Compiler-Assisted Energy Optimization for
Clustered VLIW Processors

A Thesis
Submitted for the Degree of

Doctor of ‘Philosophy

in the Faculty of Engineering

by
Rahul Nagpal

Department of Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012, India

March 2008

gF wer Airew fag g aiies
OO A e Sraaior FAsEr T N

Abstract

Clustered architecture processors are preferred for embedded systems because central-
ized register file architectures scale poorly in terms of clock rate, chip area, and power
consumption. Although clustering helps by improving clock speed, reducing energy con-
sumption of the logic, and making the design simpler, it introduces extra overheads by
way of inter-cluster communication. This communication happens over long wires having
high load capacitance which leads to delay in execution and significantly high energy con-
sumption. Inter-cluster communication also introduces many short idle cycles, thereby
significantly increasing the overall leakage energy consumption in the functional units.
The trend towards miniaturization of devices (and associated reduction in threshold volt-
age) makes energy consumption in interconnects and functional units even worse and

limits the usability of clustered architectures in smaller technologies.

In the past, study of leakage energy management at the architectural level has mostly
focused on storage structures such as cache. Relatively, little work has been done on archi-
tecture level leakage energy management in functional units in the context of superscalar
processors and energy efficient scheduling in the context of VLIW architectures. In the
absence of any high level model for interconnect energy estimation, the primary focus of
research in the context of interconnects has been to reduce the latency of communication
and evaluation of various inter-cluster communication models. To the best of our knowl-
edge, there has been no such work in the past from the point of view of energy efficiency

targeting clustered VLIW architectures specifically focusing on smaller technologies.

Technological advancements now permit design of interconnects and functional units

iii

with varying performance and power modes. In this thesis, we propose scheduling al-
gorithms that aggregate the scheduling slack of instructions and communication slack of
data values to exploit the low power modes of interconnects and functional units. We
also propose a high level model for estimation of interconnect delay and energy (in con-
trast to low-level circuit level model proposed earlier) that makes it possible to carry out
architectural and compiler optimizations specifically targeting the interconnect. Finally,
we present synergistic combination of these algorithms that simultaneously saves energy
in functional units and interconnects to improve the usability of clustered architectures
by achieving better overall energy-performance trade-offs.

Our compiler assisted leakage energy management scheme for functional units reduces
the energy consumption of functional units approximately by 15% and 17% in the con-
text of a 2-clustered and a 4-clustered VLIW architecture respectively with negligible
performance degradation over and above that offered by a hardware-only scheme. The in-
terconnect energy optimization scheme improves the energy consumption of interconnects
on an average by 41% and 46% for a 2-clustered and a 4-clustered machine respectively
with 2% and 1.5% performance degradation. The combined scheme obtains slightly bet-
ter energy benefit in functional units and 37% and 43% energy benefit in interconnect
with slightly higher performance degradation. Even with the conservative estimates of
contribution of functional unit and interconnect to overall processor energy consumption,
the proposed combined scheme obtains on an average 8% and 10% improvement in overall
energy-delay product with 3.5% and 2% performance degradation for a 2-clustered and
a 4-clustered machine respectively. We present a detailed experimental evaluation of the

proposed schemes using the Trimaran compiler infrastructure.

Acknowledgments

I would like to express my deep gratitude to my research supervisor, Prof. Y. N. Srikant, for
providing me an opportunity to work under his supervision. Prof. Y. N. Srikant is an excellent
adviser who is always willing to listen, encourage, and give insightful comments and valuable
criticism. This dissertation would have been a dream for me without his support, inspiration,
and constant encouragement.

I would like to thank Prof. Amrutur Bhardwaj for many important technical discussions
especially towards end of my thesis. I am also thankful to the faculty of the Department of
Computer Science and Automation, Prof. Priti Shankar, Prof. Narahari, Prof. Narasimha
Murthy, and Prof. Mathew Jacob in particular, for clarifying doubts, refining ideas, and for the
constant encouragement.

Particular thanks go to the Philips Research for funding the part of this research work.
Thanks also to Microsoft Research Labs, Redmond, USA for providing me an exciting period of
3 moths of internship which helped me to understand the industry style of research.

My heartful thanks to my dear lab mates at compiler lab who have provided wonderful com-
pany and stimulating environment; without them this process would have been much difficult.
In particular, I would like to thank Arun and Anand Vardhan. Many thanks to the lab staff of
the Compiler Laboratory, Pushpraj in particular, for their support and assistance. I would also
like to thank my other friends in IISc for a constant source of mild distraction that prevented
me from burning out during the course of my research.

I can not thank my parents enough for their countless sacrifices. They have constantly
talked me out of worries and it is due to their support and encouragement that I could face
most difficult times and still could come this far.

Finally, Thanks to all who supported me directly or indirectly in this period of my life.

Publications Based on the Thesis

Conferences

1. Rahul Nagpal and Y. N. Srikant. Compiler-assisted Leakage Energy Optimization for
Clustered VLIW Architectures, Proceedings of the International Conference on Embedded
Software (EMSOFT’06), Seoul, Korea, October 2006.

2. Rahul Nagpal and Y. N. Srikant. Exploring Energy-Performance Trade-offs for Heteroge-
neous Interconnect Clustered VLIW Processors, Proceedings of the International Confer-

ence on High Performance Computing (HiPC’06), Bangalore, India, December 2006.

3. Rahul Nagpal, Arvind Madan, Amrutur Bharadwaj, and Y. N. Srikant. INTACTE: An In-
terconnect Area, Delay, and Energy Estimation Tool for Micro-architectural Explorations,

Proceedings of the International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems (CASES’07), Salzburg, Austria, October 2007.

4. Rahul Nagpal and Y. N. Srikant. Register File Energy Optimization for Clustered VLIW
Architectures, Proceedings of the International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD’07), Gramado, RS, Brazil October 2007.

5. Rahul Nagpal and Y. N. Srikant. Compiler-assisted Instruction Decoder Energy Opti-
mization for Clustered VLIW Architectures, Proceedings of the International Conference

on High Performance Computing (HiPC’07), Goa, India, December 2007.

vi

Poster Presentations

1. Rahul Nagpal. Energy Efficient Cross-path Scheduling for Clustered VLIW Processors,
Poster Presentation at International Conference on Language, Compilers, and Tool Sup-

port for Embedded Systems (LCTES’06), Ottawa, Canada, June 2006.

2. Rahul Nagpal and Y. N. Srikant. Energy Optimization for Clustered VLIW Architectures,
Poster Presentation at Third International Summer School on Advanced Computer Ar-
chitecture and Compilation for Embedded Systems (ACACES’07), L’Aquila, Italy, July
2007.

Journals

1. Rahul Nagpal and Y. N. Srikant. Compiler-Assisted Energy Optimization for Clustered
VLIW Architectures (under Review)

2. Rahul Nagpal and Y. N. Srikant. Compiler-Assisted Power Optimization for Hot Spots in
Clustered VLIW Architectures (under Review)

3. Rahul Nagpal, Arvind Madan, Amrutur Bharadwaj, and Y. N. Srikant. An Intercon-
nect Area, Delay, and Energy Estimation Methodology and its application for Micro-

architectural Explorations (under Preparation)

Contents

Abstract
Acknowledgments
Publications Based on the Thesis

1 Introduction

1.1 The State-of-art e e e e e e
1.2 Our Approach e e
1.3 Outline of the Thesis o e e e e e e e e e e

Related Work

2.1 Power Basics and Metrics L e

2.2 Circuit and Logic Level Techniques
2.2.1 Dynamic Energy Optimization in Logic
2.2.2 Leakage Energy Optimization in Logic
2.2.3 Interconnect Energy Optimization

2.3 Architectural Techniques for Power Optimization
2.3.1 Dynamic Voltage Scaling,
2.3.2 Leakage Energy Management of Other Devices

2.4 Software Level Power management,
2.4.1 Compiler-Directed Power Management
2.4.2 Application and OS Level Power Management

2.5 Hardware/Software Co-Optimization

2.6 Power Management in Commercial Processor

NelN e S

CONTENTS viii

2.7 Energy Estimation and Energy Modeling, 23
2.8 Limitations of the Earlier Worko 0. 24
3 Clustered VLIW Architectures and Experimental Setup 26
3.1 Clustered Architectures e 26
3.1.1 Clustering Overheads 30

3.2 Some Clustered Architectures 31
3.2.1 VelociTT Architecture 31
3.2.2 Lx Architectureo 34

3.2.3 Other Clustered Architectures 35

3.3 Cluster Scheduling 36
3.3.1 Preprocessing e e e 37
3.3.2 Imstruction Selectiono oL 37
3.3.3 Cluster Assignment 38
3.3.4 Functional Unit Assignment 39
3.3.5 Cross-path Assignment 39

3.4 Trimaran Framework 40
3.5 Experimental Setup 41
4 Leakage Energy Management for Functional Units 44
4.1 Introduction. e e e e e 44
4.2 Motivation L e e e e e e e e e 46
4.3 The Scheduling Algorithm o oL 51
4.3.1 Prioritizing the Ready Instructions 51
4.3.2 Cluster Assignment e 52
4.3.3 Functional Unit Bindingo 0oL 53
434 AnExample e 54

4.4 Experimental Evaluationo Lo o oo 57
4.4.1 Energy Model. L 57
4.4.2 Results L e e e e 59
4.4.3 Sensitivity Analysis Lo e 62

4.5 Application in the Context of Instruction Decoder 63

CONTENTS ix

4.5.1 Split Decoder Design e 64
4.5.2 Experimental Evaluation 66
4.6 Related Work L 68
4.6.1 Scheduling for Clustered Architectures 68
4.6.2 Architectural Approaches for Leakage Energy Management 70
4.6.3 Energy-Efficient Scheduling 72
4.7 Conclusions L e e 73

5 INTACTE: An Interconnect Area, Delay, and Energy Estimation Model 74

51 Introduction L L e e 74
5.2 INTACTE Tool Description 77
5.3 Modeling The Interconnect 80
5.3.1 Delay Characterization oo 82
5.3.2 Power Characterization 83

54 Experimental Results.o 85
55 Related Work L 90
5.6 Conclusions L e 91
6 Energy Optimization for Interconnects 93
6.1 Introduction. e 93
6.2 Motivation e e e 94
6.3 The Scheduling Algorithm 97
6.3.1 Prioritizing the Ready Instructions 97
6.3.2 Cluster Assignment e 99
6.3.3 Cross-path Binding 99
6.3.4 An Example e 101

6.4 Experimental Evaluation. o oo, 102
6.4.1 Emergy Model e 103
6.4.2 Results e e 103
6.4.3 Sensitivity Analysis e 105

6.5 Related Work oL 106

6.6 Conclusions o e e e e e e e 107

CONTENTS X
7 Integrated Energy Optimization for Functional Units and Interconnects 108
7.1 Introduction e e e 108
7.2 The Scheduling Algorithm 108
7.2.1 Prioritizing the Ready Instructions 109

7.2.2 Cluster Assignment 110

7.2.3 Functional Unit Binding L oL 110

7.2.4 Cross-path Binding L o oo 111

7.3 Scheduler Implementation oo o o o 111
7.4 Experimental Evaluation Lo oL oo 116
74.1 Results e e 117

7.5 Conclusions e e e e 120

8 Conclusions and Future Directions 121
8.1 Conclusions oL e 121
8.2 Future Directions L e 124
Bibliography 126

List of Figures

3.1 A General Clustered VLIW Architecture 29
3.2 A Cluster L e 30
3.3 VelociTI Architecture Block Diagram 32
3.4 TMS320C64X CPU Data Paths, 33
3.5 Lx Architecture Block Diagram oL, 34
3.6 Communications Required as a Result of a Cluster Assignment 39
3.7 Implementation Framework on Trimaran Infrastructure 41
4.1 % Savings for 'MaxSleep’ and 'NoOverhead’ Policies 47
4.2 % Cumulative Distribution of Idle Cycles 48
4.3 An Example Data Dependency Graph 54
4.4 Schedules for VLIW Architecture (a) Schedule 1 (b) Schedule 2 55
4.5 Schedules for Clustered VLIW Architecture (a) Schedule 3 (b) Schedule4 55
4.6 % Reduction in Transitions with Scheduling w.r.t. Hardware Only Scheme 59

4.7 % Increase in Functionl Unit Energy w.r.t Hypothetical No-overhead Scheme
(VLIW) . . 60

4.8 % Increase in Functionl Unit Energy w.r.t Hypothetical No-overhead Scheme (2
Cluster) e 61

4.9 % Increase in Functionl Unit Energy w.r.t Hypothetical No-overhead Scheme (4

Cluster) o e 62
4.10 Scalability Results for Functional Unit Energy Savings 63
4.11 Traditional Monolithic Decoder Design 64
4.12 Split Decoder Design e 65

4.13 % Reduction in Transitions with Scheduling w.r.t. Hardware only Scheme for ID 66

LIST OF FIGURES xii

4.14 % Increase in Energy w.r.t Hypothetical No-overhead Scheme for ID (VLIW) . . 67
4.15 % Increase in Energy w.r.t No-overhead Scheme for ID (2 Cluster) 67
4.16 % Increase in Energy w.r.t No-overhead Scheme for ID (4 Cluster) 68
5.1 Overview of the INTACTE 78
5.2 A Section of an On-chipBus oo, 81
5.3 7 Model of the Interconnect L o 82
5.4 Degree of Pipelining vs Power for 5 mm Interconnect with 12« A Pitch 86
5.5 Validation of Dynamic and Leakage power for 1 um Repeater Operated at 1GHz

for Different Technology Nodes 86
5.6 Component Wise Power Breakup for a 5 mm Interconnect with 16 x A Pitch in 90

nm Tech Node Runningat 1 GHz. 87
5.7 Leakage as % of Total Power for Different Activity Factors for Optimally Pipelined

5 mm Interconnect with 12*\ Pitch Runningat 1 GHz 87
5.8 Frequency vs. Power for Optimal Degree of Pipelining for 4 mm Interconnect . . 88
5.9 Pitch Vs Power for Optimal Degree of Pipelining for 2 mm Interconnect 88
6.1 Communication Slack for Two-Cluster Machine Model 95
6.2 Communication Slack for Four-Cluster Machine Model 96
6.3 An Example Data Dependency Graph 101
6.4 Possible Schedules For Clustered VLIW Architecture (a) Schedule 1 (b) Schedule 2101
6.5 % Increase in Execution Time of LP Conf. w.r.t. LL Conf. 104
6.6 % Energy Benefit of LP Conf. w.r.t. LL Conf. 104
6.7 Scalability Results for Interconnect Energy Savings 105
7.1 % Increase in Execution Time of LP conf. w.r.t. LL conf. for Algorithm 5 117
7.2 % Energy Benefit of LP conf. w.r.t. LL conf. for Algorithm 5 118
7.3 % Functional Unit Energy Benefits of Scheduling over H/W only scheme for

Algorithm 5 e 118
7.4 % Overall Benefit in EDP of Scheduling Algorithm 5 on LP conf. as compared

to LL conf. and H/W only scheme for Fu Transitions 119

List of Tables

2.1

3.1
3.2
3.3

4.1

5.1

Parameters in Power Equations 2.1, 2.2, 23 12
Description of Benchmark Programs 42
Latencies of Operations e 42
Clustered VLIW Configurations 42
Parameters of Energy Model in Equations 4.2 58

Symbols for Various Interconnect Components 83

Chapter 1

Introduction

Embedded systems have proliferated in our daily lives in the form of wearable computers,
telecommunication appliances, consumer electronic devices, system controllers, and entertain-
ment objects among many others. An embedded system can be loosely defined as a ”System
employing a collection of hardware and software to perform a closely knitted set of functions and
often working in a reactive and a time-constrained environment as a part of a larger system”.
These systems are often employed to run multiple sophisticated algorithms demanding widely
varying operation rates in hard or soft real-time mode. For example in a cellular phone, the
speed of decoding must match that of normal conversation to ascertain a proper communication.
Likewise, the controller of an atomic reactor should monitor several fluctuating parameters and
exercise various controlling actions in a spur of the moment to avoid disastrous situations. If
deadlines are violated, the quality of service may degrade to an unacceptable level or may even
lead to catastrophic results in the case of a hard real-time system. Small size and less power
consumption are critical factors in the design of hand-held battery-operated embedded systems.
In general, less power consumption is desirable in all kinds of embedded systems because it re-
duces the operating cost of a device. Small form-factor necessary for many handheld embedded
devices coupled with the requirement for powerful computing capabilities makes the temperature
and associated reliability problems (specially for safety critical applications) another important
consideration in the design of embedded systems. Thus embedded systems can be character-
ized by very high performance demand (to operate in real-time), low power consumption, low

temperature, low cost, small form-factor, and high reliability.

