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SUMMARY

Clustered architecture processors are preferred for embedded systems because
centralized register file architectures scale poorly in terms of clock rate, chip area,
and power consumption. Scheduling for clustered architectures involves spatial concerns
(where to schedule) as well as temporal concerns (when to schedule). Various clustered
VLIW configurations, connectivity types, and inter-cluster communication models
present different performance trade-offs to a scheduler. The scheduler is responsible
for resolving the conflicting requirements of exploiting the parallelism offered by the
hardware and limiting the communication among clusters to achieve better performance.

In this paper, we describe our experience with developing a pragmatic scheme and also
a generic graph matching based framework for cluster scheduling based on a generic and
realistic clustered machine model. The proposed scheme effectively utilizes the exact
knowledge of available communication slots, functional units, and load on different
clusters as well as future resource and communication requirements known only at
schedule time. The proposed graph matching based framework for cluster scheduling
resolves the phase-ordering and fized-ordering problem associated with earlier schemes for
scheduling clustered VLIW architectures. The experimental evaluation in the context of
a state-of-art commercial clustered architecture (using real-world benchmark programs)
reveals a significant performance improvement over the earlier proposals which were
mostly evaluated using compiled simulation of hypothetical clustered architectures. Our
results clearly highlight the importance of considering the peculiarities of commercial
clustered architectures and the hard-nosed performance measurement.
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1. Introduction

Proliferation of embedded systems has opened up many new research issues. Design challenges
posed by embedded processors are ostensibly different from those offered by general purpose
system. Apart from very high performance they also demand low power consumption, low cost,
and less chip area to be practical.

Instruction-level-parallel architectures have been developed to meet the high performance
need. These architectures exploit the abundant fine-grained instruction-level-parallelism
(ILP)[25] available in embedded applications to satisfy their high performance requirements.
Superscalar architectures[13] and very long instruction word (VLIW)[9] architectures are two
traditional ILP design philosophies[25]. Both superscalar and VLIW processors have multiple
pipelined functional units, which are connected to a single unified register file in parallel to
attain better performance. A superscalar processor[13] uses dedicated hardware for scheduling
instructions at run time and employs a branch predictor to avoid pipeline stalls that occur in
the event of control transfer. However, it suffers from problems such as complicated design,
large chip-area, and high power consumption attributed to complicated runtime scheduling
logic[22].

A VLIW architecture[9] gets rid of scheduling hardware and associated problems by
exposing instruction latencies and delegating the task of scheduling to a compiler. High
operation rates as required by emerging real time embedded applications can be attained
by increasing the number of parallel functional units in a VLIW architecture. However, as
the number of arithmetic units in a processor increases to higher levels, register storage and
communication between arithmetic units become critical factors dominating the area, cycle
time, and power dissipation of the processor. The cycle time is determined by the sum of wire
delay and gate delay along the critical execution paths of a processor pipeline. Wire delays
have become significant for the 0.25 micrometer CMOS process generation and centralized
monolithic architectures (both superscalar and VLIW) which use long wires for connecting
spatially separated resources may not benefit from the advancements in semiconductor
technology[19][11].

A clustered VLIW architecture[4][8][6] has been proposed to overcome the difficulties
with centralized architectures and to make them suitable for use in embedded systems. A
clustered VLIW architecture[6] has more than one register file and connects only a subset of
functional units to a register file. Groups of small computation clusters can be interconnected
using some interconnection topology and communication can be enabled using any of the
various inter-cluster communication models[28]. Clustering avoids area and power consumption
problems of centralized register file architectures while retaining high clock speed which can be
leveraged to get better performance. Texas Instrument’s VelociTI[12], HP/ST’s Lx[7], Analog’s
TigerSHARC[10], and BOPS’ ManArray[23] are examples of the recent commercial clustered
micro-architectures.

Though clustering enables higher clock speed, it also incurs overheads in terms of execution
cycles and code size. The inter-cluster communication delays are governed by spatial
distance between communicating clusters, as well as the latency and the bandwidth of the
interconnection mechanism[28]. High quality partitioning/scheduling of computation among
clusters is of paramount importance in order to reduce the clustering overheads and to achieve
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better performance on such an architecture. The problem of scheduling becomes harder in the
context of clustered architectures because a scheduler is required to decide not only when to
schedule (temporal concern) but also where to schedule (spatial concern) because scheduling an
instruction at a spatial location affects temporal and spatial scheduling decisions of instructions
dependent on this instruction. Furthermore, different clustered datapath configurations,
connectivity types, and inter-cluster communication (ICC) models[28] that have been proposed
exacerbate the cluster scheduling problem by presenting different performance trade-offs to the
scheduler in terms of code size and execution time. Essentially, effective scheduling on such an
architecture demands meeting the conflicting goals of exploiting hardware parallelism as well
as minimizing communication among clusters.

In this paper, we propose a pragmatic scheme and a generic graph matching based framework
for integrated spatial and temporal scheduling of clustered architectures[20][20]. We target a
generic and realistic clustered machine model (which is derived from commercial clustered
architectures) than the model used in earlier proposals. An experimental evaluation of the
proposed framework and some of the earlier proposals is presented in context of a state-of-art
commercial clustered architecture. More specifically, the major contributions of this paper can
be stated as follows:

e We propose a pragmatic scheme for integrated scheduling of clustered architectures. The
proposed scheme effectively utilizes the exact knowledge of available communication
slots, functional units, and load on different clusters as well as future resource and
communication requirements known only at schedule time to attain approximately 24%
and 11% performance improvement without code size penalty over an earlier phase-
decoupled[15] and phase-coupled[21] approach to scheduling respectively. This is a purely
heuristic based, fast, and low-overhead algorithm.

e We propose a generic graph matching based framework (developed on the basis of
insight gained during the development of the integrated scheme) for scheduling clustered
architectures that resolves the phase-ordering and fixed-ordering problem associated with
scheduling clustered VLIW architectures by simultaneously considering various temporal
and spatial scheduling alternatives of instructions. Our graph-matching based scheduler
attains approximately 28.5% and 16% performance improvement over an earlier phase-
decoupled[15] and phase-coupled[21] approach to scheduling respectively. The proposed
framework is generic in terms of number of clusters and numbers and types of functional
units in each cluster and requires only slight tweaking of heuristics to get optimal
performance for different clustered VLIW configurations and ICC models. The overheads
of the graph matching based framework are comparatively higher (but not impractical)
than the integrated scheme.

e We have implemented the above two proposals and some of the earlier
proposed algorithms for scheduling clustered architectures on the Texas instruments’
VelociTI architecture[12], a state-of-art production clustered architecture, using
SUIF /MACHSUIF[2][1] compiler framework. We present a detailed performance analysis
based on experimental evaluation of these algorithms. To the best of our knowledge, this
is the first step towards hard-nosed evaluation of different approaches to scheduling on
clustered architectures.

3



!

The rest of the paper is organized as follows. Section 2 describes problem of cluster scheduling
as well as our machine model. Section 3 presents related work in the area and a description
of how our work contrasts with the related work. In section 4, we describe our integrated
scheduling algorithm[20]. Section 5 presents our graph matching based scheduling framework.
Section 6 describes our experimental setup, performance results, and a detailed comparative
evaluation of proposed and some of the earlier algorithms based on performance results. We
conclude in section 7 with some directions for the future extensions of this work.

2. The Problem Description

The problem of scheduling becomes harder in the context of clustered architectures
because a scheduler has to decide not only when to schedule (temporal concern) but
also where to schedule (spatial concern). Moreover, scheduling an instruction at a spatial
location affects temporal and spatial scheduling decisions of instructions dependent on this
instruction. In general, the wrong spatial assignment has much higher cost than the wrong
temporal assignment. This is because of the recurring cost of communication and resource
contentions each time any dependent instruction is scheduled[17]. Thus a high quality
partitioning/scheduling of computation among clusters is of paramount importance in order
to inhibit the clustering overheads from compensating the benefits of better clock speed on a
clustered architecture.

