgraph(t,graph,colll,coll2,xx);
33 if(changed==0)break;
34 }
35 int maxdist=0;
36 for( int i=0;i<graph.npoints;i++ ){
37 ‘ if(maxdist <graph.points|i].dist) maxdist=graph.points][i].dist;
38 }
39 printf(“MAXDIST=%d \n” ,maxdist);
40 }

41 int main(int argc, char *argvf]) {
4 ‘ SSSP(argv[1]);
43 }

N
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8.3.2 BFS in Falcon

Algorithm 83: BFS code in Falcon

1 int changed=0;

2 BFS(Point p,Graph graph) {

3 ‘ foreach(t In p.outnbrs)MIN(t.dist,p.dist+1,changed);
4

5 main(int arge, char *namef]) {

6 Graph hgraph;

7 hgraph.addPointProperty(dist,int);

8 hgraph.read(name[l));

9 foreach(t In hgraph.points)t.dist=1234567890;
10 hgraph.points[0].dist=0;

11 while( 7 ){

12 changed=0;

13 foreach(t In hgraph.points)BFS(t,hgraph);
14 if(changed==0)break;

15 }

16 for(int i=0;i<hgraph.npoints;i++)

17 printf(“%d\n” ,hgraph.points[i].dist);

18 return;

19 }

Algorithm 84 shows the optimized BFS code in Falcon. There is not much difference
from code for BFS given in Algorithm 83. Here code is optimized for running time. In first
invocation of relazgraph() only source node will reduce dist value of its neighbours as foreach
call is with the condition (t.dist == leve) (Line 18, Algorithm84) . If we say in other words the
i" invocation will reduce distance of neighbours of nodes whose distance value is (i — 1). So
we make foreach call to have a conditional to make sure that no unwanted computation take
place and there is no atomic operations in the code. This will produce correct output and will

run faster.
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Algorithm 84: Atomic free Optimized BF'S code in Falcon

1 int changed=0,lev=0;

2 BFS(Point p,Graph graph) {

3 foreach( t In p.outnbrs ){

4 if( t.dist>p.dist+1 ){

5 t.dist=p.dist+1;

6 changed=1;

7 }

s | }

0 }

10 main(int arge, char *namef]) {

11 Graph hgraph;

12 hgraph.addPointProperty(dist,int);

13 hgraph.read(name[1));

14 foreach(t In hgraph.points)t.dist=1234567890;
15 hgraph.points[0].dist=0;

16 while( 7 ){

17 changed=0;

18 foreach(t In hgraph.points)(t.dist==lev)BFS(t,hgraph);
19 if(changed==0)break;

20 lev++;

21 }

22 for(int i=0;i<hgraph.npoints;i++)printf(“%d\n” hgraph.points[i].dist);
23 return;

24 }
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8.3.3 MST code in Falcon

The worlist based algorithm uses FalconCollection data type. The Collection gets converted
to Galois: :InsertBag data structure, which is a worklist. This code will be converted to a

code similar to the one which can be found in Galois-2.2 Boruvka MST code.
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Algorithm 85: Boruvka MST (all targets partl
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24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

struct node{
int lock,weight;
Point set,src,dst;
};
int hchanged, changed;
void reset(Point p, Graph graph,Set set/[Point(graph)]) {
p.minppty.set.reset();//reset sets value to with MAX_INT
p.minppty.src.reset();//replaced with reset()
p.minppty.dst.reset();//replaced with reset()
p-minppty.weight=99999999;
p-minedge=99999999;
p-minppty.lock=0;
}
void minset(Point p, Graph graph,Set set[Point(graph)]) {
int ch;
Point (graph) t1;
Point (graph) t2;
foreach( t In p.outnbrs ){
t1=set.find(p);
p-minedge=99999999;
t2=set.find(t);
if( t1/=t2 ){
MIN(t1.minppty.weight,graph.get Weight(p,t),ch);//find minimum edge out going
from t1
MIN(t2.minppty.weight,graph.get Weight(p,t),ch);//find minimum edge out going
from t2.
}
}
}
void mstunion(Point p,Graph graph,Set set[Point(graph)]) {
Point (graph)tl,(graph)t2;
int t3,t4;
t1=set.find(p);
t2=t1.minppty.set;t3=t1.minppty.lock;t4=t2. minppty.lock;
if( t1!=t2 66 t3==1 ){
set.Union(t1,t2);
changed=1;
}
}
initmark(Edge e, Graph graph {
| e.mark=999999999;
}
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Algorithm 86: Boruvka MST (all targets) part2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

void Minedge(Point p,Graph graph,Set set[Point(graph)]) {
Point(graph) t1,(graph)t2;

int t3;

Edge (graph) e;

foreach( t In p.outnbrs ){

t1=set.find(p);

t2=set.find(t);

t3=graph.getWeight(p,t);

if( t1/=t2 ){

if( t3==t1.minppty.weight ){

single( t1.minppty.lock ){
e=graph.getedge(p,t);
e.mark=true;////add edge to mst
t1.minppty.src=p;
t1.minppty.dst=t;
t1.minppty.weight=t3;
t1.minppty.set=t2;