The increasing ubiquity of embedded systems has opened up many new research issues as the
design challenges posed by these systems are ostensibly different from those offered by general
purpose systems due to their specific and conflicting requirements. New architectures leveraging
the improvement in semiconductor technology have been developed. These exploit the abundant
fine-grained instruction-level-parallelism (ILP)[1] available in embedded applications to satisfy
their high performance requirements. Superscalar architectures[2] and very long instruction word
(VLIW)[3] architectures are two traditional ILP design philosophies[l]. Both superscalar and
VLIW processors have multiple pipelined functional units, which are connected to a single unified
register file in parallel to attain better performance. A superscalar processor[2] uses dedicated
hardware for scheduling instructions at run time. However, it suffers from the problems such as
complicated design, large chip-area, and high power consumption attributed to the complicated

runtime scheduling logic[4].

A VLIW architecture[3] gets rid of scheduling hardware and associated problems by exposing
instruction latencies and delegating the task of scheduling to a compiler. High operation rates as
required by emerging real time embedded applications can be attained by increasing the number
of parallel functional units in a VLIW architecture. However, as the number of arithmetic units
in a processor increases to higher levels, register storage and communication between arithmetic
units become critical factors dominating the area, cycle time, and power dissipation of the
processor. The cycle time is determined by the sum of wire delay and gate delay along the
critical execution paths of a processor pipeline. Wire delays have become significant for the 0.25
micron CMOS process generation and centralized monolithic architectures (both superscalar
and VLIW) which use long wires for connecting spatially separated resources may not benefit
from the advancements in semiconductor technology[5][6]. The ever increasing trend towards
miniaturization of devices makes utilizing huge transistor budget in a manner that enables
high clock speed, low design complexity, and less energy consumption even more challenging[5].
However, resolving this challenge can enable the deployment of embedded systems for many
performance-demanding never-before embedded applications at a lower cost. Another challenge
posed by this technological advancement is the rising level of the leakage energy consumption
in the logic. The increase in the transistor density requires reducing the supply voltage in order
to operate the circuit reliably. The reduction in supply voltage also requires reduction in the

threshold voltage in order to maintain the speedup and this leads to an exponential rise in

the leakage component of the energy consumption[7]. With the 65nm and smaller technologies
currently in fabrication, the leakage energy is on par with the dynamic energy consumption. In

future technologies the leakage energy will further dominate the overall energy consumption|[8].

Clustered VLIW architectures(CVA)[9][10][11] have been proposed to overcome the difficul-
ties with centralized architectures and to make them suitable for use in embedded systems.
A clustered VLIW architecture[11] has more than one register file and connects only a subset
of functional units to a register file. Groups of small computation clusters can be intercon-
nected using some interconnection topology and communication can be enabled using any of the
various inter-cluster communication models[12]. Clustering avoids area and power consump-
tion problems of centralized register file architectures while retaining high clock speed which
can be leveraged to get better performance. Texas Instrument’s VelociTI[13], HP/ST’s Lx[14],
Analog’s TigerSHARC[15], and BOPS’ ManArray[16] are examples of the recent commercial
micro-architectures developed based on clustered ILP philosophy. IBM’s eLite[17] is a research
proposal for a novel clustered architecture. Apart from clustered VLIW architectures, many
other architectural philosophies[18][19][20][21][22] have also used distribution in its varied form
to tackle the scalability problem in the past. This trend is expected to continue in the future

also with ever growing number of transistors on the chip

Though clustering helps to combat the scalability problem by making components simpler
and thereby increasing clock rate and reducing dynamic energy consumption of functional com-
ponents, an interconnection network is required for the communication among different compo-
nents. This communication happens over long wires having high load capacitance which in effect
takes more time and incurs more energy consumption[5][23]. This problem is becoming severe
with each upcoming process technology. As a result, clustered architectures are becoming more
communication bound in terms of the performance and energy consumption. Apart from the
interconnects, functional units are another major source of energy consumption in clustered ar-
chitectures. The frequent accesses to functional units raises the temperature level and increases
the leakage energy consumption which is specifically a concern in smaller technologies. More-
over, the contention for limited number of slow interconnects leads to many short idle cycles

and that further increases the leakage energy consumption in functional units.

Clustered VLIW architectures rely on compile-time scheduling. The static scheduling sim-

plifies the issue logic by alleviating the need for a dedicated hardware for scheduling. Thus, a

significant fraction of the total energy consumption in clustered VLIW architectures is attributed
to interconnects and functional units. Though, the exact percentage depends upon the archi-
tecture and circuit details, earlier studies report that a very high percentage (20% to 30%) of
total processor energy consumption is attributed to interconnects[24]. Similarly, a large fraction
(30% to 35%) of static energy conumption in a VLIW architecture is attributed to functional
units[25]. An architecture level model developed in [26] also confirms that the leakage energy
consumption in functional units constitutes a noticeable fraction of the overall processor leakage
energy consumption despite having a smaller transistor count compared to the caches. Thus,
optimizing energy in interconnects and functional units in clustered architectures is becoming

more and more important from one process generation to another.

However, the functional units and interconnects are often underutilized in clustered VLIW
architectures. Apart from other usual causes such as data dependencies, the under-utilization of
functional units is also due to the contention for limited number of slow interconnect channels
that introduces many short idle cycles for functional units. At the same time since the functional
units are distributed among clusters, there is also more contention for functional resources
which leads to the underutilization of interconnects. Finally, the contention for functional and
interconnect resources in clustered VLIW architecture combine in a synergistic fashion and lead

to greater available slack in clustered architectures as compared to VLIW architectures.

The advancements in VLSI technology now enable designing interconnects and functional
units with different power and performance modes. For example [27][28] show that using 45nm
technology, it is possible to design wires consuming 1/5 the energy but having twice the delay[27].
[29] proposes to use interconnect composed of wires with different characteristics to improve the
ED? of the superscalar processor. Similarly, the capabilities of dual-threshold domino logic[30]
with sleep mode (that can transition between active mode and sleep mode and vice versa without
any performance penalty but with moderate energy penalty) can be utilized to do leakage energy
management for short idle cycles in functional units. In this thesis, we propose a compiler-
assisted approach that exploits the greater available slack and leverages on these advancements in
VLSI technology to improve the usability of clustered VLIW architecture in smaller technologies,

targeting the two major source of energy consumption namely interconnects and functional units.

1.1 The State-of-art 5

1.1 The State-of-art

In the past, study of leakage energy management at the architectural level has mostly focused
on storage structure such as cache[31][32][33]. Relatively, a little work has been done on archi-
tecture level leakage energy management in the context of functional units[34][35] of superscalar
processors. Albonesi et al.,[34] propose a purely hardware based scheme in the context of a
superscalar architecture for aggressive leakage energy management which is specifically useful
for smaller technologies. However, being a purely hardware based scheme, it suffers from the
problem of limited program view and thus the benefits are severely (on average, by 30%) af-
fected by frequent transitions from active mode to sleep mode and vice-versa because of many
short idle periods. Our compiler-directed approach for leakage energy management in functional
units in the context of clustered VLIW processors leverage on global view of the schedule and
greater available slack in the context of clustered VLIW architectures to directly improves over
[34]. Though there has been some work in the direction of energy efficient scheduling in the
context of VLIW architectures[36][25][37], to the best of our knowledge, there has been no such
work for aggressive leakage energy management in the context of clustered VLIW architectures

specifically targeting smaller technologies.

As compared to reducing energy consumption in function blocks, study of energy efficiency in
interconnects is still in its infancy. Before proposing any architectural or compiler optimization
for saving interconnect energy, one needs a model for high level estimation of interconnect
delay and energy. However, prior research in interconnect modeling and analysis has mostly
dealt with specific circuit level issues [28][38][39] and is not directly usable to make high level
micro-architectural trade-offs. For example, an architect would be interested in knowing what
are the available trade-offs in terms of pipeline latency and power, for a given bandwidth and
interconnect distance. This information could be used at a higher level of design to obtain the
overall optimum for the system. Hence, there is a need for a model or a tool for the interconnect,
which can give reasonably accurate design points and their associated area and power costs for
various architecture level constraints like bandwidth, latency etc. Similar models are available
for caches[40], register files[41], and functional components[34]. Availability of an interconnect
model will be very helpful for architects to involve interconnect in early design trade-offs. We fill
this gap by proposing a high level interconnect energy and delay estimation model to get a fast

but reasonably accurate estimates of interconnect delay, area, and power for a given technology,

1.2 Our Approach 6

wire length, bit-width, clock frequency and latency. In contrast to earlier circuit level models,
the proposed model is directly useful for the architects and compiler designer to perform energy

optimization in interconnects.

In the absence of any high level model for interconnect energy estimation, primary focus of
research in past had been to reduce the latency of communication[42] and evaluation of various
inter-cluster communication models[12]. We introduce the idea of heterogeneity in interconnects
of clustered VLIW architecture. We also propose a notion of communication slack of data values
and a scheduling scheme that exploits the communication slack to save significant energy in
heterogeneous interconnect in the context of clustered VLIW architectures. Again to the best
of our knowledge, we are not aware of any work targeting reduction of energy consumption in
interconnects in clustered VLIW architectures.

The novelty of our approach also lies in an integrated scheduling algorithm that simulta-
neously reduces the energy consumption in functional units as well as interconnects. The con-
tention for a limited number of functional and communication resources in a clustered VLIW
architecture leads to increased cycles of execution on a clustered machine as compared to an
equivalent VLIW machine. Our combined scheme aggregates the scheduling slack of instructions
and communication slack of data values in a synergistic fashion to convert the inherent idleness

of functional and communication resources in clustered architectures to energy gains.

1.2 QOwur Approach

VLIW and clustered VLIW architectures are optimized for peak performance in order to meet
real-time performance requirements of embedded applications. However, functional units are
underutilized due to the inherent variations in the ILP of programs. The idleness is even more
pronounced for clustered VLIW architectures because of the contention for a limited number
of slow interconnects which manifests itself in the form of many short idle cycles. We observe
that functional units are idle for more than 70% cycles on an average in our collection of media
benchmarks for a 2-clustered machine with moderate number of of functional units. This idleness
is not only because of data and resource dependencies but also because not all scheduling regions
of the programs have the same amount of ILP. We also observe that roughly 50% of total 70%

idle cycles have durations less than or equal to 10 cycles.

1.2 Our Approach 7

One way to reduce the number of idle cycles (attributed to contentions for cross-paths) and
thereby improve performance is to use a high-speed high-bandwidth cross-path for communica-
tion of data values among clusters. Previous studies have reported that performance degrades
by 12% when the latency of communication is doubled for a four clustered architecture, and
that increasing the interconnection bandwidth from one to two improves the performance by as
much as 10%[43]. We also observe a similar benefit in performance by using two bidirectional
single-cycle cross-paths between clusters as compared to the configuration which uses only one
cross-path. However, having both the cross-paths optimized for low latency results in high
energy consumption in interconnects. This is because improving the latency of a communi-
cation channel requires closely spaced repeaters which increase the area and energy overheads
of repeaters[27]. A high speed path for communication of data values among clusters indeed
enables better performance, but we argue that not all data values are critical enough to be
communicated on a high speed path, that many communications are non-critical and can still
happen on a slow path without affecting performance. We introduce the notion of communi-
cation slack in the context of data values that captures the criticality of communication and
we observe that on an average, 60% of communications can sustain a latency of three cycles or

higher.

Thus a more suitable option to reduce the idleness in functional units without incurring a
high energy overhead is to use heterogeneous interconnects between clusters with some paths
optimized for latency and others for energy. We propose a scheduling mechanism that exploits
the communication slack to steer the non-critical communication over the slower but energy-
efficient wires while assigning critical communication over the fast but more energy-consuming
wires. Such a configuration which uses one bidirectional single-cycle cross-paths and one bi-
direction three-cycle cross-path between clusters reduces the number of idle cycles by 13% on

an average as compared to the configuration which uses only one cross-path.

Though a high bandwidth cross-path mitigates the contentions for cross-path and improves
performance to some extent, the variation in ILP of programs coupled with cross-path contention
still manifest itself in the form of many short idle periods. Short idle periods render traditional
leakage energy management schemes unusable. A hardware based scheme proposed by Albonesi
et al.[34] utilizes the dual-threshold logic (and its capability of fast transition to and from low-

leakage mode at moderate energy penalty) to perform leakage energy management for short

1.2 Our Approach 8

idle cycles. However, effective energy savings of this scheme is low because of the high energy
cost and frequent transitions. We propose a scheme that exploits instruction slack to aggregate
idleness in functional units and improves effective leakage energy savings by reducing frequent
transitions. We also evaluate the energy benefit of our compiler-directed technique in the context
of instruction decoder.

Finally, we propose a combined scheme that exploits the communication slack of data values
as well as instruction slack to reduce the energy consumption in functional units and inter-
connects. The proposed scheme tries to keep idle functional unit idle while maximizing the
utilization of active functional units. Similarly, the proposed scheme also exploits the communi-
cation slack of data values to utilize the low-power cross-path as much as possible. The major

contributions of this thesis can be stated as follows:

1. We propose a compiler-directed leakage energy optimization technique in the context
of VLIW /clustered VLIW architectures, targeting the underutilized components such as
functional units and instruction decoder and evaluate its benefits. Significant benefits
are obtained over and above that offered by a hardware based technique (which already
obtains good leakage energy benefits) with negligible performance loss. Apart from obtain-
ing energy benefits without performance loss, the proposed technique also reduces peak
power and step power consumption that impact the reliability of the chip[44][45]. The
proposed technique is particularly useful for smaller technologies demanding aggressive

leakage energy management.

2. We also propose a high level model for interconnect energy and delay estimation that can
be used by architects, micro-architects, and compiler designers to explore the interconnect
design space and evaluate interconnect energy optimization. The proposed model fills the
gap between architect’s need and circuit level models. The model takes architectural
parameters such as length, bit-width, latency, and target technology and provides a set of
interconnect options with varying degree of area, pipelining, and power budget using pre-

characterized estimates of circuit parameters for different interconnect components[46].