Different clustered datapath configurations, connectivity types, and inter-cluster
communication (ICC) models[28] exacerbate the cluster scheduling problem by presenting
different performance trade-offs to the scheduler in terms of code size and execution time. For
example, the send-receive ICC model[28] (used in Hewlett-Packard Lx architecture[7]) requires
an explicit copy operation for ICC and thus some of the issue slots are occupied by a ICC copy
operation and this may lead to delay in the scheduling of other operations as well as increase
in overall code size. A Scheduler for an architecture supporting a send-receive ICC model
needs to reduce the communication among clusters without stretching the overall schedule
length in order to reduce code size and to make available more free slots for other instructions.
On the other hand, an implementation of the extended operand ICC model (used in Texas
Instruments VelociTI architecture [26]) attaches a cluster id field with some of the operands
and this allows an instruction to read some of operands from register files of other clusters
without any extra delay. The extended operand ICC model reduces the register pressure as the
transferred value is not stored in the local register file but is consumed immediately. However,
reuse of transferred value is not possible. A scheduler can leverage the benefits of this model
by orchestrating the operations among clusters in such a way that the free ICC facility can
be utilized to the maximum extent. Minimizing the need for any explicit inter-cluster move
operation reduces the code size apart from reducing the register pressure and makes available
more free slots for other instructions. Only some of the functional units can read their operands
from other clusters and only some of the operands can have fields for specifying the cluster id.
These restrictions coupled with limited channel bandwidth add to the severity of efficiently
scheduling clustered processors. In addition, some instructions on clustered architectures can
be performed only on some specialized resources due to performance or correctness concerns.
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Since design and validation of a scheduler is a complicated and time consuming task, a generic
scheduler which can accommodate architecture specific constraints and can easily adapted to
different architectural variations is preferable.

2.1. The Machine Model

We target a generic clustered machine model based on recently developed commercial clustered
architectures. In our machine model a clusters can be homogeneous having identical functional
units and register file (like in VelociTI architecture[26]) or heterogeneous with different cluster
having a different mix of functional units and register file (like in HP Lx architecture[7]).
The connectivity among clusters can be full or partial. The functional units can vary in
terms of the their operational and communicative capabilities. Functional units may be made
of operational subunits each of which can execute a different kind of operation and there
may be more than one instance of each kind of functional unit. Hence an operation can be
performed on more than one type of resource and a resource can perform more than one kind
of operation. The inter-cluster communication model can vary. The architecture may even
have a hybrid communication model where some of the functional units can communicate
by snooping (reading) operands from the register file of a different cluster without any extra
delay (as in VelociTI architecture[26]), while communication among some of the clusters is
possible only through an explicit MV operation (as in HP Lx architecture[7]). Explicit MV
operation takes extra cycles to transfer a value from one register file to another register file
whereas snooping capability allows limited number of operands to be read from the register
files of another cluster in the same cycle. The major implementation cost of providing snooping
capability is the increase in the clock period. So, the number of cross-cluster reads is restricted
to say one. Snooping capabilities of functional units can be varied in terms of operands a
particular functional unit can snoop as well as particular clusters with which a function unit can
communicate using the snooping facility. Our machine model also incorporates architecture-
specific constraints typically found in clustered architectures. For example, some operations can
be performed only on some particular resources due to performance or correctness concerns.
This machine model enables us to design a generic and pragmatic framework which can
accommodate architecture-specific constraints and can be easily adapted to a variety of
clustered architectures differing in datapath configurations and/or communication models.
A detailed description of commercial clustered architectures on which we base our machine
model is available in associated technical report[20].

Formally, the problem of cluster scheduling can be described as follows. We are given a set
of operation types, a set of resource types, and a relation between these two sets. This relation
may not be strictly a mapping in general, since a resource can perform more than one kind of
operation and an operation can be performed on more than one kind of resource. There can
be more than one instance of each type of resource. Resource instances can be partitioned into
sets each one representing a cluster of resources. Given a data flow graph, which is a partially
ordered set (poset) of operations the problem is to assign each operation a time slot, a cluster,
and a functional unit in a chosen cluster such that the total number of time slots needed
to perform all the operations in poset are minimized while the partial order of operations is
honored and neither any resource nor the ICC facility is over committed.
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3. Related Work

Earlier proposals for scheduling on clustered VLIW architectures can be classified into two
main categories namely the phase-decoupled approach and the phase-coupled approach. We
briefly mention the earlier work done in both the directions and describe two approaches in each
category against which we directly compare our algorithm. We refer the reader to associated
technical report for a detailed description[20]

The phase-decoupled approach to scheduling works on a data flow graph (DFG) and
performs partitioning of instructions into clusters to reduce inter-cluster communication while
approximately balancing the load among clusters. The annotated DFG is then scheduled using
a traditional list scheduler while adhering to earlier spatial decisions. This approach is known
to suffer from phase-ordering problem.

Lapinskii et al.[15] have proposed an effective binding algorithm for clustered VLIW
processors. Their algorithm performs spatial scheduling of instructions among clusters and
relies on a list scheduling algorithm to carry out temporal scheduling. Instructions are ordered
for consideration using an ordering function with the following components

1. As late as possible scheduling time of instruction
2. Mobility of instruction
3. Number of successors of instruction

They compute the cost of allocating an instruction to a cluster using a cost function that takes
into account load on the resources and buses as well as cost of inter-cluster communication.
Though they have proposed a good cost function for cluster assignment, partitioning prior
to the scheduling phase takes care of the resource load only in an approximate manner. The
exact knowledge of load on clusters and functional units is known only while scheduling. This
inexact knowledge may lead to suboptimal schedules.

An integrated approach to scheduling tries to combat the phase-ordering problem by
combining spatial and temporal scheduling decisions in a single phase. The integrated approach
considers instructions ready to be scheduled in a cycle and the available clusters in some priority
order. The priority order for considering instructions is decided based on mobility, scheduling
alternatives, the number of successors of an instruction, etc.. Similarly the priority order for
considering clusters is decided based on the communication cost of assignment, earliest possible
schedule time. etc. An instruction is assigned a cluster to reduce communication or to schedule
it at the earliest. The proposals in this direction are due to Ozer[21], Leupers[18], Kailas[14],
and Zalamea[30].

Ozer et al.[21] have proposed an algorithm called unified-assign-and-schedule (UAS) that
does the combined job of partitioning and scheduling. They extend the list scheduling algorithm
with cluster assignment. After picking the highest priority node, a priority list of clusters is
formed using some priority heuristic. Each cluster in the prioritized list of clusters is examined
to determine whether the ready operation can be scheduled on it. After an available cluster is
found, the algorithm checks if any copy operations are required from the other clusters. If the
copies can be scheduled on their respective clusters in the previous cycles, the current operation
and associated copies are scheduled. A copy operation is needed when a flow dependent
predecessor of the operation being scheduled is scheduled on a different cluster. In such cases,
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the copy operation is attempted to be scheduled on the same cluster with the predecessors
operation in a cycle time with an interval of bus latency. They propose various ways of ordering
clusters for consideration such as

1. No Ordering. The cluster list is not ordered.

2. Random Ordering. The cluster list is ordered randomly.

3. Magnitude weighted predecessors (MWP). An operation can be placed into a cluster
where the majority of the input operands reside.

4. Completion weighted Predecessors (CWP). This gives higher priority to those clusters
that will be producing source operands for the operation, late in the schedule.