}
}
f( t3==t2.minppty.weight ){
single( t2.minppty.lock ){
e=graph.getedge(p,t);
e.mark=true;////add edge to mst
t2.minppty.src=p;
t2.minppty.dst=t;
t2.minppty.weight=t3;
t2.minppty.set=t2;

e
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Algorithm 87: Boruvka MST (all targets) part3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

int main(int argc,char *argv[]) {

Graph hgraph;

hgraph.addPointProperty (minppty,struct node);
hgraph.addEdgeProperty(mark,bool);
hgraph.addNodeProperty(minedge,int);
hgraph.getType() graph;

hgraph.read(argv([1]);

Set hset[Point(hgraph)],set[Point(graph)];
graph=hgraph;

set=hset;

foreach(t In graph.edges)initmark(t,graph);

while( 1 ){

changed=0;

foreach(t In graph.points)reset(t,graph,set);
foreach(t In graph.points)minset(t,graph,set);
foreach(t In graph.points)Minedge(t,graph,set);
foreach(t In graph.points)mstunion(t,graph,set);
if (changed==0)break;

}

hgraph.mark=graph.mark;
unsigned long int mst=0;
foreach( t In hgraph.edges ){
‘ if (t.mark==1)mst=mst+t.weight;
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Algorithm 88: Worklist based MST in Falcon for CPU device partl
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12

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Graph hgraph;
Set hset[Point(hgraph)];
struct node{ Point (hgraph) src,Point (hgraph) dst;
int weight;
b
int glimit,int bent;
struct workitem{
Point (hgraph) src,Point (hgraph) dst;
int weight,int cur;
};
Collection WL1[struct workitem],WL2[struct workitem]|, WL3[struct workitem],WL4[struct
workitem)];
Collection mst[struct node],*current[struct workitem|,*next[struct workitem|,*pending[struct
workitem)];
Collection *temp[struct workitem];
findLightest(struct workitem req, Graph hgraph, Collection pred [struct workitem], Collection
next[struct workitem], Collection pending[struct workitem/,int useLimit,Set hset[Point(hgraph)])
{
struct workitem reql=req;
Point (hgraph) src=reql.src;
int cur=reql.cur;
foreach( t In src.outnbrs ){
int weight=hgraph.get Weight(src,t);
if( useLimit &€ weight> glimit ){
struct workitem tt;
tt.src=src; tt.dst=t; tt.weight=weight; tt.cur=cur;
pending.add(tt);
return;
}
Point (hgraph) rep=hset.find(src);
Point (hgraph) dst;
int old,ch;
if( rep/=hset.find(t) ){
struct workitem tt;
tt.src=src;tt.dst=t;tt.weight=weight;tt.cur=cur;
next.add(tt);
while(weight <(old=hgraph.points[rep].minedge)){ MIN(rep.minedge,weight,ch);
} return;
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Algorithm 89: Worklist based MST in Falcon for CPU device part2

1 findLightest1 (struct workitem req, Graph hgraph, Collection pred [struct workitem],Set
hset[Point(hgraph)]) {

2 Point (hgraph) src=req.src;

3 Point (hgraph) rep=hset.find(src);

4 int cur=req.cur;

5 if( rep<hgraph.npoints €€ hgraph.points[rep].minedge==req.weight ){
6 Point (hgraph) dst=req.dst;

7 if( dst<hgraph.npoints €€ (rep=hset. Union(rep,dst)) ){
8 hgraph.points[rep|.minedge=1234567890;

9 struct node tt;

10 tt.src=src;

11 tt.dst=dst;

12 tt.weight=reql.weight;

13 mst.add(tt);

14 }

15 }

16 }
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Algorithm 90: Worklist based MST in Falcon for CPU device part2

1 findLightest2(Point p,Graph hgraph,Collection pred [struct workitem], Collection next[struct
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workitem/, Collection pending[struct workitem/,int useLimit,Set hset[Point(hgraph)]) {
struct workitem req;

req.sre=p;

req.cur=0;

findLightest(req, hgraph,pred,next, pending, useLimit, hset);

}
int main(int arge,char *argvf]) {

hgraph.addPointProperty(minedge,int);

int a;

hgraph.read(argv(3]);

Set hset[Point(hgraph)];

for(int i=0;i<hgraph.npoints;i++)hgraph.sortEdges(i);

olimit=2000;

current=&WLI;

next=&WL2;

pending=& WL3;

int bent=0;

for(int i=0;i<hgraph.npoints;i++){ hgraph.points|i]. minedge=1234567890;

} foreach(t In hgraph.points)findLightest2(t,hgraph,*current,*next,*pending,bent,hset);
bent=1;

while( 1 ){

while( 7 ){

foreach(t In *current)

findLightest1(t,hgraph,*current,hset);

temp=current;current=next; next=temp;

foreach(t In *current)

findLightest(t,hgraph,*current,*next,*pending,bent, hset);

if (*next.empty())break;

}

temp=current;current=pending; next=temp;
if (*pending.empty())break;
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