3. We introduce the notion of heterogeneity in interconnects and propose a compiler-directed
technique for energy optimization in interconnects of clustered VLIW architectures. We

evaluate the energy benefits of the proposed techniques using the proposed interconnect

1.3 Outline of the Thesis 9

energy model[47][46].

4. We propose integrated schemes for energy optimization in functional components as well
as interconnects simultaneously in a novel fashion and evaluate the energy benefits of the

combined schemes[48].

5. We also present a detailed performance evaluation of all the schemes by adapting Trimaran

compiler infrastructure for clustered architectures.

1.3 Outline of the Thesis

Chapter 2 provides a brief survey of earlier work in the context of energy modeling, energy effi-
cient architectures, energy optimization in hardware, software (both at OS level and at compiler
level) as well as HW /SW co-optimization techniques. Chapter 3 describes the clustered VLIW
architectures and our experimental framework. Chapter 4 describes a compiler-directed scheme
for leakage energy optimization in functional units and instruction decoder of clustered VLIW
architectures. We also provide an example that shows the energy benefits of the proposed scheme
and a detailed performance evaluation for VLIW and clustered VLIW architectures showing the
energy benefits of the proposed scheme. Chapter 5 presents a model that we have developed for
interconnect delay and energy estimation. We also present results that show various interconnect
design trends in different technologies and a detailed validation of the model based on circuit-
level spice estimations. Chapter 6 describes compiler-directed interconnect energy optimization
techniques in the context of clustered VLIW architectures. An example is presented to show the
functioning of the scheme. A detailed performance evaluation is presented to show the benefit of
the proposed scheme. Chapter 7 describes integrated techniques for energy optimization in both
functional units and interconnects. Experimental results show the energy benefits of proposed

scheme. Chapter 8 presents conclusions and future directions of this work.

Chapter 2

Related Work

This chapter presents a brief survey on earlier work in energy optimization. Section 1 pro-
vides basic power equations for CMOS circuits and demystifies various power-performance met-
rics in widespread use. Section 2 describes earlier work on circuit/logic level techniques for
power optimization. Section 3 describes energy-efficient architectural design techniques. Sec-
tion 4 deals with energy-efficient optimization at the software level i.e., at the operating system
level, compiler level as well as application level. Section 5 describes some hardware/software
co-optimization techniques for energy optimization. Section 6 briefly discusses some recent
developments and advanced techniques for energy optimization found in commercial systems.
Section 7 presents different approaches to energy modeling. Section 8 concludes this chapter

with a mention of the limitations of the existing work.

2.1 Power Basics and Metrics

The power consumption in a CMOS circuit can be reasonably approximated by the three com-
ponent Equations 2.1, 2.2, 2.3[7]. The parameters used in these equations are described in Table
2.1. The first equation represents dynamic or switching power. Switching power is the power
consumed due to some work being performed i.e., activity happening in the circuit. In other
words, it is the power consumed when the outputs of the gate switch, which electrically means
charging and discharging of the output capacitance of the gate.

Activity factor represents the fraction of the gates that undergo switching because not all

gates switch in every cycle. Dynamic power is the dominant component of power up to 90 nm

2.1 Power Basics and Metrics 11

technology with the leakage being roughly 10% of the total power.

P = ACV*f + VIear + TAV Iiporef (2.1)
fma;c X (V - V;threshold)2/v (2.2)
Ileak X exp(_qv;fhreshold/(kT)) (23)

However, with 65 nm and smaller technologies, leakage power represented by the second term
of the equation becomes more dominant. Leakage power is consumed irrespective of whether
activity happens in the circuit or not, i.e., it is present irrespective of any work being performed
or otherwise. The major reason why leakage dominates in smaller technologies is as follows.
The increase of transistor density from one technology to another requires reducing operating
voltage in order to maintain the reliability of circuit operation. Though reducing voltage helps
to reduce dynamic power quadratically, it also impacts the maximum operating frequency which,
as Equation 2.2 shows has roughly linear dependence on operating voltage. Thus, in order to
maintain speedup in the event of reducing voltage, threshold voltage should also be reduced.
However, reduction in threshold voltage leads to exponential rise in leakage current as given by
Equation 2.3. In 65 nm technology, leakage power is on par with dynamic power and it further
increases in smaller technologies and this presents a significant power challenge.

The third component of power is attributed to short-circuit current that flows momentarily
between ground and power supply during switching of the gate. Unlike leakage current, this
component of power neither dominates nor exponentially increases.

Apart from these three power components, two other factors related to power have significant
impact on design and reliability of circuits. Peak power is the maximum limit on power above
which a circuit undergoes catastrophic damage and thus, the circuit should be operated below
peak power all the time. Step power is the sharp change in power requirement of a circuit from
one time step to another. This is also called ground bounce or di/dt noise which has an effect
on voltage levels and can lead to erroneous behavior. Thus, it is required to avoid sharp changes
in the power requirements of circuit for reliable circuit operation[7].

Whereas power is the correct measure for wall powered devices such as usual desktop PC and
servers, energy is the correct measure for devices powered by batteries (such as cell phone, laptop

etc.) which store a fixed amount of charge. This is because the amount of energy consumed

2.2 Circuit and Logic Level Techniques 12

Table 2.1: Parameters in Power Equations 2.1, 2.2, 2.3

A Activity factor

C Total capacitive load at the output of the gate
\Y% Operating voltage

Vihreshota Threshold voltage

f Operating frequency

Lshort Short circuit current

Sfrmaz Maximum operating frequency dictated by V and Viureshora
T Operating temperature

k Boltzmann’s constant

q Electronic charge

T Duration of flow of the short circuit current

for performing a task decides the lifetime of the battery in these devices. The computational
efficiency of two devices is often compared using the metric, MIPS/watts. The impact of energy
optimization is compared using product of energy and execution time popularly known as energy-
delay product. The energy-delay product gives a fair measure of comparison and is immune to
tricks. Techniques for dynamic voltage and frequency scaling are often compared using energy —
delay? that gives more weightage to performance loss than to energy savings as compared to just
energy-delay product. Energy — delay? is more useful for applications where high performance

degradation is not desirable for energy savings.

2.2 Circuit and Logic Level Techniques

Various circuit and logic level techniques are available to design circuits with reduced effective
capacitance, thereby reducing dynamic power consumption. Circuit level techniques have also
been developed to reduce leakage power as well as power of interconnects. This section presents

available techniques for reducing power consumption at the circuit design level.

2.2.1 Dynamic Energy Optimization in Logic

Reducing transistor width reduces power. However, it introduces more delay and thus, the im-
plementation of this technique is done effectively by changing the width of a transistor based
on its distance from the critical path[49]. Switching of a transistor leads to the switching of

adjacent transistors as well and increases the overall power consumption. Thus, transistors are

2.2 Circuit and Logic Level Techniques 13

often grouped together such that those that switch often are placed near the output of the
circuit. This restructuring is often applied at multiple levels. For example, gates are often re-
structured in a chain topology and this reduces switching as compared to tree topology[50][51].
Half frequency clock synchronizes at rising as well as falling edge. In general, automation tools
known as EDA tools are used to come up with the best implementation of a circuit by exploring
many possible implementations to meet the desired delay, area, and power goals[52]. Half fre-
quency clocks enable significant power savings by cutting down the operating frequency to half.
Similar benefits can also be achieved by using half swing clocks that swings only to half the
voltage[53]. However, implementation of half frequency and half swing clocks poses significant
design problems that also exacerbates the already troublesome clock skew problem[53]. Apart
from logic gates, the flip-flop which is the basic storage element, is also a major source of power
consumption, especially because of spurious activity. Self-gating flip-flops and conditional cap-
ture flip-flop check this spurious activity and hence reduces power consumption due to spurious

input changes[54][55].

2.2.2 Leakage Energy Optimization in Logic

As described earlier, leakage energy is expected to rise exponentially with technology scaling.
Various circuit level techniques which aim to reduce the leakage energy have been proposed. The
straightforward way of reducing leakage by increasing threshold voltage impacts speedup|7]. One
technique exploits the stacking effect that says that two or more transistor stacked on each other
consume less overall leakage because stacking induces a slight reverse bias between the gate and
source of the bottom transistor. Thus, stacking increases the effective threshold voltage of
the bottom transistor and hence reduces the leakage current. Another technique proposes to
use a high threshold sleep transistor to isolate the leaky circuit element from supply voltage
and ground, and thereby reduces leakage drastically when the circuit is inactive. However,
it involves careful sizing of the sleep transistor, as otherwise, the overhead of activating it
will be high[56]. A Multiple threshold circuit uses high threshold transistors on the critical
path and low threshold transistors on non-critical paths but this technique calls upon a careful
and difficult design[57]. Adaptive body biasing technique dynamically adjusts the threshed
voltage of a circuit by applying a voltage to the body of a transistor depending on whether the

circuit is active or not[58]. Leakage equation 2.3 shows the exponential dependence of leakage

2.3 Architectural Techniques for Power Optimization 14

on temperature which is specifically a concern for smaller technologies. Higher leakage leads
to higher total energy consumption energy which in turn leads to more heat dissipation and
hence high temperature. High temperature in turn increases leakage energy which increases
temperature again. This vicious cycle can lead to a thermal runway which may eventually
damage the chip. Thus, circuit designers are looking at new ways of cooling the chip to check the
temperature and its impact on leakage, such as refrigerating the chip and circulating cryogenic
fluids such as liquid nitrogen[59]. Apart from reducing the leakage, reducing temperature also

improves the performance and reliability of the chip.

2.2.3 Interconnect Energy Optimization

An interconnect is a place of high electrical activity and hence causes heavy energy consumption.
Many proposals target to reduce the energy consumption in interconnects by reducing spurious
transitions or by using only a part of the bus. Bus inversion transfers the actual values or inverted
values depending on which causes less number of transitions. Apart from transitions, cross-talk
among nearby wires also adds significantly to interconnect energy consumption. Shielding wires
are introduced to reduce coupling among the wires. Self- shielding codes encode the value in
such a way as to reduce cross-talk among neighbor wires[60]. Low-swing buses transfer a value
with lower voltage and amplify it back to reduce energy consumption. However, this comes
at the cost of extra hardware[61]. Bus segmentation divides a bus into segments and instead
of keeping the whole bus active keeps only the desired segment active[62]. A network-on-chip
extends the segmented bus idea to the whole chip by composing an interconnection network by
rows and columns, which in turn are divided into segments and demarcated by tri-state buffers.

Different segments are selectively updated as data passes through them[63].

2.3 Architectural Techniques for Power Optimization

Earlier work on architectural techniques for power optimization as described below has mostly
focused on energy consumption of caches and issue queues that contribute significantly to overall
processor energy consumption. Techniques proposed earlier either reduce the energy consump-
tion of an access or reduce the total number of accesses. Splitting memory into smaller sub-banks

and splitting banks into sub-banks enables energy savings by keeping only parts of the memory

2.3 Architectural Techniques for Power Optimization 15

active[64]. Further a compiler can help in clustering data into banks, thereby providing more
energy savings[65]. Filter caches provide significant energy savings by introducing another level
of cache between processor and L1 cache to filter many accesses[66]. Another idea is buffering a
block from the cache and if access is from that block this saves energy. Scratch pad memory is
software controlled memory (filled ahead of time) that resides on the chip and can be accessed
in a single cycle[67]. Low power trace cache designs try to reduce the number of instruction
cache accesses. Instead of accessing both instruction cache and trace cache, branch confidence
estimation can be used to access either from the trace cache or from the instruction cache[68].
An adaptive Cache changes the state of a cache at the granularity of a line, block, or set[69].
A decay based approach simply puts the cache lines that are not in use after some time interval
into drowsy or sleep mode[70][32]. Another approach determines hot spots by deciding the
branch outcome (sufficiently taken branch target is a hot spot) and activates the cache lines
accommodating the hot spot[71]. Deadline elimination based schemes power down cache lines
containing basic blocks that have reached their final use[72]. The adaptive instruction queue
technique divides the instruction issue queue into several partitions and activates only the desired
partition[73]. Certain schemes use program IPC and compare it with IPC in an earlier interval
or threshold to adjust the issue queue size[74]. Yet another approach deactivates the youngest

part of instruction queues based on its contribution to overall IPC[75].

2.3.1 Dynamic Voltage Scaling

DVFS changes the processor voltage and frequency with changing workload of a processor to
gain energy benefits without loosing performance. However, this deceptively simple idea involves
various complications. Predicting workload is complicated because of arbitrary preemption
and presence of modern features like pipelining, out-of-order execution, caches etc. Earlier
work has focused on worst case execution time determination based on static analysis and
measurement based prediction as well as combination of both. Moreover, the pipeline model
and the cache model have been integrated into the compiler/simulator for better estimation.
Nondeterminism and anomalies in real-time systems add to the complication of effective dynamic
voltage and frequency scaling. Finally, DVFS mostly targets dynamic energy and often impacts
performance. The rising level of leakage energy in smaller technologies can overwhelm the

benefits of aggressive DVFS. The I/O which is powered at high voltage can also nullify the

2.3 Architectural Techniques for Power Optimization 16

benefits of even a tremendous saving in energy in the microprocessor part because of longer
execution[76].

These are the different approaches to DVS. An interval based approach determines the usage
of CPU in previous interval(s) to determine the processor speed for the next interval. They
differ in determination of future processor utilization[77]. These are good for regular intervals
but not for irregular intervals. Inter-task approaches monitor the hardware using hardware
performance counters while the process executes, and determines the different frequencies for
different processes based on these to save energy[78]. Inter-task DVS however suffers from two

drawbacks.

e The approach is unaware of program structure and don’t utilize it to determine processor

speed. Flaunter et al.,[33] try to address this problem.

e Task workloads are usually unknown and it works based on the assumption that perfect

knowledge of workload is available. Some also use history based workload prediction.

These limitations cause problems for irregular workloads. In contrast, Intra-task approaches
adjust the processor speed and voltage within a task. One approach divides each task into time-
slots and sets the processor speed to the slowest needed to finish the execution up to this time
slot based on earlier worst-case execution time of the whole task[79][80]. Compiler level intra-
task algorithm due to Shin and Kim,[81] determines the execution time of different program
paths by profiling and inserts instructions to adjust frequency at the start of a different path,
based on how far away is a path from the critical path. Hsu and Kremer’s[82], approach is to
generate a table of execution time and energy consumption for different regions and for different
frequency combination and choose the best frequency combination for each region.

MCD architectures stand in between the fully synchronous and fully asynchronous architec-
tures and are often called as globally asynchronous locally synchronous architectures[83]. An
MCD architecture divides a processor into multiple domains for which frequency and voltage can
be individually chosen. Absence of global clock makes MCD architectures, specifically useful to
deal with the problem of clock skew which is increasingly troublesome for smaller technologies.
DVS can provide more benefit for MCD architectures. However, communication among different
domains in MCD architectures make the DVS problem even more complicated in the context of

MCD architectures. Runtime DVS algorithms for MCD use issue queue usage for each domain to

2.3 Architectural Techniques for Power Optimization 17

get a load estimate and accordingly determine the frequency for each domain. Whereas, earlier
algorithms make their decision after a fixed interval[84], later improvisation adaptively decides
when to apply DVS[85]. A profile based approach[86] executes the program to obtain a runtime
dependence graph of the program. A Shaker algorithm|[86] then works on the graph from the
root to the leaves and from the leaves to the root, to determine the operations with excessive
energy dissipation and stretch their execution to get energy benefits until no operation has slack
or give energy benefits. The feedback from this algorithm is used to select clock frequencies for

different regions[86].