3.1. Our Proposals

Earlier proposals for scheduling on clustered architectures are specific about a particular inter-
cluster communication model and mostly target architectures that support ICC using an
explicit MV operation. However, modern commercial clustered processors also provide limited
snooping capabilities. The restrictions related to snooping capabilities add to the severity of
efficiently scheduling on modern clustered architectures and these have not been addressed by
the earlier proposals. More specifically, our work differs from the earlier work in the area in
the following ways :

e We target a more generic and realistic machine model (derived from commercial clustered
architectures) than the one used by the earlier proposals.

e We perform an effective functional unit binding which we found is very important in
the case of generic and realistic machine model under consideration where resource and
communication constraints are tightly integrated and thus scheduling alternatives of
an instruction vary depending on resource and communication requirements of other
instructions ready to be scheduled in the current cycle. The proposed graph-matching
based scheduler finds the best binding of a set of instructions ready to be scheduled in
the current cycle among all possible scheduling alternatives. Thus it resolves the fized
ordering problem associated with earlier integrated algorithms.

e Our scheduling algorithms take into account future communication that may arise due to
a binding to resolve the common problem associated with earlier integrated scheduling
proposals that greedily reduce communication in the current cycle without considering
the future communication cost of a binding.

e Our experimental results are based on running scheduled and register allocated code for
a commercial clustered architecture rather than a compiled simulation of a hypothetical
clustered architecture as is the case with most of the earlier proposals.

4. Integrated Temporal and Spatial Scheduling Algorithm

In this section, we describe our pragmatic scheme for integrated scheduling of clustered
architectures[20]. The proposed scheme effectively utilizes the exact knowledge of available
communication slots, functional units, and load on different clusters as well as future resource

7



i

input: A dataflow graph

output: A triple (slot,cluster,unit) for each
instr.

var

ready_list : priority queue of instr.

1 : instruction under consideration
cluster_list : priority queue of clusters

¢ : cluster under consideration

fu_list : priority queue of functional units

u : functional unit under consideration

ready_list.init(G) B
while (Iready list.is.empty()) do current_comm  No. of snoops in the current cycle

while (lreadylist.allTried()) do future_.comm  No. of future comm. required
i « ready_list.dequeue () explicit_mv No. of MV in the earlier cycles

cluster_list.init (i)
¢ <= cluster_list.dequeue()
fu list.init(i,c)
u <= fulist.dequeue()
schedule (i, ¢, u)
if explicitMvNeeded(i, ¢, u)) then
scheduleExplicitMv(i,c,u)
end if
mark i as scheduled on unit u in cluster ¢
end while
readylist.update(G)
advanceCycle()
end while

Figure 2. Various Forms of Communications

Figure 1. Integrated Algorithm

and communication requirements known only at schedule time to attain approximately 24%
and 11% performance improvement without extra code size penalty over an earlier phase-
decoupled[15] and phase-coupled[21] approach to scheduling respectively.

4.1. The Algorithm

Our algorithm extends the standard list scheduling algorithm and includes following steps.

1. Prioritizing the ready instructions
2. Assignment of a cluster to a selected instruction
3. Assignment of a functional unit in the chosen cluster to a selected instruction

Figure 1 gives a very high level description of our algorithm. The algorithm consists of the
steps mentioned above inside two loops. The first loop continues the scheduling attempts until
all operations are scheduled, by incrementing the cycle after each iteration. The second loop
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ensures that each operation in the ready list is tried at least once in each cycle. In what follows,
each of these steps are described in detail in separate subsections.

4.1.1.  Prioritizing the Nodes

Nodes in the ready list are ordered by a three component ordering function. The three
components of ordering function are as follows :

1. Vertical mobility. Which is defined as the difference between the latest start time (LST)
and the earliest start time (EST) to schedule an instruction

2. Horizontal mobility. Which is defined as the number of different functional units capable
of executing the instruction

3. Number of consumers. Which is defined as the number of successor instructions
dependent on the instruction in the DFG

In a VLIW architecture, horizontal mobility of an instruction is indicative of the freedom
available in scheduling an instruction in a particular cycle. An instruction which is specific
about a particular functional unit should be given priority over one with many possible
scheduling alternatives.

The rationale behind using this three-component ordering function is as follows. The
instructions with less vertical mobility should be scheduled early and are given priority
over instruction with more vertical mobility to avoid unnecessary stretching of the schedule.
Instructions with the same vertical mobility are further ordered in decreasing order of their
horizontal mobility. An instruction with more number of successors is more constrained in the
sense, its spatial and temporal placement affects the scheduling of more number of instructions
and hence should be given priority.

4.1.2.  Cluster Assignment

Once an instruction has been selected for scheduling, we make a cluster assignment decision.
The primary constraints are

e The chosen cluster should have at least one free resource of the type needed to perform
this operation

e It should be possible to satisfy the communication needs for the operands of this
instruction on the cluster either by snooping the operands or by scheduling explicit
MYV instructions in the earlier cycles given the bandwidth of the channels among clusters
and their usage.

Selection of a cluster from the set the feasible clusters is done primarily based on
communication cost metric given below.

comm_cost = A x current_comm + B * future_.comm + C x explicit_mv (1)

The communication cost models proposed here is generic enough to handle different ICC
models or even a hybrid communication model where communication among clusters is possible
9
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by combination of different ICC models. The communication cost is computed by determining
the number and type of communication needed by a binding (refer Figure 4.1). explicit_mv take
care of communications that can be due to non-availability of snooping facility in a particular
cycle (because of cross-path saturation) or in the architecture itself. Only those clusters which
have enough communication slots and required resources for scheduling MV in the earlier
cycles are considered. current_comm is determined by number of operands that reside on a
cluster other than the cluster under consideration and can be snooped using the snooping
facility available in current cycle. future_comm is predicted by determining the successors of
this instruction which have one of their parents bound on a cluster different from the current
one. In case some of the parents of some successor are not yet bound, the calculation is done
assuming that it can be bound to any of the clusters with equal probability.

The selection of A, B and C is architecture specific and depends on available communication
options in a clustered architecture and their relative cost. We found that A=0.5, B=0.75 and
C=1.0 work well in practice for an architecture that has limited snooping facility available
such as Texas Instrument’s VelociTI[12]. In general the value of A, B and C are tuned based
on target architecture. Since explicit_mv is a pure overhead in terms of code size and register
pressure, it is assigned double the cost of the current_comm to discourage these explicit MVs
and favors snooping possibility in the cost model proposed. future_comm is also assigned a
smaller cost optimistically assuming that most of them will be accommodated in the free-
of-cost communication slot. The values of different constants can be changed to reflect the
ICC model under consideration. In case of a tie in the communication cost, the instruction is
assigned to a cluster where it can be scheduled on a unit least needed in the current cycle with
the same communication cost (further discussed in next subsection).

4.1.8.  Functional Unit Binding

Before Scheduling for a particular cycle begins, the ready list is preprocessed to generate the
resource need vector which contains the resource requirements of the instructions currently
in the ready list. This vector is updated with any changes in the ready list and is used as a
metric for effective functional unit binding. We select a functional unit which is least needed
in the current cycle, considering all the instructions in the ready list, and assign this unit to
the instruction under consideration. This avoids the situation where an instruction can not be
scheduled in the current cycle because a specialized resource needed by an operation later in the
ready list is not available due to a naive decision taken earlier. Since snooping capability can be
limited and only some of the resources may have capability to snoop both the operands from
other clusters, commutativity of operations such as ADD and MPY is exploited to preserve
such a resource as far as possible for prospective non-commutative instruction.

Instructions with same vertical mobility value but different horizontal mobility value are
presented in increasing order of horizontal mobility by the ordering function to help binding
of as many instructions as possible in the current cycle. Since some instructions may have
low vertical mobility, they are presented earlier for scheduling consideration despite their high
horizontal mobility. Due to limitations on operand snooping capabilities of functional units, an
instruction may require snooping a particular operand while none of the free functional units
available has capability to snoop the desired operand. Our algorithm handles such situations
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by shuffling functional units already bound to instructions in the current cycle and free units
available. If possible we bind an instruction (which is already scheduled) to alternative units
and make a unit free with the desired capability for the instruction under consideration.

It may be noted that a blind allocation of functional units may lead to stretched schedules.
A blind allocator may allocate an operation to a unit with some special capability while it
could have been scheduled on an alternate free unit.

4.2. Scheduler Description

Initially the DFG is preprocessed and various DAG properties like EST, LST and mobility
of each of the node are computed. This is followed by initialization of the ready list with the
root nodes of the graph. The ready list also has an associated resource vector which is used
to keep track of the approximate resource requirements of the nodes currently in the ready
list. The enqueue method of ready list imposes a priority on nodes using a three component
priority function described above. The dequeue method simply returns the next untried node
(operation) from the priority ordered ready list and this node is then used to initialize a priority
list of clusters on which an instruction can be scheduled in the current cycle. Dequeue method
of prioritized cluster list returns the highest priority cluster. The selected cluster and the node
are then used to select feasible functional units on the cluster for scheduling the instruction
under consideration. The dequeue method of the functional unit list returns the least needed
resource in current cycle for binding the instruction. Any explicit MV operation if needed in
an earlier cycle is now scheduled. The cluster initialization routine guarantees that the free slot
for an explicit MV operation if needed, is available before putting the cluster in the feasible
cluster list. If an operation cannot be scheduled on any cluster the operation is marked as tried
and the next operation is considered. Once all the operations have been considered the cycle
counter is advanced and ready list and the resource need vector are updated with operations
which are now ready for scheduling.

4.3. An Example

In this section we present an example to demonstrate the benefit of integrating scheduling
decisions for extended operand clustered processors to achieve high performance without severe
code size penalty. Figure 3 is a partial DFG typical of a DSP application. Figures 4, 5, and 6
present the schedule generated by our integrated scheduler, a possible schedule using UAS|[21].
and schedule possible using the pre-partitioning scheme[15]. respectively.

We consider the TMS320C6X architecture. The maximum number of instructions that can
be executed in a cycle are 8 and the hardware provides 1 communication in each direction
per cycle without any extra cost. Assume that the earlier scheduling decisions were such that
instructions producing V2239, V1260, V106, V67, V1242 and V1230 are bound to cluster 1
while instructions producing V70, V90, V1195, V103 and V1254 are bound to cluster 2.

Our scheme tries to schedule as many instructions as possible in the current cycle while
minimizing the need for communication in the current as well as future cycles. Wherever
possible, free-of-cost communication is used to exploit the available ILP. Commutativity of
operations such as ADD and MPY is exploited wherever possible to combat the limitations in
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Figure 3. Partial DFG of a Media Application
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Figure 4. Integrated Scheduled

1.Scheduled in an earlier cycle
2.Second operand of D unit is
specified first

Figure 5. UAS-MWP Schedule
12

2.6/|ADD .D1 V1242,V65,V95

3.1| MV .L2X V89,V149
3.2|| MV .L1X V103,V150

AMPY .M2X V1231,V109,V1273
.2/|ADD .D2 V107,V171,V114

| ADD.D1 V109,V108,V115

| SUB .L1 V109,V108,V116

| ADD .L2 V149,V1231,V100

| SUB .82 V107,V171,V119

| SUB.S1X V150,V102,V118

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Figure 6. Pre-partitioning Schedule
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snooping capability of functional units. The ordering function proposed together with the
systematic functional unit binding mechanism enable packing of as many instructions as
possible in each cycle.

The pre-partitioning scheme[15] tries to assign clusters in such a way as to reduce the
communication while trying to balance the load among clusters. Finally, our temporal scheduler
is used to map functional units to the instructions in the cluster assigned by the partitioner.
In our implementation of the pre-partitioning scheme we prefer to snoop operands wherever
possible to assure fairness in comparison with our integrated approach.

UAS algorithm with MWP heuristic for cluster selection[21] assigns an instruction to a
cluster where most of the predecessors of the instruction reside. However the MWP heuristics
does not take into account the future communication cost of a binding. UAS algorithm
as proposed by Ozer et al. does not propose any particular priority order for considering
instructions. There is also no notion of functional unit binding in the scheme proposed by
Ozer et al. A detailed description and analysis of schedule generated by different algorithms
is available in associated technical report[20]

5. A Graph Matching Based Integrated Scheduling Framework

Our integrated algorithm presented in last section is still not free from the curse of
the fized-ordering problem and may make a decision which may miss the opportunity to
accommodate an instruction in a cycle which may otherwise be possible by exercising different
scheduling alternatives for instructions. In this section, we describe our generic graph matching
based framework for scheduling clustered architectures that resolves the phase-ordering and
fized-ordering problems associated with scheduling clustered VLIW architectures[20]. Graph
matching based scheduler further improves over the integrated algorithm by considering
all the possible scheduling alternatives obtained by varying communication options, spatial
locations, and resource usage simultaneously, instead of following a fixed order. The scheduler
simultaneously selects the alternatives for instructions to be scheduled in the current cycle
while exploiting the communication facility and parallelism offered by the hardware. A cost
function composed of various dynamically varying factors such as communication cost, freedom
available in scheduling the instruction, and uncovering factor® of the instruction is used to select
from scheduling alternatives for instructions competing for limited resources while scheduling
maximum number of instructions in each cycle. The framework provides a mechanism to
exploit the slack of instructions by dynamically varying the freedom available in scheduling an
instruction and hence the cost of scheduling an instruction using different alternatives to reduce
the inter-cluster communication without affecting the overall schedule length. It considers the
possible mapping of instructions to resources in different clusters and can easily accommodate
architecture-specific constraints typically found in clustered architectures. Our graph-matching
based scheduler attains approximately 28.5% and 16% performance improvement over an

§ We define uncovering factor of an instruction as the number of instructions dependent on this instruction.
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earlier phase-decoupled[15] and phase-coupled[21] approach to scheduling respectively. The
proposed framework is generic in terms of number of clusters and numbers and types of
functional units in each cluster and requires only slight tweaking of heuristics to get optimal
performance for different clustered VLIW configurations and ICC models.

5.1. The Algorithm

Algorithm 1 Graph Matching Based Spatial and Temporal Scheduling Algorithm

input: A dataflow graph G
output: A triple (slot,cluster,unit) for each node in G
var
readylist : List of nodes (instructions)
L=G.findScheduleLatencyForBaseVLIW();
G.preProcess(L);
ready_list.init(G)
while (!ready_list.is_.empty()) do
M=createMatchingGraph(readylist)
C=M.solveMinimum CostIntLP()
S=M.solveMaxNodeIntLP(C)
while (!S.is_.empty()) do
E=S.remove()
(i,u,c)=(E.node, E.unit, E.cluster)
if ('rejectBasedOnCommunication AndMobility(i)) then
if explicitMvNeeded(i,u,c) then
scheduleExplicitMv(i,u,c)
end if
schedule instruction i on unit u in cluster c
end if
end while
readylist.update(G)
advanceCycle()
end while

Our graph matching based scheduler considers the instructions which are ready to be
scheduled in each cycle and creates a bipartite graph with nodes as instructions and resources
in all clusters. An edge connecting an instruction node and a resource node represents a
possible scheduling alternative for the instruction. There are no edges connecting any two
instruction nodes and any two resource nodes. There can be more than one edge between
an instruction and a resource. This is because there can be more than one alternative by
which we can transfer the operands from other cluster to the target cluster (snooping, explicit
MYV, or combination of both) and these alternatives will vary in cost. Each edge is assigned
a cost determined by a cost function and the information regarding usage of cross-paths. The
cost of an edge is composed of various factors that contribute to the priority of scheduling
an instruction in the current cycle over other instructions. Contribution of these factors and
hence the cost of scheduling an instruction using an alternative is dynamically varied from
one cycle to another. We then formulate and solve a minimum cost feasible matching problem
for this graph using an integer linear programming (IntLP) solver[3]. The solution gives the

14
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minimum cost feasible scheduling alternatives for the given graph. It should be noted that
different factors determining the cost of binding are changed dynamically to make scheduling
decisions with precise information available at the time of scheduling a set of instructions.
The communication cost factor also becomes accurate from one cycle to another (as more
and more parents of successors are scheduled). So, the cost of a real edge can be equal to
the sum of two or more edges. Thus, a second problem is set up such that the space of all
feasible matchings having the cost same as that of the minimum cost previously obtained
is searched and its solution maximizes the number of instructions in the match. Instruction
are considered for scheduling using the alternative dictated by the selected match. To further
reduce the communication and associated overheads, some of the instructions in the final
match incurring high communication overheads but possessing enough scheduling freedom can
be delayed for consideration in later cycles. Algorithm 1 gives a very high level description of
our algorithm. Next we describe each of these steps in detail in separate subsections.