2.3.2 Leakage Energy Management of Other Devices

As mentioned earlier, leakage energy is dominating the overall energy consumption in smaller
technologies. Resource hibernation or putting the idle resources into low leakage mode is a
popular technique to reduce the leakage energy consumption. This technique has been applied

on various components and at various levels.

Displays are the largest consumer of power. The traditional way is to dim the display after
a threshold amount of no-response time. Face-off technique photographs the display perception
and powers down the display if the face is not recognized. The associated cost of photography
is being addressed by less energy consuming heat sensors to control the photography[87]. Zoned
back-lighting technique is based on the assumption that the user is interested in only a part
of the display. This scheme keeps only the focused window bright and rest of windows are

dimmed|[88].

Disk drives are another large consumers of power and most of this is attributed to rotating
platters. One technique puts a platter into hibernation after a threshold amount of time[89]. Low
threshold means more savings but also the risk of more energy and performance loss because
of bumps. High thresholds may miss potential savings. An adaptive scheme increases and
decreases the threshold dynamically to adapt to the usage and provides more effective energy
savings[89]. Another scheme that is more useful in servers (where idleness is not very frequent) is
to charge the RPM based on input queue size and system response time[90]. Operating systems

can further help by clustering disk usage requests[91].

2.4 Software Level Power management 18

2.4 Software Level Power management

2.4.1 Compiler-Directed Power Management

Traditionally, performance oriented compiler optimization are used to provide implicit energy
benefits. [92] demonstrated that loop transformations provide energy benefits in memory but
increase the CPU energy dissipation. [93] found that optimizations that reduce workload to
improve performance such as common subexpression elimination, copy propagation and loop
invariant code motion also reduce the CPU energy dissipation. However, correlation between
performance optimization and optimization for low power is not true in general. Moreover, not
all performance oriented optimizations improve peak power dissipation. For example, software
pipelining and loop unrolling actually increase peak power dissipation because more ILP is
exploited. Thus, many compiler techniques have been developed to reduce power and energy
explicitly in different components. Compiler optimizations can reduce the number of memory
accesses by keeping the data closer to the processor and reduce access energy consumption by
judicious assignment of data to memory locations. [94] proposes various compiler techniques
using state-preserving and state-destroying low-leakage cache modes that determine last usage
of instruction and place the corresponding instruction cache lines into the appropriate state. [95]
exploits data locality and proposes compiler techniques to keep only a part of the data cache

(needed by current computation) active in order to save energy in data caches.

As compared to storage structures, compiler level techniques for reducing energy consump-
tion in functional components and interconnects are rather scarce and are mostly proposed in
the context of superscalar and flat VLIW architectures. Zhang et al., have proposed a reschedul-
ing scheme to reduce dynamic and leakage energy in the functional units of a VLIW processor
by exploiting the remnant slack of a performance-oriented schedule[61]. Kim et al.,[25] have
proposed a leakage energy management scheme for VLIW processors that approximates the ILP
available in the program using heuristics. The calculation is at the coarser loop level granularity
assuming that there is little variation in the ILP within the loop. Their scheme keeps only
canonical subset of functional units that is sufficient to exploit this approximated ILP in the
active state. Gupta et al.,[35] propose a novel data structure called power-aware flow graph.
Their leakage energy management scheme in the context of superscalar processors works over

this graph to determine larger program regions called power blocks which offer opportunities to

2.4 Software Level Power management 19

save leakage energy. ISA and architectural support is needed to switch the functional unit on
and off at the boundaries of power blocks and nullify spurious switching. Kim et al.,[37] have
proposed a modulo scheduling algorithm that produces a more balanced schedule for software
pipelined loops with an objective to reduce the peak power and step power. Lee et al.,[96]
propose an optimal horizontal rescheduling and a heuristic vertical rescheduling algorithm that
exploits the slacks in already scheduled code to minimize the transition activity on instruction
buses (used to transfer instruction from instruction memory to decoder), thereby reducing the
power consumption due to transition activity on the instruction bus. We compare and contrast
our proposal with these earlier approaches in the area of compiler-directed energy management
in the respective chapters.

Remote compilation and remote execution are other challenging areas for energy optimiza-
tion. It has been observed that it is energy efficient to compile remotely if compilation time
exceeds the execution time[97]. However, the best strategy would be to execute, even the code
remotely and just transfer the result just in time[98].[98] also investigates various static and dy-
namic methods of partitioning the code for remote compilation and execution. While the static
method decides at compile time which method would be executed remotely, dynamic methods

are superior in the sense that they dynamically make these decisions based on each call-site[98].

2.4.2 Application and OS Level Power Management

Application transformation and adaptation techniques abstract an application as a software
architecture graph that consists of processes, event handlers, and inter-process communication
mechanisms (IPCM). It considers the base energy consumption of applications and then repeti-
tively applies transformations to applications such as margin processes and replaces costly IPCM
with cheaper IPCM to attain an energy optimized version of the application[99]. Other popular
techniques are: trading the accuracy of computation with energy consumption[100] and reducing
energy consumption by trading off the fidelity[88]. Application usage is monitored and signal is
given when the usage falls below the requested level. Application lowers the quality of service
until resources are plentiful. Echos system abstracts the resources as monetary objects. The
applications are distributed currency based on currently desired battery rate and the currency
is consumed to use resources. The application is interrupted when the currency is depleted[101].

Application hints can be very useful in improving the energy efficiency of systems. Some

2.5 Hardware/Software Co-Optimization 20

software architectures consider systems as composed of two APIs. An API that allows appli-
cation to communicate with the OS and another API that allows the OS to communicate with
the hardware. An application can specify its power performance trade-off by giving the usage,
deadline etc., for resources and these trade-offs are used by the OS for managing resources[102].
For example, an application can check if the disk drive is in sleep mode and whether it is costly
to access it, Then the data can be accessed through the network. Thus, an application has
abstract control over devices which is mapped by the OS to exact control. Similarly, a compiler
can cluster disk accesses and network accesses by applying transformations and then add hints
for the OS for clustered accesses to the disk. The OS can use this hint to process a batch of

disk accesses and put the disk into sleep mode after processing[103].

2.5 Hardware/Software Co-Optimization

A cross-layer scheme applies power management at different levels i.e., at hardware, operating
system, compiler, and application levels. The four major advances in this area are as follows :

Forge system[104] is an integrated power management framework for networked multimedia
systems (specifically targeting video frame requests) that uses DVS, leakage control mode, and
other architectural adaptation such as cache ways and register file size at architecture level.
It has control knobs at OS and compiler levels to control these adaptations and a distributed
middle-ware (at mobile device and proxy server) that takes feedback from the mobile device
about energy statistics and decides the network traffic regulation and quality of service. Different
heuristics are used at different levels but the whole system works in coordination with feedback,
for integrated energy management[104].

Grace[105] is a cross-layer adaptation framework targeting real-time multimedia workload
and integrating dynamic voltage scaling, power-aware task scheduling, and QoS settings. Grace
works with two layers: a global layer that makes decisions less frequently because of high cost and
a local layer which is more active in decision making. The local layer controls CPU frequency,
task scheduling and adapts QoS parameters within the task. The information about a task is
also broadcast to other tasks. Major variations such as low- battery level and large workload
variations trigger the global adapter[105].

Another four layer system proposed by Fei[106] has two system layers of Hardware and OS

2.6 Power Management in Commercial Processor 21

and two user level layers of middle-ware and application. The application declares its energy
requirement for a range of QoS levels before getting admitted into the system. This information
coupled with the information about battery levels (determined by OS) is used by the middle-ware
to determine the systems settings. These setting are communicated to the OS before admitting

the application process in to the system[106].

Another work[107] proposes a mixed Compiler-OS approach targeting real-time systems with
fixed deadlines and worst case execution time requirements where the compiler emits code to
put remaining worst-case execution time values into register and OS reads these value to set

system settings accordingly[107].

2.6 Power Management in Commercial Processor

The Pentium 4 processor though designed from the performance perspective also features a
thermal detection and response mechanism that inhibits the processor’s clock from reaching most
parts of the processor if the temperature enters the danger zone. It also features a register using
which the operating voltage and frequency can be set to either high mode (wall-powered/high
performance) or low mode (battery powered/energy efficient)[108]. Pentium M processor is
specifically designed for the handheld domain. Thus, the architecture has several features that
balance performance and energy consumption. The major features targeting energy efficiency
include hardware for predicting idle units and inhibiting the clock signal, activating only a part
of the bus needed for requisite communication, and execution stacking that clusters together
units that perform similar functions. It also supports six different voltage-frequency settings for
DVFS and low leakage transistors in the cache for reducing leakage energy[109]. Intel PXA27x
processors use a profiler to determine the memory bounded-ness of programs using hardware

performance counters and use this to decide the power modes of the processor.

Transmeta Crusoe Processor uses a code morphing engine to translate x86 instructions into
the native VLIW packets with on-the fly optimization thereby providing energy efficiency by
migrating various hardware functionalities into software and reducing processor real-estate and
hence energy[110]. Later generations are proposed to have features to reduce the leakage en-

ergy consumption as well. IBM has developed an extensive OS power management module

2.6 Power Management in Commercial Processor 22

that abstract away the specification of policies using operating point (frequency and voltage set-
tings) and operating state (active, sleep, idle) which is mapped automatically to the architecture
thereby providing the independence of policy from architecture[111]. ARM’s intelligent energy
management (IEM) software consists of three layers that coordinate together to decide optimal
processor frequency. At the bottom is the baseline algorithm that uses previous workload to
predict future workload and the required frequency settings. At the top is the application de-
pendent decision making algorithm based on clock frequency. In between is the interface using
which an application can communicate its performance requirement to the baseline algorithm.
The performance prediction at the three levels are combined to obtain a confidence rating which
is used to decide the final processor frequency. The powerwise adaptive voltage scaling is com-
bined with IEM where voltage for the chosen frequency is decided and modulated dynamically
based on continuous monitoring of temperature and other environmental factors. This pro-
vides 45% more energy savings compared to a scheme which computes a table of frequency and

corresponding voltages offline[112].

Apart from reducing power consumption, recently, there has been an increase in interest
in building alternative power sources. Research in this direction is fueled by limited capac-
ity of batteries and the advancements in battery technology are far slower compared to the
demand[113]. Two alternative technologies getting specific attention are fuel cells and MEMS.
Fuel cells consist of anode, cathode and a separating membrane. Consumption of fuel as it
moves between electrodes produces electrons that generates electricity. The major advantages
of fuel cells over batteries are the ease of refueling and significantly high energy densities. The
associated disadvantages are the higher amount of heat, high cost due to usage of metallic and
mechanical components, and the need for high safety measures before these can be allowed in
airplanes[114]. MEMS systems are miniature versions of large scale gigantic gas turbine engines
which work on the same principle to convert mechanical energy into electrical energy and offer
high energy density. The major obstacle in their adoption is the high heat density that could
raise chip temperatures to dangerous levels, which is attributed to hot exhaust gases produced

by jet engine, inflammability, and power dissipation of turbines[115].

2.7 Energy Estimation and Energy Modeling 23

2.7 Energy Estimation and Energy Modeling

Software energy estimation is important to evaluate the benefit of any energy optimization
as well as system design. However, it is inherently difficult because exact estimation is often
dependent on low-level circuit details which are not readily available. Moreover, estimation may
itself involve an energy cost and may suffer from estimation errors depending on the granularity
of the estimation. Energy estimation approaches calculate the total energy of software execution
as the aggregate of the energy consumption of individual activities in the system. The major
differences among different approaches are the definition of what constitutes an activity, how
the activities are counted, and how the energy cost for each activity is determined.

The instruction level energy model proposed by Tiwari et al., considers instruction as an
activity[116]. The prerequisite to energy estimation in this method is the characterization of the
target architecture which involves executing each instruction over and over again in a loop and
physical measurement of current to determine the associated energy consumption. The earlier
model proposed by Tiwari et al., ignored the inter-instruction effect. The model proposed later
takes into account the inter-instruction effect by determining the energy consumption for each
pair of instructions and taking into account the pipeline stalls and cache misses[117]. The major
advantage of this methodology is that it can be used for off-the-shelf processors for which the
circuit level details are not readily available. The disadvantage with this method are the lengthy
characterization phase and measurement errors. Later improvisation on this model grouped
similar instructions together to reduce the characterization errors[118][119]. Other extensions
to this work looked at modeling other system activities to improve the accuracy of model such
as buses[120].

Another approach motivated by cycle accurate simulation of program execution is the ac-
tivity based energy modeling. This approach determines activity in different components of
the architecture as the program executes and based on pre-estimated per-activity cost of each
component, the total energy of execution is determined. A pioneering work in this direction is
the Wattch energy simulator that is based on the simplescalar execution simulator[121]. Other
simulators proposed differ in the way they model the activities in different micro-architectural
components and how the energy consumption for each activity is determined[122][123]. The
advantage with this approach is that energy estimation is systematic and is based on all runtime

events. A disadvantage is the need to determine energy for different micro-architectural events

2.8 Limitations of the Earlier Work 24

that require detailed implementation-level knowledge of the target architecture.

The sampling based approach to energy modeling interrupts the software execution period-
ically to collect instantaneous power values. The values are later used to determine the energy
consumption by different processes[124]. The disadvantage with this method is the performance
and energy overhead of constant sampling as well as wrong correlation of energy to a different
process. Hardware performance counters have also been used to obtain sampling intervals of

finer granularity based on critical events in the execution of the program[78].

2.8 Limitations of the Earlier Work

As described in the earlier sections, earlier work for energy optimization has mostly concentrated
at circuit level or architectural level. The work that has happened at software level has mostly
focused on reducing dynamic energy consumption using techniques such as DVFS. Some of the
work at the compiler level also targets to organize data in memory structures such as caches or
to reduce the cache accesses to improve the energy consumption. Though the role of software
level energy optimization techniques in general and compiler optimization techniques for energy
savings in particular have been recognized for quite long, following are the limitations of earlier

works in the direction of software level energy optimization.

1. There is limited work on compiler level leakage energy optimization techniques (specifi-
cally), though leakage is the dominant component of power in current (65 nm) and future
technologies. The role of a compiler is rather limited in the context of superscalar ar-
chitectures but in the context of VLIW and clustered VLIW architectures, the compiler
has a major role to play, not only for performance optimization but also for energy opti-
mization. Though there have been some proposals in the context of VLIW architectures,
they mostly address leakage energy management at the coarser granularity whereas the
increasing significance of leakage in future technologies demands aggressive leakage energy
management. In the context of clustered VLIW architectures, where dynamic energy is
already checked because of simplification of components, leakage is even more significant.
There is hardly any proposal that targets leakage energy savings in the context of clustered
VLIW architectures. We propose and evaluate our compiler-directed instruction schedul-

ing algorithm that assists a hardware based scheme in achieving better energy savings in

2.8 Limitations of the Earlier Work 25

the context of VLIW and clustered VLIW architectures.

2. Energy modeling work in the past has mostly focused on modeling energy in logic and
storage components such as caches. Interconnect energy modeling has started getting
attention only very recently. Recent work on interconnect energy modeling is only useful
for low level modeling of interconnects and is not very useful for architects or compiler
designers to evaluate energy optimizations for interconnects. With the trend towards
more and more decentralized /clustered architectures, the interconnect becomes the major
performance and power bottleneck. Thus, there is a need for high level interconnect
energy models that can be used by architects and compiler designers to evaluate the

energy optimization. We propose one such model.

3. In the absence of any high level model for interconnect energy estimation, the primary
focus of research in the past had been to reduce the latency of communication[42] and eval-
uation of various inter-cluster communication models[12]. However, studies clearly report
that the trend towards decentralized architectures make the interconnect not only a major
performance bottleneck but also a power bottleneck. We propose a compiler/architecture

co-optimization technique for interconnects in the context of clustered VLIW processor.

4. Most of the prior research focuses on optimizing energy in storage structures such as caches
and scheduling hardware etc. In the context of embedded clustered VLIW processors, the
absence of scheduling hardware and small caches require more aggressive energy man-
agement techniques for other dominant energy consumers such as functional units and
interconnects. Our work is particularly pertinent to embedded VLIW /clustered VLIW

processors specifically targeting components such as functional units and interconnects.

Chapter 3

Clustered VLIW Architectures and

Experimental Setup

This chapter gives an overview of clustered VLIW architectures, describes our cluster scheduling
approach, and the experimental framework. Section 1 introduces the clustered architectures.
Section 2 discusses some popular clustered architectures specifically Texas Instruments’ VelociTI
and HP/ST’s Lx. Section 3 describes various steps of our cluster scheduling approach. Section 4
gives a brief overview of the trimaran compiler infrastructure. We also describe the modification
made to the trimaran compiler infrastructure to adapt it for clustered architectures. Section 5

presents a general description of our experimental setup.

3.1 Clustered Architectures

Processors based on new architectures that support high levels of parallelism needed to meet the
demand of high performance in embedded applications have been developed. These have been
made possible due to advances in semiconductor technology. These architectures exploit the fine-
grained instruction-level parallelism (ILP)[1] available in abundance in embedded applications
to attain high performance. ILP gains in performance by parallel execution of the lowest level
computer operations in contrast to coarse grained parallel processing where performance benefits
come from executing large sections of code in parallel on independent processors[1]. Two major

ILP design philosophies are superscalar architectures[2] and VLIW architectures[3]. Though

3.1 Clustered Architectures 27

both these support multiple pipelined functional units connected to a single unified register file
in parallel to achieve better performance, the major difference between the two philosophies lies

in the way parallelism is detected and parallel instructions are executed.

Superscalar processors|2] have dedicated hardware responsible for scheduling instructions at
run time. A branch predictor is employed to avoid pipeline stalls that occur in the event of
control transfer. However, the complicated hardware needed to carry out dynamic scheduling
leads to complicated design and high power consumption. Presence of a large number of func-
tional units leads to commensurate increase in the number of read and write ports which in
turn increase the chip area, cycle time, and power consumption. Furthermore, execution time
becomes unpredictable because parallel instructions are created based on run-time conditions
which change during different executions of the same program. Thus, the dynamic features of
a superscalar processor make it difficult to assure a performance guarantee which is of utmost
importance for real-time applications. These problems of superscalar processors make them less

suitable for embedded systems[125].

Another design philosophy is VLIW architecture[3]. Here, the major point of deviation
from superscalar architectures is that instruction latencies are exposed to the compiler and
the compiler is responsible for scheduling. This eliminates the need for scheduling hardware.
However, embedded applications operating in real time have performance requirements as high
as 10'° to 10'! operations per second and even higher rates are expected in the future with
the growing sophistication of applications[126]. To meet the high performance requirements of
these applications more number of functional units are required to operate in parallel. As the
number of arithmetic units in a processor increases, register storage and communication between
arithmetic units become critical factors dominating the area, cycle time, and power dissipation
of the processors. The single central register file that has traditionally been used to interconnect
ALUs and provide short term storage does not scale well with large numbers of arithmetic units.
For N arithmetic units, area of register files grows as N3, delay as N 3/2 and power dissipation
as N3. The area of register files dominates the area of the ALUs for more than 7 ALUs, the
delay of the register files dominates the latency of a floating point multiplier for more than 58
ALUs, and the power dissipation of the register file dominates the power dissipation of a floating

point multiplier for more than 8 ALUs[126].

Performance measured as the execution time of a program is a product of three components

3.1 Clustered Architectures 28

namely, cycle time, cycles per instruction, and instruction count. Performance can be improved
by reducing any of these components without having a compensating effect on the other com-
ponents. Cycle time is determined by the sum of wire delay and gate delay along the critical
execution paths of a processor pipeline. Wire delays have become significant for the 0.25 mi-
cron CMOS process generation and centralized monolithic architectures (both superscalar and
VLIW) which use long wires for connecting spatially separated resources may not benefit from

the advancements in semiconductor technology[5][6].

Traditional ILP architectures allow any ALU to read from and write to any storage location
and thus provide both storage and communication among arithmetic units in a very general
manner. Partitioning and clustering techniques can be effectively applied to monolithic ILP
architectures to overcome the problems mentioned above to achieve better performance and
scalability[9][10][11]. Complex centralized structures and resources can be partitioned to make
them simple and fast. However, in order to achieve the same functionality as that of the
original hardware without compromising on the performance, these partitioned resources must
be carefully grouped together into small clusters that interact with each other. It has been shown
that a large number of register instances are used only a few number of times and that they
are used up soon after they are created[127]. This temporal locality of register reference can be
exploited by partitioning the register file. The area, delay, and power consumption of a register
file can be significantly reduced by restricting the communication between ALUs and registers,
so that each arithmetic unit can read and write a limited subset of registers. A partitioned
register file has an additional advantage that it can have a smaller number of registers per local
register file than any other scheme for a given number of architected registers, and hence can
potentially provide faster register access time. Clustered VLIW architecture (CVA) based on
this idea has been proposed to overcome the difficulties with centralized VLIW architecture and

to make them suitable for use in embedded systems[9][10][11].

Figure 3.1 and 3.2 depict the general clustered architecture and an individual cluster respec-
tively. A clustered VLIW architecture[11] has more than one register file and connects only a
subset of functional units to a register file. Groups of small computation clusters can be fully or
partially connected using some interconnection topology. Connectivity can also be distinguished
in terms of whether they are connected using a point-to-point network or a bus-based network.

Inter-cluster communication can be provided in various ways as in the send-receive model, the

3.1 Clustered Architectures 29

CLUSTERO CLUSTER 1 CLUSTER N

INTER-CLUSTER COMMUNICATION NETWORK

Figure 3.1: A General Clustered VLIW Architecture

extended operand model, the extended result model, and the broadcast model[12].

e A send-receive model enables ICC by explicit copy operations in regular VLIW issue slots.

e Extended operand model extends some of the operands with the cluster id field and thus
allows an instruction to read some of the operands from some of the other clusters without

any extra delay and without storing them in the local register file.

e Fxtended result model has an encoding of the cluster with the destination operand and
it provides a sort of inter-cluster move (contrast to inter-cluster copy in other models)
by storing the result of an operation in the register file of the other cluster. A genuine
extension of this model is the multi-cast model where the result of an operation can be

stored in more than one cluster.

e Broadcast model provides ICC by a set of shared registers that can be read and written

in all the clusters.

Functional units can be grouped in either heterogeneous or homogeneous way. In hetero-
geneous clustering, each cluster has a different combination of functional units. Homogeneous
clusters are generally preferred to heterogeneous clusters because they help in reducing the num-
ber of distinct components on a chip, and hence the complexity of VLSI design and the validation
process[12]. Clustering avoids area and power consumption problems of centralized register file
architectures while retaining high clock speed which can be leveraged to get better performance.
Several commercial microprocessors such as Texas instrument’s VelociTI[13], HP/ST’s Lx[14],

Analog’s TigerSHARC[15], and BOPS’ ManArray[16], have adopted clustered ILP architecture

3.1 Clustered Architectures 30

LOCAL REGISTER FILE

FUO FU1 . . . FUN CFU

I L

INTER-CLUSTER COMMUNICATION NETWORK

An Individual Cluster

FU Function Unit
CFU Communication Function Unit

Figure 3.2: A Cluster

philosophy to meet the high performance requirements of embedded applications. IBM has pro-
posed the eLite architecture[17] with novel features such as vector processing, facility to switch

functional units on and off and also change clock speed and supply voltage.

3.1.1 Clustering Overheads

Though clustering enables higher clock speed, it also incurs overheads in terms of execution
cycles and code size. Clustering overheads are due to various interrelated factors. Inter-cluster
communication delays are governed by spatial distance between communicating clusters as well
as the latency and bandwidth of the interconnection mechanism. Thus, communication among
clusters costs extra cycles due to latency and limited bandwidth of the communication channel.
Furthermore, encoding of the inter-cluster communication in the instruction set architecture
(ISA) may also constrain operation scheduling because some of the issue slots and resources
may be in use for inter-cluster communication and this may lead to delay in scheduling regular
operations. Replication of values among clusters leads to increased register pressure. Thus the

code size overhead can lead to extra cycles due to instruction cache stalls. Moreover, register

3.2 Some Clustered Architectures 31

requirements of instructions may cause spilling and hence extra cycles due to data cache stalls.
Thus, due to interrelated nature of the different factors, their contributions to the clustering
overhead are not always independent of each other[12].

As in terms of performance, clustering also provides mixed benefit in terms of energy.
Though, clustering simplifies the components which gives benefit in dynamic energy consump-
tion, the extra cycles of execution (because of reasons mentioned above) increase idleness of
components which in turn increase leakage energy in components. As mentioned earlier, signif-
icance of leakage is particularly high in the current and future technologies. Another impact of
clustering an architecture is the need for an interconnect for inter-cluster communication. The
inter-cluster communication network is composed of long wires having high load capacitance.
Thus, communication on inter-cluster communication network also contributes to the additional

energy consumption in clustered architectures.

3.2 Some Clustered Architectures

3.2.1 VelociTI Architecture

VelociTI is a load-store RISC-style VLIW architecture[128]. Figure 3.3 depicts the block diagram
of the architecture. Figure 3.4 shows the CPU data paths of TMS320C64X processor, one
member of the VelociTI architecture family. The architecture follows a homogeneous clustering
philosophy and has two clusters (named A and B). Each cluster has a 32x32 register file and 4
functional units (named L, S, M, and D). Having a VLIW architecture, it allows parallel fetch,
decode and execution of multiple instructions that compose a VLIW instruction word. During
execution, each instruction is performed on a single functional unit. Eight 32 bit instructions
supply control for eight independent functional units. The instruction set consists of simple,
atomic, and completely independent instructions. Memory operations have been decoupled
from arithmetic operations. This feature lowers the number of data fetches for a particular
algorithm and thus CPU power consumption as well. The most frequent instructions can be
executed on the largest number of functional units. Every instruction can execute on at least
two functional units. Six registers (A0,A1,A2,B0,B1,B2) can be used for conditional execution
of instructions and all instructions can be executed conditionally. However, some instructions

can be conditionally executed only by specific units. Most of the instructions are of unit latency.

3.2 Some Clustered Architectures 32

Program cache/program memory
32-bit address
256 bit data

Y

Power Instruction fetch
- Control
down Instruction dispatch registers
Instruction decode
Y Data path A Data path B Control
el DMAEMIE | Register file A | | Register file B | logic
’ es
I et N I T S
[| Ly simi|p1| [.L2[.s2|m2].D2| | Emulation =+—n
) | Interrupts |« >
[
\
Y : : ™| Additional
peripherals :
Data Cache/data Memory Timers,
32-bit address Serial ports,
8-, 16—, 32—, 64— bit data etc '

Figure 3.3: VelociTI Architecture Block Diagram

16x16 bit multiply has a 2 cycles latency while load has a latency of 5 cycles and branch

instruction has a latency of 6 cycles.

Like the instruction set, the register file is also highly orthogonal. Any register can be an
operand of any instruction or any type of functional unit. Each functional unit reads directly
from and writes directly to the register file within its own data path. That is L1, S1, D1, and
M1 units write to register file A and L2, S2, D2, and M2 units write to register file B. Each
functional unit has two 32-bit read ports for the source operands srcl and src2 (one each) and
a 32-bit write port into a general-purpose register file. The register files are connected to the
functional units of the opposite-side register file via 1X and 2X cross-paths. These cross-paths
allow functional units from one data path to access a 32-bit operand from the opposite side
register file. The 1X cross-path allows the functional units of data-path A to read their source
from register file B and the 2X cross-path allows the functional units of data path B to read

their source from register file A. All eight functional units have access to the register file on the

3.2 Some Clustered Architectures 33

srcl
L1 src2
dst

= STlb

= STla

srcl . .
S1 src2 Register file
dst A

(A0 - A31)

srcl
M1 src2
dst

srcl
DAl D1 src2
dst

Cross—pah\ 1

dst
DA2 D2 src2
srcl

FAH

__ LDib
__ LDla

<—— LD2b
<—— LD2b

dst
M2 src2

Register file
srcl

B
(BO - B31)

dst
S2 src2
srcl

dst
L2 src2
srcl

Gullo il

= ST2b

= ST2a

Figure 3.4: TMS320C64X CPU Data Paths

opposite side, via a cross-path. The src2 input of M1, M2, S1, S2, D1, D2 units are selectable
between the cross-path and the register file on same side. In the case of L1 and L2, both srcl
and src2 inputs are selectable between the cross-path and the register file on the same side .
Only two cross-paths, 1X and 2X, exist in the C6X architecture. Thus, only two cross-path
source reads per cycle are possible. There are four 32-bit paths (LD1a and LD1b for side A and
LD2a and LD2b for side B) for loading data from memory to register files. Similarly there are
four 32-bit paths (ST1a and ST1b for side A and ST2a and ST2b for side B) for storing register
values to memory. The data address path DA1 and DA2 are each connected to the D unit in
both the data paths. This allows data addresses generated by one path to access/store data

to/from any register.

The pipeline is divided into three phases. The fetch phase covers four pipeline stages, the
decode phase covers two pipeline stages and the execute phase covers 5 pipeline stages. Load

and store follow the same pipeline flow and thus the result stored in one execute packet can

3.2 Some Clustered Architectures 34

be read by the next execute packet and this avoids read-after-write conflicts typically found in
DSP processors. The VelociTI architecture lets the simplest of CPU instructions determine the
cycle time of the processor. The critical path corresponds to the time for register-to-register
ALU operation such as an ADD instruction. More complex instructions, such as multiply,
are implemented with a one-cycle latency. To access high performance, synchronous on-chip
memories, instruction fetch and data access are performed in multiple pipeline stages. The
VelociTI pipeline is unprotected and fully exposed to the compiler. Run-time interdependencies
such as pipeline interlocks between phases used in other DSPs are difficult to predict at compile
time. The VelociTI CPU model at compiler time fully reflects the execution and completion

order of instructions at run time[13].

3.2.2 Lx Architecture

Bundle PC Interrugt and Exception
ontroller
|
Cluster 0 Data
Instruction Cache
Fetch M%%%
Cacge Controller
ana . Cluster 1 Data CMC
Expansmn Cache (and) - =
Unit - Inter-
(FCEXU) . CIISUL?ster
I Data (ICB)
‘ Cache
|Cache % Cluster N ‘ .