5.1.1. Measuring Instruction Freedom

Freedom available in scheduling an instruction is defined as the difference between the latest
and the earliest time an instruction can be scheduled without stretching the overall schedule
length. In general values of freedom of instructions are calculated assuming an infinite
resource machine thus ignoring all the resource constraints because the exact measurement
of instruction freedom in a resource constrained scenario is equivalent to finding an optimal
schedule and hence is NP-complete. However, this leads to a very pessimistic calculation of
freedom because delay due to limited resources is not taken into account. A better estimate
of instruction freedom is important for efficient binding and exploring the trade-off in code
size and performance. For better estimation, we first schedule on an unclustered base VLIW
processor with the same data path configuration but ignoring all communication delays.
Scheduling on the base VLIW configuration is carried out using the same matching-based
scheduler. The cost function used for scheduling on the base VLIW processor is the same as
the one given in Figure 8 but does not include any communication cost factor and hence B
is set to zero. Since in general the best schedule that can be obtained on a clustered VLIW
processor will be of the same length as that of the base VLIW processor, these freedom values
incorporating resource constraints can be used without any disadvantage while scheduling on
the clustered VLIW processors.

5.1.2. The Graph Construction

Algorithm 2 gives an outline of the graph construction. The graph construction process
creates a bipartite matching graph that consists of a set of instruction nodes including all the
instructions in the ready list and a set of resource nodes including all the resources in all the
clusters. An instruction node is connected with a resource node if it is possible to schedule
the instruction on the resource. Each edge is associated with a cost computed using the cost
function and a communication vector which are described later. A more detailed description
of graph construction is available in associated technical report[20]

15



E

Algorithm 2 QOutline of Graph Construction Algorithm

tnput: A readylist of nodes

output: A matching graph M

var

ready_list : List of nodes (instructions)
while (!ready-list.is_.empty()) do

for each instruction i in the readylist do
for each resources r in the all the cluster do
for each communication and computation alternative a for scheduling instruction i on resource r do
c=findCost(i,r,a)
t=findCommunicationVector(i,r,a)
add an edge between instruction i and resource r with the cost ¢ and communication vector t
end for

end for

end for
end while

5.1.3.  IntLP formulation of Graph Matching Problem

Once all the possible scheduling alternatives for instructions ready to be scheduled in the
current cycle are encoded in the matching graph, we face the problem of finding a feasible
minimum cost match while scheduling as many instructions as possible in the current cycle.
Though the traditional graph matching problem has a polynomial solution, the additional
cross-path constraints which require an integer solution may make this graph matching problem
an NP-complete problem (formal proof of this is part of our future work). We have formulated
the problem as a sequence of two IntLP problems. The first IntLP problem finds a feasible
minimum cost match. The second IntLP problem maximize the number of non-dummy nodes
matched for the minimum cost obtained by solving the earlier problem. Formulating the
problem as an ILP and solving it using an ILP solver also provides the freedom of adding
other complex architecture specific constraint, if required, while porting the scheduler to some
new architecture. A formal specification is depicted in Figure 7

The objective function and feasibility constraints for the first problem can be stated as
follows:

1. Minimize the cost of final match

Every instruction is assigned to at most one resource or no resource at all

3. All the resources are assigned some instruction or other (guaranteed because the graph
is complete)

4. Cross-path usage of the final match does not exceed the cross-path bandwidth for any
of the cross-path

»o

16



"

Table I. Notations Used in ILP formulation
Set of ready instructions

I
9 An individual instruction

R Set of all resources {L1,51,D1,M1,1.2,S2,D2,M2}

T An individual resources

A(i,r)  Set of all alternative for scheduling instruction i on resource r

a An individual alternative

M, Boolean Match variable for scheduling i on r with alternative a
cl. Cost of scheduling i on r with alternative a

T, Cross path usage for pt* cross-path while scheduling

i on r with alternative a
N, Bandwidth of p** cross-path

X Set of all cross-paths

Cmaz Cost of dummy edge

C Cost of matching

NE Number of real edges in the matching

The objective function and feasibility constraints for the second problem can be stated as
follows:

1. Maximize the number of real edges in the final match

2. Total cost of final match is not more than minimum cost of matching obtained by solving
the first IntLP

3. Every instruction is assigned to at most one resource or no resource at all

4. All the resources are assigned some instruction or other (guaranteed because the graph
is complete)

5. Cross-path usage of the final match does not exceed the cross-path bandwidth for any
of the cross-path

5.1.4. The Cost Function

The cost function computes the cost of scheduling an instruction on a resource using a given
communication alternative. Some important parameters deciding the cost are mobility of
the instruction, number and type of communication required and uncovering factor of the
instruction. As we mentioned earlier, a better estimate of the mobility of instructions is
obtained by first scheduling on a base VLIW configuration since mobility of an instruction
plays an important part in making scheduling decisions for the instruction. The mobility
of an instruction is further reduced by a * (current_time — V.ST) when an instruction is
entered into the ready list, where VST is the time of scheduling this instruction on a
base VLIW configuration. This reduction helps in further refining the estimate of freedom
available in scheduling the instruction by taking into account the delay introduced due
17
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Figure 7. IntLP Formulation of The Problem

to ICC in the partial schedule generated so far. After each cycle the mobility of each
instruction left in the ready list is reduced by a factor § to reflect the exact freedom left
in scheduling each instruction in the next cycle. The communication cost models proposed
here is generic enough to handle different ICC models. Communication vector is composed of
triple (explicit_mu,current_comm,future_comm,), the component of which are same as the one
described in section 4.1.2.

The final cost function combines together the cost due to various factors. Since the problem
has been formulated as a minimum cost matching problem, alternatives with smaller cost
are given priority over alternatives with higher cost. Communication factor is used to resolve
the resource conflict among alternatives having the same mobility, while mobility is used to
decide among alternatives having the same communication cost. Uncovering factor is given
relatively little contribution and is used for breaking ties in the cost function. The mobility
of an instruction reduces from one cycle to another to reflect the exact freedom available
in scheduling an instruction. As the available freedom in scheduling an instruction reduces,
its likelihood for selection in the final match increases. Once the mobility drops below zero,
instead of adding to the cost of an alternative it starts reducing the cost. Thus for instructions
which have consumed all the freedom, the communication cost become less important and this
further helps to increase their selection possibility. As more and more parents of successors
of an instructions get scheduled, the communication cost factor become more accurate and
it becomes more likely that the instruction will be scheduled in a cluster that reduces the
need for future communication. Figure 8 presents one set of values that we have used during
our experiments. The given values are for an architecture that has limited snooping facility
available and thus current_comm is given half the cost of explicit_mv. future_comm is also
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comm_cost=(X*current_comm*+Y*future_comm+Z*explicit_mv)/(MAX_COMM+1)
uncover_cost=(MAX_UNCOVER-uncovering_factor)/(MAX_UNCOVER-MIN_.UNCOVER+1)
mob_cost=mobility /(MAX_MOB+1)

cost=A*mob_cost + B*comm_cost+C*uncover_cost

where:

MAX_UNCOVER : Maximum of uncovering factors of instructions in the ready list
MIN_UNCOVER : Minimum of uncovering factors of instructions in the ready list
MAX_MOB : Maximum of mobilities of instructions in the ready list

MAX_COMM : Maximum of communication cost of any of the alternatives

a=1.00,8 =1.00,X = 0.5, Y = 0.75, Z = 1.00, A = 1.00, B= 1.00, C = 0.10

Figure 8. Cost Function

assigned a smaller cost, optimistically assuming that most of them will be accommodated in
the free-of-cost communication slot.