Figure 3.5: Lx Architecture Block Diagram

Lx is a statically scheduled VLIW architecture form HP Labs targeted to embedded applications[14].
Figure 3.5 depicts the block diagram of Lix architecture. Lx is scalable (with number of clusters
varying between 1 to 4) and customizable to specific applications or application areas through
the addition of application specific operations. Clusters are composed of a mix of register banks,

constant generators, and functional units and can be heterogeneous having different unit/register

3.2 Some Clustered Architectures 35

mixes. However, all the clusters are controlled by a single program counter, driven by the same
execution pipeline and fed synchronously from the same logical instruction cache so that they run
in lockstep. Inter-cluster communication, is achieved by explicit register-to-register move. Lx
defines a scalable and flexible communication mechanism based on a simple pair of send-receive
instruction primitives that move values among registers.

An Lx cluster is a 4-issue VLIW core composed of four 32 bit integer ALUs, two 16x32
multipliers, one Load/Store unit, and one branch unit. The Cluster also includes 64 32-bit
general-purpose registers and 8 1-bit branch registers (used to store branch conditions, predi-
cates, and carries). The ISA consists of a simple RISC instruction set with minimal predication
support through select instructions. The memory repertoire includes base+toffset addressing,
allows speculative execution and software pre-fetching. The control unit supports a two-step
branch architecture, where compare and branch operations are decoupled and the compare-
branch latency is exposed to the compiler. The ISA includes a complete set of compare and
logic operations. There are no architecturally visible delay slots after the taken branch. It has

a simple six-stage in-order pipeline: F D R E1 E2 W([14].

3.2.3 Other Clustered Architectures

Analog’s TigerSHARC]I15] is a register based load-store architecture. It has a mix of features
from both VLIW and superscalar architectures and thus is also known as a static superscalar
architecture. The TigerSHARC architecture implements a model where the program specifies
instruction-level parallelism only, and the hardware dynamically resolves instruction timing.
ILP is determined prior to run-time by a compiler or programmer as in a VLIW architecture.
However in contrast to a VLIW architecture, it has features such as fully interlocked register
files and all the computation and memory access instructions come with a regular two-cycle
delay pipeline.

IBM’s eLite[17] is a statically scheduled RISC-style clustered LIW DSP architecture designed
for very low power implementations targeting algorithms found in communication standards,
audio and video encoding/decoding, and voice-over-IP. It supports 3-wide ILP by allowing each
LIW instruction packet to have one, two, or three variable size instructions whose individual

size can be 16, 20, 24, 30, or 60 bits.

The RAW microprocessor[129] consists of identical tiles interconnected through a pipelined

3.3 Cluster Scheduling 36

two dimensional mesh. Each tile has a RISC processor with a register file and a cache. The
highly distributed RAW architecture is fully exposed to the RAW compiler for scheduling, com-

munication, and synchronization.

3.3 Cluster Scheduling

Instruction scheduling involves reordering and grouping instructions in order to achieve perfor-
mance benefits in terms of execution time and power consumption among others. It is performed
on the low level intermediate code (after all machine independent optimization). The problem
of scheduling becomes harder in the context of clustered architectures because a scheduler has
to decide not only when to schedule (temporal concern) but also where to schedule (spatial
concern). In a monolithic micro-architecture, the earliest time a data-ready operation can be
scheduled for execution depends only on the availabilities of the functional unit and the resource
to store the result. In contrast, the earliest time a data-ready operation can be scheduled on the
clustered processor depends not only on the resource availability as in a traditional architecture
but also on the delay in accessing the source operands. In other words, an operation can become
data-ready at different times on different clusters depending on the proximity to the cluster(s)
in which source operands are produced. In order to carry out effective cluster scheduling, a
cluster scheduler is required to accurately gather and effectively utilize information regarding
availability of operands in a cycle, availability of resources and cross-path in current and earlier
cycles, as well as resource and cross-path requirements that may arise in the future. Essentially,
effective scheduling of a clustered VLIW architecture demands resolving the conflicting goals of

exploiting hardware parallelism as well as minimizing communication among clusters.

Earlier proposals for scheduling on clustered VLIW architectures can be broadly classified
into two main categories. The phase-decoupled approach to scheduling[130][131][132] works
on a data flow graph (DFG) and partitions instructions into clusters to reduce inter-cluster
communication while approximately balancing the load among clusters. The annotated DFG
is then scheduled using a traditional list scheduler while adhering to earlier spatial decisions.
However, the phase-decoupled approach to scheduling suffers from the well known phase-ordering
problem. A spatial scheduler has only an approximate knowledge (if any) of the usage of cross

paths, functional units, and load on clusters. This inexact knowledge often leads to spatial

3.3 Cluster Scheduling 37

decisions which may unnecessarily constrain a temporal scheduler and may lead to a suboptimal
schedule. We follow an integrated approach to scheduling[133][43][134][135] that tries to combat
the phase-ordering problem by combining spatial and temporal scheduling decisions into a single
phase. A description of the earlier approaches for cluster scheduling is available in chapter 4.
In what follows, we give a general high level description of the various steps involved in our

scheduling approach.

3.3.1 Preprocessing

The preprocessing phase builds scheduling regions of the code. Different region formation tech-
niques such as loop unrolling, superblock formation, and hyperblock formation aim to enhance
the available ILP in the program in order to achieve better schedule. After region formation, the
next step is to construct a dependence graph of the region with nodes as instructions and edges
between nodes for dependences between the instructions. The dependence graph is preprocessed
to determine various topological directed acyclic graph (dag) properties such as height of a node,
depth of a node, the number of successors of a node, and the static slack associated with a node.
These properties are stored in each node and referred during scheduling. In some cases, proper-
ties such as available slack in scheduling an instruction and the number of scheduled successors
of an instruction are dynamically determined. The root node of the dependence graph is used

for initializing the ready-list which contains instructions ready to be scheduled in a cycle.

3.3.2 Instruction Selection

Each scheduling step involves instruction selection from the ready-list for scheduling based on
a priority function. Selection of instructions from the ready list can be based on any priority

order derived from different DAG properties[136] such as :

o Earliest start time (EST) of an instruction which is defined as the earliest time step at

which an instruction can be scheduled without violating any dependency in the DFG.

o Latest start time (LST) of an instruction which is defined as the latest scheduling step
of the instruction such that a valid minimum length schedule can still be achieved on an

infinite resource machine.

3.3 Cluster Scheduling 38

o Slack or mobility of an instruction which is defined as the difference between EST and

LST.
e Maximum distance of an instruction from the sink node of DFG.

e Number of children of an instruction.

We select instructions from the ready-list based on the scheduling slack of an instructions
and the number of successors of an instruction. After one scheduling step is over, the ready-list
is updated to include new instructions that are ready to be scheduled. The dynamic properties
of instructions such as dynamic scheduling slack and the number of unscheduled successors are

determined when an instruction is inserted to the ready-list.

3.3.3 Cluster Assignment

Instruction selection is followed by selection of the cluster to which an instruction can be as-
signed. The scheduler determines all the alternatives for scheduling an instruction on different
clusters taking into account the availability of functional units and cross-paths. The selection of
a cluster for binding an instruction from a set of feasible clusters is done based on parameters
such as the earliest time at which an instruction can be scheduled on a cluster and/or the com-
munication cost of scheduling an instruction on a particular cluster, depending on the objective
of the scheduler. The communication cost metric takes into account the communications that
happen in the current cycle as well as in future. Figure 3.6 presents an example to illustrate
the current and future communications that happen because of a binding. Let us assume that
V1 is mapped to cluster 1 (shown with a light circle) and V2 and V3 are mapped to cluster 2
(shown with dark circles). If a scheduling decision is taken to bind V4 on cluster 1, these are

the communications that will be required as a side effect of this binding:

1. Communicate V2 from cluster 2 to cluster 1 using inter-cluster move instruction in one of

the earlier cycles.

2. As a side effect of binding V4 on cluster 1, V5 will incur a communication in future no
matter whether it is bound to cluster 1 or cluster 2. This is because V3, the other parent
of V5 is already bound to cluster 2. This is the required future communication as a side

effect of the binding as shown with a darker arrow from V3 to V5.

3.3 Cluster Scheduling 39

Figure 3.6: Communications Required as a Result of a Cluster Assignment

A more detailed description on calculation of communication cost and the cluster selection

criteria is available in later chapters.

3.3.4 Functional Unit Assignment

Assignment of functional units is not completely independent of cluster assignment. Many times
a cluster which has an active functional unit to schedule an instruction is preferred over a cluster
which requires explicitly activation of a functional unit. In other situations, the selection among
available functional units within a cluster is done based on how long a functional unit has been in
sleep mode. Depending on the objective of the scheduler, the cluster assignment decision is made
based on the availability of active functional units and/or communication cost of scheduling an

instruction in a cluster.

3.3.5 Cross-path Assignment

A cross-path assignment scheme decides the cross-path to be used for transferring the data
needed by an instruction from other clusters to the target cluster (where the instruction would
execute). The scheme in general tries to minimize the cost of transfer by choosing the minimum
energy cross-path that can transfer the data values without explicitly stretching the schedule. It
is important to note that cross-path scheduling is only relevant for heterogeneous interconnect
clustered VLIW architectures which offers different cross-paths varying in terms of latency and

energy cost. A detailed description of heterogeneous interconnect clustered VLIW processors

3.4 Trimaran Framework 40

and cross-path assignment schemes is available in later chapters.

3.4 Trimaran Framework

We have used the Trimaran suite[137] for our experimentation. Trimaran was developed to
conduct state-of-the-art research in compilation techniques for ILP architectures with a spe-
cific focus on VLIW class of architectures. Figure 3.7 depict our research framework built on
trimaran infrastructure. Trimaran infrastructure is basically composed of three major compo-
nents namely IMPACT front-end, ELCOR backend and simulator. IMPACT performs typical
front end related functionalities such as parsing, type checking, and a large suite of high-level
(i.e. machine independent) classical optimization. Apart from classical optimizations, IMPACT
also performs lot of instruction-level parallelism enhancing optimizations followed by forming
scheduling regions. The transformed and optimized C program is then passed to back-end called
ELCOR in the form of a textual intermediate representation called Rebel. ELCOR internally
represent the program using a dependence graph based intermediate representation which is
suitable for performing various machine dependent optimization. ELCOR is fully parameter-
ized using an extensible machine description called MDES. The machine description MDES
provides facility to specify the target machine attributes such as instructions, their latencies and
resource requirements and number and type of registers. The machine description is queried to
perform machine dependent optimization such as instruction scheduling, and register allocation
using the dependence graph representation of the program. The final component is a cycle-level
simulator which is configurable by a machine description and provides run-time information on

execution time, branch frequencies, and resource utilization.

We have modified the Trimaran suite to generate and simulate code for a variety of clustered
VLIW configurations. The machine description module has been upgraded to describe various
clustering related parameters such as the number of clusters, number and types of functional
units in each cluster, interconnection network parameters such as number and types of cross-
paths between different clusters, and their latency parameters. These parameters are fed to the
parameterized machine-dependent optimization modules in the back-end. Major modifications
have been performed in the Trimaran scheduler and register allocator module (which was orig-

inally written for a class of flat VLIW architectures) to faithfully account for the conflicts due

3.5 Experimental Setup 41

IMPACT
Parsing Classical Optimization
C Program High Level Optimization Region Formation IR
(Function Inlining etc.) N
- ILP Optimization
Control Flow Profiling
Machine
Description
ELCOR (MDES)
Dependnece Pre-Pass | | Register | | Post-Pass L~ Simulator Execution
Graph | Scheduling Allocation Scheduling Statistics
Construction
—
Power Models
Energy
Results

Figure 3.7: Implementation Framework on Trimaran Infrastructure

to limitations on the number of available functional units and registers in a cluster as well as
the limitations on the number of available cross-paths between clusters. The scheduler has been
modified to implement the scheduling algorithms described in later chapters. The execution
statistics obtained from trimaran simulator and parameters of the target machine as obtained

from machine description are used in power models to obtain the energy results.

3.5 Experimental Setup

This section describes our general experimental setup. The specific details of experiments (if
any) can be found in individual chapters along with performance results. We have used twelve
benchmarks out of which nine are from mediabench[138][139] (viz. cjpeg, djpeg, rawcaudio,
rawdaudio, g721encode, g721decode, md5, des, and idea), two from netbench[140][141] (viz. cre,
and dh), and one (susan) is from MiBench[142][143]. Table 3.1 gives the description of different
benchmark programs. We have tried other benchmarks from these suits as well but these are
the only ones which compiled successfully and executed correctly in the Trimaran framework.
The results are presented for an unclustered flat VLIW, a two-cluster VLIW, and a four-
cluster VLIW machine. Table 3.2 gives latency of different operations. Table 3.3 gives the
configuration of different clustered VLIW architectures. The unclustered VLIW configuration

3.5 Experimental Setup

42

Table 3.1: Description of Benchmark Programs

‘ Benchmark Suit ‘ Program ‘ Description
cjpeg Image Compression
djpeg Image Decompression
rawcaudio | Adpcm Encoding
rawdaudio | Adpcm Decoding
Mediabench g721lencode | Speech Encoding
g721decode | Speech Decoding
mdb Message Digest
des Data Encryption Standard
idea Block Cypher
Netbench crc Checksum calculation
dh Diffie-Hellman Encryption Decryption
MiBench susan Image Recognition
Table 3.2: Latencies of Operations
Integer 1
Integer Multiply 3
Integer divide 8
FP 3
FP Multiply 3
FP divide 8
Load 3
Store 1
Branch 3
Inter-Cluster Move | 1/3
Table 3.3: Clustered VLIW Configurations
Base VLIW 4 ALUS, 2 Load-store units, 1 Branch unit, 64 Registers

2-Clustered VLIW

2 ALUS, 1 Load-store units, 1 Branch unit, 32 Registers

4-Clustered VLIW

1 ALUS, 1 Load-store units, 1 Branch unit, 16 Registers

3.5 Experimental Setup 43

has 4 ALUs, 2 load-store units, 1 branch unit, and 64 registers. The 2-clustered configuration
has 2 ALUs, 1-load store units, 1 branch unit, and 32 registers in each cluster, whereas the
4-clustered configuration has 1 ALU, 1-load store unit, 1 branch unit and 16 registers in each.
The inter-cluster cross-paths allow communication of two data values between clusters in each
cycle. The latency of inter-cluster move operation can be 1 cycle or 3 cycle depending on the

cross-path used. This is further explained in detail in chapter 5 and chapter 6.

Chapter 4

Leakage Energy Management for
Functional Units

4.1 Introduction

The ongoing improvements in the semiconductor technology bring along various challenges[144].
One such challenge is the rising level of the leakage energy consumption in the logic. The
transistor density doubles every eighteen months by packing more logic into the same area.
However, this increase in the transistor density requires reducing the supply voltage in order
to operate the circuit reliably. The reduction in supply voltage also requires reduction in the
threshold voltage in order to maintain the speedup and this leads to an exponential rise in
the leakage component of the energy consumption[7]. With the 65nm and smaller technologies
currently in fabrication, the leakage energy is on par with the dynamic energy consumption. In

future technologies, the leakage energy will further dominate the overall energy consumption|[8].

VLIW and clustered VLIW architectures rely on compile-time scheduling. This simplifies
the issue logic by alleviating the need for a dedicated hardware for scheduling. Thus, a sig-
nificant fraction of the total leakage energy consumption in VLIW architectures is attributed
to components such as functional units and instruction decoder. The frequent access of these
components raises the temperature level and makes the leakage energy consumption even worse.
Though, the exact percentage depends upon the architecture and circuit details, earlier studies

report that 30% to 35% of the static energy conumption in a VLIW architecture is attributed to

4.1 Introduction 45

functional units[25]. An architecture level model developed in [26] also confirms that the leakage
energy consumption in functional units constitutes a noticeable fraction of the overall processor
leakage energy consumption despite having a smaller transistor count compared to the caches.
Thus, optimizing leakage energy in functional resources is becoming more important by each

process generation.

However, these architectures are often designed targeting embedded domains where the
real-time performance is of utmost importance. Thus, the design is often optimized for the
peak performance and as a result, the functional units are underutilized due to the inherent
variations in the ILP of the programs. Clustered VLIW architectures improve over the VLIW
architectures by solving the scalability problem (in order to obtain a better clock rate) by
distributing functional units among different clusters[11]. However, contentions for the limited
number of slow inter-cluster communication channels introduce many short idle cycles and makes
the utilization of functional units even worse. This further exacerbates the leakage energy

consumption problem in clustered VLIW architectures specially in smaller technologies.

The underutilization of functional resources can be exploited to reduce leakage energy con-
sumption. Some earlier work in this area reports leakage energy management at a coarser
granularity of loop level[25] or block level[35]. However, the rising level of leakage energy in
current and future process technologies requires aggressive leakage energy management even
for short idle periods. One such purely hardware based scheme in the context of a superscalar
architecture is due to Albonesi et al.,[34]. Their scheme utilizes the unique characteristics of
dual-threshold domino logic with sleep mode that can transition between active mode and sleep
mode without any performance penalty[30]. However, such a fast transition incurs moderate
amount of energy penalty. Their scheme puts any integer ALU into low leakage mode after one
cycle of idleness. Their results confirm the benefits of such an aggressive scheme. However,
being a purely hardware based scheme, the benefits are severely (on average, by 30%) affected
by frequent transitions from active mode to sleep mode and vice-versa because of many short

idle periods.

In this chapter, we propose and evaluate our compiler-directed instruction scheduling algo-
rithm that assists such a hardware based scheme in achieving better energy savings in the context
of VLIW and clustered VLIW architectures. Though our primary focus is clustered VLIW ar-

chitectures, we also present results of applying the proposed scheduling technique in the context

4.2 Motivation 46

of flat VLIW architectures for the sake of completeness and comparison. Whereas the hardware
scheme suffers from a limited program view, a compiler can analyze whole program regions and
is capable of orchestrating the mapping between operations and functional units in the context
of VLIW and clustered VLIW architectures. The proposed scheme exploits the scheduling slacks
of the instructions to maximize the simultaneous idle time and usage of functional units, thereby
reducing the number of transitions drastically. This reduction in the number of transitions leads
to significant improvements in the energy savings over those obtained by a purely hardware
based scheme. Moreover, since the proposed scheme keeps a limited number of functional units
active and use them as much as possible, it generates a more balanced schedule which helps to
reduce the peak power and the step power[37]. The proposed scheme is particularly targeted
toward embedded clustered VLIW processors where the absence of scheduling hardware and the
small caches require more aggressive energy management techniques for other dominant sources
of energy consumption such as functional units and instruction decoders. The simplification of
the components in clustered VLIW architectures makes dynamic energy consumption a less of
a concern whereas increasing significance of leakage in smaller technologies demands aggressive
leakage energy management in functional units.

The rest of the chapter is organized as follows. Section 2 provides a motivation for this work
along with some quantitative results. Section 3 describes our new instruction scheduling algo-
rithm and presents an example to show the benefits of the proposed scheme. Section 4 provides
detailed experimental results and analysis. Section 5 presents the application of the proposed
technique and experimental results in the context of instruction decoder. Section 6 describes
the earlier work in the area of instruction scheduling for clustered VLIW architectures, architec-
tural approaches for energy management, and energy-aware scheduling for VLIW architectures.

Section 7 concludes this chapter with a summary.

4.2 Motivation

The VLIW and clustered VLIW class of architectures are in widespread use in the embedded
domain. The primary reason for their success in this domain is high level of ILP in the em-
bedded workload and the suitability of a compiler scheduling algorithm to map this explicit

ILP to available hardware. In order to satisfy the demand for high performance in embedded

4.2 Motivation 47

Savings and Energy Overhead [MaxSleep
B NoOverhead
[] Ooverhead

e, ray fawg 9227 9727 idey ™Mmgs des 9h Cre Susy AV,
9 Teg Cay aud,-g e,,_21 de~21 N * n 2 G
io Coge Code

Figure 4.1: % Savings for 'MaxSleep’ and 'NoOverhead’ Policies

applications (most of which are real-time applications), these architectures use more and more
number of functional units. However, the inherent variations in the ILP of the programs lead
to underutilization of functional units. We observe that integer ALUs are idle for 60% of the
time on an average for a collection of media benchmarks. This idleness figure is for a VLIW
configuration having only a moderate number of ALUs so as to achieve 95% of the peak per-
formance (details of our experimental setup and energy model appear in a later section). The
idleness is even more pronounced for a clustered VLIW configuration because of the contention
for a limited number of slow interconnects which manifests itself in the form of many short idle

cycles.

A hardware based scheme such as 'MaxSleep’ proposed in [34] puts a functional unit into
low leakage mode after an idleness of one cycle and thus saves leakage energy (refer the related
work section for a description on 'MaxSleep’). However, if there are many short idle cycles
then there are many transitions and the transition overheads adversely affect the benefit gained
by such a scheme. Figure 4.1 presents the energy savings obtained by a 'MaxSleep’, energy
savings obtained by a 'NoOverhead’ scheme which is a hypothetical scheme (same as "MaxSleep’)
but does not incur any transition energy overheads and % energy overhead of 'MaxSleep’ due
to transitions as compared to that of 'NoOverhead’ scheme for integer ALUs in a 2-cluster
configuration. These results clearly indicate that the 'NoOverhead’ scheme is able to achieve

an average savings of 50% in total energy, where as the average savings for 'MaxSleep’ is only

4.2 Motivation 48

MaxSlep
Optimized mmmmmman

10 20 30 40 50 60

Figure 4.2: % Cumulative Distribution of Idle Cycles

31%. ’'MaxSleep’ has an average energy overhead of 26% (due to transitions) as compared to
the "NoOverhead’ scheme. These results are also in agreement with the results presented in [34].
Thus, reducing the number of transitions will increase the idleness duration for functional units

and improves the energy benefits of a hardware based scheme.

Motivated by this, we have developed a scheduling algorithm in the context of VLIW and
clustered VLIW architectures that leverage the available slack in scheduling instructions in order
to keep the idle functional units idle for a longer duration while maximizing the utilization of
active functional units. Figure 4.2 shows the average cumulative distribution of idle cycles
in integer ALUs for a 2-clustered machine on our collection of benchmarks. The graph for
"MaxSleep’ clearly shows many small idle cycles constitute a large percentage of overall cycles.
50% of total 71% idle cycles have a duration less than or equal to 10 cycles. The graph after
applying our scheduling scheme is shown with title ’Optimized’. This shows that the many
small idle cycles have been converted to large idle cycles by reducing transitions and only 34%
of overall idle cycles are now less than 10 cycle. Idle cycle of length between 10 to 20 cycles
constitute 32% of total idleness for ’Optimized’ scheme while for the "MaxSleep’ scheme this is
only 18%. This clearly shows that our scheme is able to exploit the slack to reduce the number

of transitions thereby increasing the duration of idle periods.

4.2 Motivation 49

Algorithm 1 Energy Efficient Scheduling for Functional Units

1:
2:
3:
4:

8:
9:
10:
11:

12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:

24:
25:
26:
27:
28:

29:
30:

31:
32:
33:
34:
35:
36:
37:
38:

if (Scheduling for a clustered configuration) then
ClusterScheduling < 1
end if
Initialize ReadyList with root operations of the dependence graph of the
region to be scheduled
CurrentCycle < 0
while (ReadyList is not empty) do
Initialize EarlyCycle with CurrentCycle, and LateCycle with SchedulingCycle de-
termined using performance oriented scheduling
slack = LateCycle — EarlyCycle
while (Not all operations in ReadyList have been tried once) do
(CurrentOperations <— UnSchedList.pop())
AlternativeList < DetermineScheduling Alternatives(
CurrrentOperation, ClusterScheduling)
if (IsEmpty(AlternativeList)) then
CONTINUE
end if
TargetCluster < 0
SUCCESS < FALSE
if (ClusterScheduling) then
TargetCluster < DetermineBestCluster(CurrentOperation)
AlternativeList < DetermineSchedulingAlternatives(
CurrentOperation, TragetCluster)
end if
while (CurrentAlternative = AlternativeList.pop()) do
if (FU in CurrentAlternative are active) then
Schedule CurrentOperation using CurrentAlternative in CurrentCycle on
TargetCluster.Cluster using TragetCluster.CommOption
SUCCESSS + TRUFE
end if
end while
if (ISUCCESS and Slack < SLACK_THRESHOLD) then
FallBack Alternative <— DetermineBest Alternative(
AlternativeList, TargetCluster)
Wakeup FU in FallBackAlternative
Schedule CurrentOperation using FallBackAlternative in CurrentCycle on
TragetCluster.Cluster using TragetCluster.CommOption
else
ReadyList.add(CurrentOperation)
end if
end while
CurrentCycle <+ CurrentCycle + 1
ReadyList.update()
update FU Status()
end while

4.2 Motivation 50

Procedure 2 DetermineBestCluster

1: FirstTarget.Cluster < —1
2: FirstTarget.CommCost <— 1000000
3: FirstTarget.CommOption <— NULL
4: SecondTarget.Cluster < —1
5: SecondTarget.CommCost < 1000000
6: SecondTarget.CommOption < NULL
7: for (CurrentCluster ranging from FirstCluster through LastCluster) do
8: Compute the Cross-path Requirements in CurrentCommOption
9: Compute the Communication Cost in CurrentCommCost
10: if (FU and Cross-paths required by CurrentOperation are available in CurrentCycle
for CurrentCluster) then
11: if (FU under consideration is in active mode and FirstTarget.cost > Current-
CommCost) then
12: FirstTarget.CommCost < CurrentCommCost
13: FirstTarget.CommOption < CurrentCommOption
14: FirstTarget.Cluster < CurrentCluster
15: else
16: if (SecondTarget.cost > currentCommCost) then
17: SecondTarget.CommCost < CurrentCommCost
18: SecondTarget.CommOQOption < CurrentCommOption
19: SecondTarget.Cluster < CurrentCluster
20: end if
21: end if
22: end if
23: end for

24: if (FirstTarget.cluster! = —1) then
25: RETURN FirstTarget

26: else

27: RETURN SecondT'arget

28: end if

4.3 The Scheduling Algorithm 51

4.3 The Scheduling Algorithm

The Elcor backend of the Trimaran infrastructure has a cycle scheduling algorithm designed and
implemented for flat VLIW architectures[137][145]. We have modified this algorithm to perform
leakage energy optimization for VLIW as well as clustered VLIW architectures. Another loop has
been added inside the main scheduling loop of the cycle scheduler to perform cluster scheduling
in an integrated fashion. The integrated approach[43][134][135] to cluster scheduling makes the
cluster assignment decision during temporal scheduling. This is in contrast to phase-decoupled
approaches[130][131][132] which perform cluster assignment prior to temporal scheduling. Es-
sentially, our integrated scheduling algorithm for leakage energy optimization consists of the

following main steps.

1. Prioritizing the ready instructions
2. Assignment of a cluster to the selected instruction

3. Assignment of functional unit to selected instruction in target cluster

In what follows, we describe how each of these step is performed in our algorithm. An outline

is shown in Algorithm 1.

4.3.1 Prioritizing the Ready Instructions

Instructions in the ReadyList are prioritized using a priority function that uses instruction slack
and number of consumers of the instruction. Instructions with less slack should be scheduled
early and are given higher priority over instruction with more slack to avoid unnecessary stretch-
ing of the schedule. Instructions with the same slack values are further ordered in the decreasing
order of the number of consumers. An instruction with a large number of successors is more con-
strained in the sense that its spatial and temporal placement affects scheduling of more number
of instructions and hence should be given higher priority. Giving preference to an instruction
with many dependent instructions also enables better future scheduling decisions by uncovering
a larger portion of the graph.

Scheduling slack of an instruction is defined as the difference between the earliest start time
and the latest finish time of the instruction. Traditionally, slack is determined statically dur-

ing dependence graph analysis before the scheduling begins, assuming a machine with infinite

4.3 The Scheduling Algorithm 52

resources of each type. This calculation is inherently pessimistic as any real machine will have
contentions for resources which prolongs the execution time. Since our algorithm exploits slack
of instructions to delay their execution in order to save energy without affecting performance,
a better quantification of available slack is of utmost importance. We quantify the slack of
instructions while scheduling a region for the specific target machine by taking resource con-
straints into account. We first schedule the instruction for a base VLIW configuration using
a simple cycle-by-cycle scheduler. The schedule time of the instructions is stored during this
phase. In the second phase, this schedule time (Late cycle) is used to determine the slack of
the instruction. In our implementation, slack is dynamically updated for all the operations in
the ready list after every cycle. The earliest schedule time of an instruction is set to the current
cycle, before scheduling for the current cycle begins (Early cycle). The slack is then determined
as a difference of the Early cycle and the Late cycle. The dynamic update of slack after each
cycle ensures that any consumed slack is taken into account while scheduling instructions in the

future cycles.

4.3.2 Cluster Assignment

Once an instruction has been selected for scheduling, we make a cluster assignment decision.

The primary constraints are:

e The chosen cluster should have at least one free resource of the type needed to perform

this operation.

e Given the bandwidth of the channels among clusters and their usage, it should be possible
to satisfy the communication needs of the operands of this instruction on the cluster by
scheduling these communications in the earlier cycles (so that operands are available at

the right time).

Note that if we are scheduling for a plain VLIW architecture with no clustering, we assume that
there is only one cluster (numbered 0) that is holding all the resources and the same algorithm
is used !. Selection of a cluster from the set of the feasible clusters is done as follows. A cluster

with an active functional unit of the type needed to schedule the operation is given preference.

!Procedure DetermineSchedulingAlternatives returns all possible alternatives for scheduling operation
under consideration.

4.3 The Scheduling Algorithm 53

If no such cluster is available or more than one such cluster is available, the one which reduces

the communication cost gets preference (as explained in pseudo code of Procedure 2).

The communication cost is computed by determining the number and type of communica-
tions needed by a binding in the earlier cycles as well as the communication that will happen
in the future. Future communications are determined by considering the successors of this in-
struction which have one of their parents bound on a cluster different from the cluster under
consideration. This is due to the fact that if the instruction is bound to the cluster under con-
sideration, it will surely lead to communication(s) in the future while scheduling the successors
of the instructions. Although, we have experimented with many other heuristics for cluster
assignment, the above mentioned heuristic seems to generate the best schedule in almost all

cases[134].

4.3.3 Functional Unit Binding

A functional unit binding scheme decides the binding of a chosen instruction to a functional unit.
The algorithm maintains a FU map that explicitly keeps track of the status of each functional
unit. A functional unit is marked to be in sleep mode after one cycle of idleness and activated

on next use.