5.1.5.  Selective Rejection Mechanism

Since our algorithm schedules as many instructions as possible in each cycle, some of the
instructions with high communication overheads may appear in the final match depending
on the resource and communication requirements of other instructions being considered. For
example if there is only one ready instruction for a particular resource, the algorithm will always
decide to schedule it in the current cycle even if it possesses enough freedom and has high
communication overheads. Thus in order to further reduce the inter-cluster communication
and extra code added, scheduling of instructions having high communication cost and enough
freedom can be deferred to future cycles in the hope of scheduling them later using a less costly
alternative. The uncovering factor can also be used to decide the candidate to be rejected in
a better way. Selective rejection thus provides a mechanism to explore the trade-off in code
size and performance. We present the performance impact of using and not using selective
rejection in terms of execution time and code size in the next section.

5.2. An Example

Let us assume that the earlier scheduling decisions were such that the V2239, V1260, V106,
V1512, and V124 are bound to cluster 1 while V70, V90, V1195, V60, and V80 are bound
to cluster 2. Figure 9 lists the set of instructions ready to be scheduled in the current cycle.
Tables IT and III enumerate the scheduling alternatives possible for each instruction along
with the number of explicit MVs and snoops used by an alternative and future communication
that will arise by exercising the alternative. Scheduling alternatives for an instruction vary in
terms of functional unit and communication options used (explicit move, snooping facility or
19
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Meaning

E Explicit MVs

S Snoops
1. MVK 8,V109 F F‘utu.r(.a Communications

MF | Mobility Factor
2. MVK 9,147 UF | Uncovering Factor
3. MPY V70,V90,V1231 CF Corcr?r\ll'lunicgation Cost Factor
4. MPY V2239,V1260,V1243 TC Total Cost
5. MPY V70,V60,V243
6. ADD V1260,V1195,V65 . .
7. ADD V106,</70,V162 Figure 10. Legends used in Table II to Table V
8. ADD V1512,V60,V115 1 Integrated Algorithm (section 4)
9. SUB V124,V60,V112 gorith / . .
10.SUB V1924.V2939 V118 GM Graph Matching without Selective Rejection (section 5)

) 2 > GS Graph Matching with Selective Rejection (section 5)

11.SUB V1512,V80,V181 UAS Unified Assign and Schedule[21]

MWP | Magnitude Weighted Predecessors Ordering[21]
CWP | Completion Weighted Predecessors Ordering[21]

Figure 9. Ready Instructions ucC Unified Assign and Schedule with CWP[21]
UM Unified Assign and Schedule with MWP[21]
LP Lapinskii’s Pre-partitioning Algorithm[15]

Figure 11. Legends Used for Different Algorithms

SUB (11) [y @] [upy ] vy 5]

|

Figure 12. Partial Matching Graph

combination of both). The commutativity of operations such as ADD and MPY is taken
into account while considering the possible scheduling alternatives. We enumerate all the
possible scheduling alternatives for all instructions and leave it to the matcher to select among
scheduling alternatives with an aim of scheduling as many instructions as possible in each
cycle. Tables IV and V present the mobility factor, uncovering factor, communication cost
factor, and total cost computed for all scheduling alternatives using the cost function described
above. Figure 12 depicts the partial matching graph having an edge for each possible scheduling
alternative of the given set of instructions (dummy edges are not shown to preserve the clarity).

Figure 13 presents the schedule generated by the graph matching based scheduler and Figure
14 presents a possible schedule generated using UAS algorithm with MWP heuristic for cluster
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Table II. Scheduling Alternatives for Instructions

No. | Instr. | Mobility | #Consumers L1 S1 D1 M1
E S F|E S F|E S F|E S F

1.1 MVK | 4 1 0 0 o0

2.1 MVK | 4 1 0 0 1

3.1 MPY | 2 2 1 1 0

3.2 2 0 0

4.1 MPY | 2 2 0o 0 o0

4.2

5.1 MPY | 2 1

5.2

6.1 ADD | 3 2 o 1 00 1 0|0 1 O

6.2 1 0 o1 0 O0O}1 0 O

7.1 ADD | 3 2 o 1 10 1 1|0 1 1

7.2 1 0 1{1 0 1]1 0 1

8.1 ADD | 5 1 o 1 00 1 0|0 1 O

9.1 SUB 4 2 1 0 1|1 0 1

10.1 | SUB 4 2 0 0o 00 0 O

10.2

11.1 | SUB 4 1 1 0 1}1 0 1

11.2 0 1 1|0 1 1

Table III. Scheduling Alternatives for Instructions (Contd.

No. | Imstr. | Mobility | #Consumers L2 S2 D2 M2 |
E S F|E S F|E S F|E S F

1.1 MVK | 4 1 0 0 O

2.1 MVK | 4 1 0 0 0

3.1 MPY | 2 2 0O 0 O

3.2

4.1 MPY | 2 2 1 1 0

4.2 2 0 O

5.1 MPY | 2 1

5.2

6.1 ADD 3 2 0 1 1 0 1 1 0 1 1

6.2 1 0 1 1 0 1 1 0 1

7.1 ADD | 3 2 o 1 o0 1 0|0 1 O

7.2 1 0 0|1 0 O 1 0 0

8.1 ADD | 5 1 o0 1 10 1 1|0 1 1

9.1 SUB 4 2 1 0 0|1 0 O

10.1 | SUB 4 2 1 1 1 1 1 1

10.2 2 0 1 2 0 1

11.1 | SUB 4 1 1 0 0 1 0 0

11.2 0 1 0

selection. Each instruction in the generated schedule is suffixed with the scheduling alternative
number used by the scheduler. A detailed description and analysis of scheduled generated by
graph matching based scheduler and UAS is available in associated technical report[20].
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Table IV. Cost of Scheduling Alternatives

No. | Instr. | MF UF L1 S1 D1 M1
CF TC CF TC CF TC CF TC
1.1 MVK | 0.67 | 0.03 0 0.7
2.1 MVK | 0.67 | 0.03 0.27  0.97
3.1 MPY | 0.33 0.0 0.55 0.88
3.2 0.73 1.06
4.1 MPY | 0.33 0.0 0.0 0.33
4.2
5.1 MPY | 0.33 | 0.03 0.55 0.91
5.2 0.73 1.09
6.1 ADD | 0.5 0.0 .18 .68 .18 .68 .18 .68
6.2 .36 .86 .36 .86 .36 .86
7.1 ADD 0.5 0.0 .45 .95 .45 .95 .45 .95
7.2 64 1.14 .64 1.14 | 64 1.14
8.1 ADD 0.83 | 0.03 | .18 1.05 .18 1.05 | .18 1.05
9.1 SUB 0.67 0.0 .64 1.3 .64 1.3
10.1 | SUB 0.67 0.0 0.0 0.67 0.0 0.67
10.2
11.1 | SUB 0.67 | 0.03 | .64 1.34 .64 1.34
11.2 45 1.15 45 1.15
Table V. Cost of Scheduling Alternatives (Contd.)
No. | Instr. | MF UF L2 S2 D2 M2
CF TC CF TC CF TC CF TC
1.1 MVK | 0.67 | 0.03 0 0.7
2.1 MVK | 0.67 | 0.03 0 0.7
3.1 MPY | 0.33 0.0 0 0.33
3.2
4.1 MPY | 0.33 0.0 0.55 0.88
4.2 0.73 1.06
5.1 MPY | 0.33 | 0.03 0 0.37
5.2
6.1 ADD | 0.5 0.0 0.45 .95 0.45 .95 0.45 .95
6.2 064 1.14 | 064 1.14 | 0.64 1.14
7.1 ADD 0.5 0.0 0.18 .68 0.18 .68 0.18 .68
7.2 0.36 .86 0.36 .86 0.36 .86
8.1 ADD 0.83 | 0.03 | 0.45 1.32 | 0.45 1.32 | 0.45 1.32
9.1 SUB 0.67 0.0 0.36 1.03 | 0.36 1.03
10.1 | SUB 0.67 0.0 0.82 1.48 | 0.82 1.48
10.2 1.0 1.67 1.0 1.67
11.1 | SUB 0.67 | 0.03 | 0.36 1.06 | 0.36 1.06
11.2 0.18 .88
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MV .D2X V106, V2244 * C1.1/|MV .D1X V80,V2246
C1.2||MV .D2X V124,V2325
C1.3||MPY .M2 V70,V90,V1231 (3.1)

C1.4||MPY .M1 V2239,V1260,V1243 (4.1) C2.1/|MPY .M2 V70,V90,V1231 (3.1)

C1.5/|ADD .D1X V1260,V1195,V65 (6.1) C2.2|/|MPY .M1 V2239,V1260,V1243 (4.1)

C1.6]|ADD .D2X V2244,V70,V102 (7.2) C2.3||ADD .L1X V1260,V1195,V65 (6.1)

C1.7||SUB .L2X V124,V60,V112 (9.1) C2.4||ADD .L2X V106,V70,V102 (7.1)

C1.8||SUB .L1 V124,V2239,V118 (10.1) C2.5/|SUB .S2X V2325,V60,V112*

C1.1/|[MVK .S1 8, V109 (1.1) C2.6/|SUB .S1 V124,V2239,V118 (10.1)

C1.2[|MVK .S2 9, V147 (2.1) C2.7||ADD .D1X V1512,VV2246,V181*

* Scheduled in an earlier cycle * Scheduled using and explicit MV in a separate cycle
Figure 13. Schedule Generated using GM Figure 14. Schedule Generated using UM

6. Experimental Results
6.1. Experimental Setup

We have used the SUIF compiler[2] along with MACHSUIF library[1] for our experimentation.
The C source file is fed to the SUIF front end that generates the SUIF IR. We perform
a number of classical optimizations¥ to get a highly optimized intermediate representation.
This is followed by lowering of code level. Optimizations are again applied on the lower level
code as lowering produces additional opportunities for optimization. We perform most of
the optimizations on both high level and low level intermediate code. We generate code for
TMS320C6X[29]. Ours is a hand-crafted code generator which is designed to take advantage
of the varied addressing modes of the architecture. Code generation is followed by a phase of
peephole optimization and this highly optimized code is passed to our scheduler. Our scheduler
is parameterizable by a machine description file which specifies following attributes of the target
machine[27][24].

e Number of clusters, cross-paths among clusters, and available load/store paths for each
cluster

e Number and types of resources in each cluster as well as latency of resources

e Number and types of registers in each cluster

e Operations formats, scheduling alternatives, and resource usage of each operation

We have interfaced our scheduler with the CPLEX IntLP solver[3] (using the good set
of API functions provided by CPLEX suite) to handle the IntLP formulation of the graph
matching problem. The input to the IntLP solver consists of various scheduling alternatives

TList of optimizations includes constant folding, constant propagation, copy propagation, common
subexpression elimination, dead-code elimination, loop invariant code motion, induction variable elimination,
control flow simplification, if hoisting, and many more.
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of instructions and the IntLP solver returns the the best match as dictated by our matching
criteria. The encoding of input and output to the CPLEX solver[3] is done using a file format
designed by us. The scheduler annotates each instruction with the time-slot, cluster and
functional unit information. Register allocation is performed on the scheduled code using
priority based graph coloring[5]. Any spill code that is generated is scheduled in separate
cycles. After adding procedure prologue and epilogue, we emit the scheduled assembly code in
a format acceptable to the TI assembler. After assembly and linking, we carry out simulation
of the generated code using the TI simulator for the TMS320C6X architecture[29)].

6.1.1. Benchmark Programs

Table VI summarizes the key characteristics of benchmark programs that we have used
for experimental evaluation of our framework and a comparison with the pre-partitioning
algorithm([15] and UAS[21]. These benchmarks are mostly unrolled inner loop kernels
of MEDIABENCH][16], a representative benchmark of multimedia and communication
applications and is specially designed for embedded applications. It is important to note
that these inner loop kernels are reasonably big after unrolling and contains thousands
of instructions. Any further ILP enhancement technique such as superblock or hyperblock
formation will further help our scheduler to generate better schedules. We have selected kernels
from all the major embedded application areas. These include filter programs such as complex
FIR, Cascaded IIR and autocorrelation, imaging routines such as wavelet transformation,
quantization and shading and some transformation routines such as FFT and DCT. Some
programs from the telecommunication domain such as viterbi decoder, convolution decoder
etc., have also been used. Table 6.1 also mentions the L/N ratio for each benchmark, where
L is the critical path length and N is the number of nodes in the DFG for each kernel. L/N
ratio is an approximate measure of the available ILP in the program. When L/N is high, the
partitioning algorithm has little room to improve the schedule. Programs with low L/N ezhibit
enough ILP for a careful partitioning and effective functional unit binding algorithm to do well.
The selected programs have L/N ratios varying between .09 to .46.

6.2. Performance Results
6.2.1. Ezecution Time and Code Size

Figure 15 depicts the speed-up of different algorithms as compared to integrated scheduling
algorithm. Figure 16 presents the percentage distribution of explicit inter-cluster MV
instructions vs. other instructions for different algorithms. We have experimented with two
main heuristics for considering clusters namely completion weighted predecessors (CWP) and
magnitude weighted predecessors (MWP) as proposed in [21]. GM attains approximately 6.4%,
16.37%, 18.16%, and 28.51% improvement respectively over I, UC, UM, and LP. GS could
attain approximately 1.48%, 11.94%, 13.82%, and 24.87% improvement respectively on the
average on I, UC, UM, and LP. GS suffers a slight performance degradation of about 4.97%
on the average compared to GM. Integrated algorithm could attain approximately 10.67%,
12.64%, and 23.80% improvement respectively over UC, UM and LP. On the average, the
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Table VI. Benchmark Programs Table VII. Speedup Comparison

Name Description L/N GS 1 ucC UM LP

AUTOCORR Auto correlation .15 GM 4.97% 6.4% 16.37% 18.16% 28.51%

CORR 3x3 3x3 correlation with rounding | .11 GS 1.48% 11.94% 13.82% 24.87%

FIR Finite impulse response filter 12 I 10.67% 12.64% 23.80%

FIRCX Complex FIR .09 UC 2.29% 14.87%

ITRCAS Cascaded biquad IIR filter -18 UM 12.73%

GOURAUD Gouraud shading .46

MAD Minimum absolute difference | .17 Table VIII. Average %Inter-cluster MV

QUANTIZE Matrix quantization .38

WAVELET 1D wavelet transform ae ||l-es [ LP [ T [ GM | UM | UC ]
[7 07 07 07 07 907

BOT TEEE 1180 compliant TDCT 55 [[4.21% | 4.84% | 5.93% | 7.20% | 7-08 % | 10.52% ||

FFT Fast fourier transform .19

BITREV Bit reversal .31

VITERBI Viterbi decoder a7

CONVDOC Convolution decoder .20

QuANT. GOu BITRE) CON. FFT WRcas Map V- WAvE AUTQ FIR CORR 'FIRC; “IDCT
1ZE T Uup Ra v Vboc TERg; LET CORR 3x3 X

Figure 15. Speedup as Compared to I

percentage of explicit inter-cluster MVs vs other instructions is 4.21%, 4.84%, 5.93%, 7.20%,
7.08%, and 10.52% for GS, LP, I, GM, UM, and UC respectively. Table VII and Table VIII
summarize all the results.

The graph matching based scheduler performs best in terms of execution time. However, it
introduces more explicit MV operations. This is because it is geared towards scheduling an
instruction in the current cycle even if it possesses the enough freedom and require explicit
MYV operation. GS reduces the number of explicit MV operations by incorporating selective
rejection mechanism with some performance degradation attributed to operation serialization
in the later cycles. Our Integrated algorithm provides performance comparable to GS and code
size penalty (in terms of explicit MV operations) slightly higher than GS and LP. Integrated
algorithm could attain significant speed-up over UC, UM, and LP on program exhibiting high
ILP (low L/N). Moderate and marginal speed-up is observed over programs with medium and
little amount of ILP. This further reinforces the fact that as the amount of parallelism available
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Figure 16. % Distribution of Explicit Inter-cluster MV Instructions vs. Other Instructions

in the program increases, the optimal schedule length is dictated by the resource constraints
and effective partitioning and functional unit binding become more important.

GS and LP perform better than other algorithms in terms of number of explicit MV
operations used for ICC. LP having a global view of DFG and tending to reduce ICC incurs
less code size penalty in terms of explicit MV operations. GM is better than UM and UC and
UC performs worse of all. Integrated algorithm performs consistently better than UC and UM
and slightly worse than GS and LP in terms of number of explicit MV instructions used for

ICC.

6.2.2. Compilation Time

Though we formulate and solve the problem as a sequence of two IntLP problems, the
compilation time is still of the order of milliseconds even for reasonable large DFG. We have
solved the problem using hundreds of nodes (for a 8-wide machine) in a cycle and were able to
schedule the whole DFG in the order of milliseconds. This is because the problem is solved for
set, of instructions ready to be scheduled in a particular cycle. Thus even considering a practical
16 wide machine (with 4 or 8 cluster configuration) having additional communication constraint
will not increase the compilation time to an extent that may question the practicability of
approach given the quality of generated schedule and the importance of quality code in the
embedded domain.
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6.3. Performance Evaluation

In this section we discuss the performance of GM, GS, I, and our implementation of the
UAS algorithm (with CWP and MWP ordering for cluster selection)[21] and Lapinskii’s pre-
partitioning algorithm[15].

As mentioned earlier (see section 2.5), we consider a fully pipelined machine model where
each resource can initiate an operation every cycle. Resources vary in terms of their operational
and communicative capabilities and snooping facility is a function of a resource rather than
that of communicating clusters. On such a model, the resource and communication constraints
are tightly coupled and are precisely known only while scheduling. Thus, the pre-partitioning
algorithms trying to balance the load based on an approximate (or no) knowledge of the
above facts and tending to reduce inter-cluster communication make spatial decisions which
artificially constrain the temporal scheduler in the later phase. These algorithms thus suffer
from the the well known phase-ordering problem. From experimental results, it is evident that
this effect becomes prominent as the available ILP in the program increases. Though these
algorithms may able to reduce the inter-cluster communication by working on a global view
of the DFG, we observe that it is often done at the cost of performance.

UAS scheme proposed by Ozer et al.[21] integrates cluster assignment into the list scheduling
algorithm and shows improved performance over phase decoupled scheduling approaches.
They have proposed many orders for considering clusters. However, they do not propose any
particular order for considering instructions in the ready queue. However, the order in which
instructions are considered for scheduling has an impact on the final schedule generated on
clustered architectures in general and the machine model under consideration in particular.
The integrated algorithms proposed earlier follow a fixed order for considering instructions
and clusters and thus these algorithm suffer from the fized-ordering problem. Earlier integrated
algorithms in general and UAS in particular do not consider any future communication that
may arise due to a binding and this may lead to a stretched schedule because of more
communication than what the available bandwidth can accommodate in a cycle and hence
more number of explicit move operations. An explicit move operation reserves a resource for a
cycle on the machine model under consideration and this may lead to poor resource utilization
apart from increase in register pressure and code size. These are the reasons why UAS suffers
from performance and code size penalty. Another drawback of UAS is due to the fact that
it does not consider functional unit binding. However, effective functional unit binding is
important in the case of the machine model under consideration because resources vary in
their operational and communicative capabilities and resource and communication constraints
are tightly coupled.

Our integrated scheduling algorithm shows improvement over UAS by effectively exploiting
the information regarding free cross-paths and functional units available in the current cycle
as well as in the earlier cycles and also the number and types of operations ready to be
scheduled in the current cycle and their resource requirements. Utilizing this precise knowledge
available at schedule time, our algorithm tries to schedule an operation in the current cycle
while minimizing the communication in the current as well as future cycles. Qur integrated
scheme strives to bind an operation to a functional unit in a cluster where its operand can
be snmooped from the other clusters rather than explicitly using the communication path. This
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urge for avoiding explicit cross-cluster MV operations while maximizing utilization of the
snooping capability helps to reduce the extra MV instructions and consequently the reservation
of functional units for MV operation, code size as well as register pressure. Functional unit
binding is done while taking care of other operations to be scheduled in the current cycle and
their needs for functional units and the cross-path. This helps in combating the situation where
earlier naive decisions lead to unnecessary delay in scheduling an operation in the current cycle
and the consequent stretch of schedule.

Our scheme is very aggressive in utilizing the free cross-path and tries to schedule an
instruction in the current cycle by trying to schedule communication in the earlier cycles using
the free communication slot wherever necessary. Thus in some cases the integrated scheme
introduces more explicit MV operations. However, the extra code size (due to explicit MV
operations) in most of the cases is the same as that of the pre-partitioning scheme and is only
marginally more for some benchmarks. The primary reason is that the algorithm prefers to
snoop operands from other clusters rather than simply inserting a MV operation.

Though our integrated algorithm improves over UAS by taking into account future
communication that may arise due to a binding and a better functional unit binding
mechanism, it still suffers from the fized ordering problem and may make a decision which
may miss the opportunity to accommodate an instruction in a cycle which may otherwise be
possible by exercising different scheduling alternatives for instructions. GM further improves
over the integrated algorithm by considering all the possible scheduling alternatives obtained by
varying communication options, spatial locations, and resource usage simultaneously instead
of following a fixed order. The scheduler simultaneously selects the alternatives for instructions
to be scheduled in the current cycle while exploiting the communication facility and parallelism
offered by the hardware. A Cost function composed of various dynamically varying factors such
as communication cost, freedom available in scheduling the instruction, and uncovering factor
of the instruction is used to select from scheduling alternatives for instructions competing for
limited resources while scheduling maximum number of instructions in each cycle. Instructions
with smaller freedom are scheduled in preference to those with higher freedom values despite
their high communication cost, in order to avoid stretching the overall schedule. Scheduling
alternatives for instructions with enough freedom and high communication cost are assigned
a high cost to prefer scheduling instructions with low freedom values in the current cycle
and in the hope of scheduling high overhead instructions in later cycles using a low overhead
alternative.

Since GM schedules as many instructions as possible in each cycle, some of the instructions
with high communication overheads may appear in the final match depending on the resource
and communication requirements of other instructions being considered. In order to further
reduce the inter-cluster communication and associated overheads, GS incorporates selective
rejection mechanism to defer the scheduling of instructions having high communication cost
and enough freedom to future cycles in the hope of scheduling them later using a less costly
alternative. Thus it provides a mechanism to explore the trade-off in code size and performance.
However, performance results shows that selective rejection incurs performance penalty to
reduce the code size.
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7.

Conclusions and Future Directions

In this paper, we considered a generic and realistic clustered machine model which is based on
commercial clustered architectures. We proposed an integrated scheduling algorithm targeting
such a machine model and experimentally demonstrated its superiority over a few other
proposed algorithms. We also proposed a generic graph matching based framework that resolves
the phase-ordering and fized-ordering problems associated with scheduling a clustered VLIW
datapath and experimentally demonstrated its properties. Our Scheduling framework can be
extended in many different ways.

1. Though we concentrated only on acyclic scheduling, adapting the proposed framework
for software pipelining of inner loops and comparing it with other existing algorithms
for software pipelining can be another future direction of work.

2. We observe that instruction per cycle (IPC) varies from one cycle to another. This

variation in IPC can be exploited together with the slack of instructions to develop
a power sensitive scheduling framework for exploring trade-offs in leakage-power
consumption and execution time.
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