If the functional unit required for the instruction under consideration is active in the target
cluster, it is bound as usual. otherwise, the available slack of the instruction is considered. If
the slack is below a threshold (we use the threshold value of 0 in our experiment) the functional
unit required by the instruction is woken up. In case there is more than one alternative available
(for activating), the functional unit which is in sleep mode for a longer duration (as returned by
Procedure DetermineBestAlternative) is woken up in order to amortize the cost of waking up. In
case the instruction possesses enough slack, its scheduling is deferred to a future cycle and it is
put back in the ReadyList. Note that the next time this instruction is picked up for scheduling,
its earliest scheduling time and hence the slack get updated. This guarantees that the slack of
an instruction reduces monotonically and eventually comes below the threshold ensuring that it

is scheduled. Hence the algorithm is guaranteed to terminate.

4.3 The Scheduling Algorithm 54

Figure 4.3: An Example Data Dependency Graph

4.3.4 An Example

In this subsection, we present an example to illustrate how the available slack of instructions is
exploited by the proposed scheduling algorithm to get energy benefits without hurting perfor-
mance. Figure 4.3 shows an example data dependency graph and Figure 4.4 and Figure 4.5 shows
some schedules. Let us first discuss schedule 1 and schedule 2 for a plain VLIW architecture
having two adders (namely Al and A2) and two multipliers (namely M1 and M2) both of which
are pipelined. We assume that the latency of an add operation is one cycle and the latency
of a multiply operation is two cycles. Schedule 1 is generated by a traditional performance-
oriented scheduler which schedules the instructions as early as possible and uses the slack value

of instructions to break any contentions for resources and the total schedule length is 8 cycles.

Our energy efficient scheduler realizes the criticality of MPY operations and available slack
for ADD operations and schedules the same data dependence graph as shown in schedule 2.
Since deferring the execution of any MPY operation leads to stretching of schedules, they are
scheduled in the same way as in the performance-oriented schedule 1. However, the scheduling of
ADD operations is delayed as well as serialized, capitalizing on available slack of add operations.
Notably, the scheduler determines the slack value available in scheduling an operation by first
doing a performance-oriented scheduling pass on data-dependence graph and uses the estimate

of schedule length from this pass to calculate the exact slack value available in scheduling an

4.3 The Scheduling Algorithm 55

Schedule ! Schedule 2

Figure 4.4: Schedules for VLIW Architecture (a) Schedule 1 (b) Schedule 2

Scheduie 3 Schedetie £
Cluster ¥ Clluster 2 Clester ¥ Cluester 2

Figure 4.5: Schedules for Clustered VLIW Architecture (a) Schedule 3 (b) Schedule 4

4.3 The Scheduling Algorithm 56

instruction which is used to generate the schedule for energy efficiency. Schedule 2 takes same
execution cycles as schedule 1 but is better than schedule 1 in many ways. First of all, schedule
2 make use of only one adder compared to schedule 1 which clearly reduces the leakage energy
consumption because the second adder is always in low-leakage mode. Secondly, there are fewer
transitions from active to low leakage mode and vice versa in schedule 2 as compared to schedule
1. Assuming availability of hardware mechanisms that put a functional unit into low leakage
mode after 1 cycle of idleness, the number of transitions from active mode to low leakage mode
and vice-versa for M1, M2, Al, and A2 are 2, 2, 4, and 2 for schedule 1 and 2,2,2, and 0 for
schedule 2. Schedule 2 is also more balanced as compare to schedule 1 in terms of resource
usage. The resource usage vector of the first schedule is (4,3,2,0,1,0,1,0) and that of second is
(2,2,2,1,2,1,1,0). Thus, cycle to cycle variation in resource usage is clearly reduced in schedule
2 as compared to schedule 1. Which in turn helps in reducing step power and peak power
dissipation [37]. Thus, it is clear that the proposed scheme is capable of reducing leakage energy
consumption, transition energy overheads, as well as peak power and step power dissipation

without affecting the performance.

Consider schedules 3 and 4 generated for a 2-clustered VLIW architecture (equivalent to
above mentioned VLIW architecture) having 1 adder and 1 multiplier in each cluster and a
bidirectional cross-path between the two clusters with 1 cycle transfer latency. Schedule 3 is
generated by a performance-oriented scheduler. The extra delay of inter-cluster communication
stretches the schedule from 8 cycles to 9 cycles as compared to the corresponding VLIW schedule
1. ADD3 (MPY3 resp.) is scheduled in cycle 3 (cycle 4 resp.) because it takes a cycle to transfer
the result of ADD2 (MPY?2 resp.) from cluster 2. The Total schedule length is 9 cycles.

Scheduling the same set of operations using our energy-efficient scheduler generates schedule
4. The major point to note is that the scheduler leverages the available slack due to inter-cluster
communication to map all the operation to just cluster 1, keeping cluster 2 completely idle,
thereby saving even more leakage energy. The number of transitions from active mode to low
leakage mode and vice-versa for M1, M2, A1, and A2 are 2, 2, 4, 2 for schedule 1 and 2, 0, 2,
0 for schedule 2 respectively. Finally schedule 2 is much more balanced : The resource usage

vector of first schedule is (4,2,1,2,0,1,0,1,0) and that of the second is (1,1,2,2,1,2,1,1,0).

4.4 Experimental Evaluation 57

4.4 Experimental Evaluation

We present results for an unclustered, a two-cluster machine and a four-cluster VLIW machine.
The unclustered VLIW configuration has 4 ALUs, 2 load-store units, 1 branch unit, and 64
registers. The 2-clustered configuration has 2 ALUs, 1-load store units, 1 branch unit and 32
registers in each cluster, whereas the 4-clustered configuration has 1 ALU, 1-load store unit, 1
branch unit and 16 registers in each cluster. The number of functional units selected for the
VLIW configurations are such that the performance achieved using this configuration is within
95% of the peak performance achieved by using many more functional units. This moderate
number of functional resources guarantees that the benefits reported have not been obtained by
trivially putting the numerous idle functional units into the low leakage mode. Also, we report
results only for Integer AL Us which are heavily used and pose a challenge for any leakage energy
management scheme. Thus, the benefits reported here have not been magnified by the leakage

energy benefits of the load-store, branch, and FP units which are mostly idle.

4.4.1 Energy Model

We have used the same analytical energy model as in [34] to directly compare the energy ben-
efits of the proposed scheme over the pure hardware based scheme proposed in[34]. According
to this model the the total energy in a functional unit composed of dual threshold domino logic
is determined as given in Equation 4.1 and 4.2. Different parameters used in these equation are

given in Table 4.1

E:total =DynamicEnergy + LeakageEnergy+

TransitionEnergy + SleepM odeEnergy (4.1)

Ejotat =na(@Ba + (1 = D)Es,) + (naD + nur) (aBs, + (1 — a) By,)+

MZ((l - a)EA + ESleep) +nzFEq (4'2)

The first component of the Equation 4.2 accounts for dynamic energy which is determined

4.4 Experimental Evaluation 58

Table 4.1: Parameters of Energy Model in Equations 4.2

na Number of active cycles

nyr Number of uncontrolled idle cycles
My, Number of transitions

ngz Number of sleep cycles

Ea Active mode energy per cycle

Eg, High leakage mode energy per cycle

Eg, Low leakage mode energy per cycle

Egeep | Energy to activate low leakage (sleep) mode

D Duty Cycle

Q Activity Factor

P Ratio of the high leakage energy to the active mode energy
S Ratio of high leakage energy to the low leakage energy

as number of active cycles, na, times the maximum dynamic energy per cycle(Ea) and the
high leakage energy, Eg,, during the precharge portion, (1-D), of the clock cycle. The second
component of the equation takes into account the leakage energy expended in uncontrolled idle
cycles, nyt, as well as for the duration in active cycles when the clock is high (na * D). There
are two components of the leakage energy expended per cycle, viz., fraction of the number of
internal nodes, «, that are places into low leakage state, Eg, and the remaining nodes (1-«)
that are not discharged and have general high leakage energy, Eg,. The third component takes
into account the transition energy. This is determined as number of transitions, Mz, times
the additional energy cost of precharging the internal dynamic nodes that would have not been
discharged otherwise i.e. (1-a)EA and energy cost of activating and distributing the sleep signal
across FU i.e Egleep. The final component is the sleep mode low leakage energy when all the

internal dynamic nodes have been discharged and dissipates energy Eg, for nz cycles.

Esy=5s%Eg,0.0001 <s5<0.01land Es, =p* E4,0<p (43)
4.3

After simplifying and normalizing the equations with respect to active energy using equation

4.3, the following model for total energy consumption is obtained :

4.4 Experimental Evaluation 59

: x O vuiw
% Reduction (Transitions) B > Cluster
[14 Cluster
P CRERE

T T T T T T T T B

Ureg Upeg AW Twg, 97214 ;7721 idey mgs des ah Crc Susy, Avg
Cay Udjy ’7Code le-
dio Code

Figure 4.6: % Reduction in Transitions with Scheduling w.r.t. Hardware Only Scheme

Eiotal :nA(Ol + (1 — D)p) + (TLAD + 'n,UI)(asp + (1 — a)p)—i— (4'4)

M,((1 — &) + Esjeep/Ea) +nzsp
The technology parameters that we have used (s=0.01 and Egjeep/E4 = 0.01) are also the
same as in [34] in order to compare the benefits of our scheduling algorithm to the hardware-
only scheme ("MaxSleep’) proposed in [34]. Considering the current 65nm fabrication technology
where leakage energy is on par with dynamic energy, we set p to 0.5 .« is activity factor and D
is the duty cycle of the clock. We use a typical value of 0.5 for both of these parameters in our

simulation as in [34].

4.4.2 Results

We have performed a detailed experimental evaluation of the proposed scheme in terms of the
reduction in the number of transitions and the associated energy savings. We present results for
the hardware-only scheme from [34] called 'MaxSleep’ as well as for our scheduling scheme that
assists the hardware based scheme. We call this scheme *Optimized’. The results are presented in
comparison with a hypothetical scheme called 'NoOverhead’ that is the same as 'MaxSleep’ but
does not incur any of the energy overheads of transitions. This scheme represents a theoretical

ideal against which a leakage energy management scheme can be compared for its effectiveness.

4.4 Experimental Evaluation 60

% Energy Overhead (VLIW) [MaxSleep
I Optimized

9 9 fqy, ' 9>, ldg, da ay e Sy Ay,
Deg Deg Cq:/ "d/':: o d&?J 2 a5 'S (San (o
diO e Cod
)

Figure 4.7: % Increase in Functionl Unit Energy w.r.t Hypothetical No-overhead Scheme
(VLIW)

Figure 4.6 shows the percentage reduction in the number of transitions due to our algorithm
as compared to the hardware-only scheme. We observe that the number of transitions reduce by
48.34%, 53.97%, and 58.29% for VLIW, 2-Clustered VLIW, and 4-Clustered VLIW respectively.
The reduction in the number of transitions depends on the total available slack in scheduling
instructions as well as the distribution of the idle cycles in the benchmark. Benchmarks like
des, dh, crc, and susan have many short idle cycles and our algorithm is able to exploit the
available slack in these applications to avoid many transitions. In the case of g72lencode and
g721decode, the available slack is relatively less and consequently the reduction is also less.

Figure 4.7 shows the energy overhead of 'MaxSleep’ and ’Optimized’ schemes as compared to
the 'NoOverhead’ scheme. 'MaxSleep’ and ’Optimized’ schemes show average energy overheads
of 23.59% and 13.32% respectively as compared to the 'NoOverhead’ scheme. The proposed
’Optimized’ scheme reduces the total energy overhead by 11.85% over the 'MaxSleep’ scheme
which is significant taking into account that it is a purely software based scheme and does not
incur any hardware overhead. These results are in agreement with the results presented in
[34], where the author mention that the "MaxSleep’ scheme incurs 30% more energy overheads
than the '"NoOverhead’ scheme (some difference compared to our evaluation is due to change in
workload). In [34] the evaluation is based on the spec benchmark in the context of superscalar

architecture, whereas our evaluation uses the media benchmark in the context of VLIW and

4.4 Experimental Evaluation 61

% Energy Overhead (2-clustered VLIW) [MaxSleep

[l Optimized

Ypeg djpeg faw Rwg, 9727, 972 ide; Mmgs des dh Cre Susy, Alg,
dCau lld,'o Nco, de de.
lio Code

Figure 4.8: % Increase in Functionl Unit Energy w.r.t Hypothetical No-overhead Scheme
(2 Cluster)

clustered VLIW architectures.

The benefit of our scheme is even more pronounced in the context of clustered architectures.
In the context of 2-clustered architecture 'MaxSleep’ and 'Optimized’ have average energy over-
heads of 26.36% and 13.26% respectively as compared to the 'NoOverhead’ scheme (Refer Figure
4.8). The energy benefits of ’Optimized’ over Maxsleep is 15.11% in the context of 2 clustered
architecture. For a 4-clustered configuration, '"MaxSleep’ and ’Optimized’ incur 27.02% and
12.15% overhead as compared to 'NoOverhead’ scheme (Refer Figure 4.9). The ’Optimized’
scheme improves over the 'MaxSleep’ scheme on the average by 16.92% in the context of 4-
clustered architectures. The reasons for more savings in the context of clustered architectures
are as follows. Clustering brings along extra contentions for a limited number of slow cross-paths
(for inter-cluster communication). This leads to many short idle cycle during which functional
units are waiting for operands to arrive from other clusters. A purely hardware based scheme
with traditional scheduling algorithm undergoes transitions for such many short idle cycles and
suffers the associated energy penalty. In contrast to the performance-oriented scheduling al-
gorithm which is designed for utilizing the resources spread over different clusters to achieve
a better performance, our energy-aware scheduling algorithm sometime limits the spreading of
operations, if it can fetch some energy benefits without hurting performance. Thus, some of the

extra slack which is available while scheduling for clustered architectures due to contention for

4.4 Experimental Evaluation 62

% Energy Overhead (4-clustered VLIW) EMaxSIeep
Optimized

3

ijeg ‘7jpeg Tay, r"_“’da 9721e 972; idea mgs; des dp Crc s"Sa,, AVG,
;au Udjo ”Code de-
lio Code

Figure 4.9: % Increase in Functionl Unit Energy w.r.t Hypothetical No-overhead Scheme
(4 Cluster)

inter-cluster communication is utilized to gain energy benefits in our algorithms.

Finally, our energy aware algorithm suffers a very marginal performance loss of 0.2% in
the context of VLIW architceture as compared to the performance oriented scheduler. The
performance loss in the context of 2-clustered and 4-clustered architecture is 0.3% and 0.5%
respectively. The reason for this performance loss is inherent inaccuracies in determining the
available slack. In certain cases this leads to a few cycles of performance penalty due to serial-
ization of operations. However, the results clearly show that it is rare and its overall effect on
performance is negligible. This is because our algorithm is conservative in exploiting slack to

save energy.

4.4.3 Sensitivity Analysis

Results presented in the last subsection are for the 65nm technology currently in fabrication.
In this subsection we present the benefit of over ’Optimized’ scheme over 'MaxSleep’ scheme
for other technology nodes such as 90nm (where leakage is 20% to 30% of overall energy) and
45nm (where leakage is 60% to 70%) of overall energy. Assuming leakage fraction of 25%, 50%
and 65% for 90nm, 65nm and 45nm, Figure 4.10 presents the benefit of ’Optimized’ scheme

over 'MaxSleep’ scheme. It is clear that the benefit of our scheme are higher for even larger

4.5 Application in the Context of Instruction Decoder 63

O veiw

Sclability Results (Fu Energy Savings) M 2 Cluster

[14 Cluster

2 oo

90nm 65nm 45nm

Figure 4.10: Scalability Results for Functional Unit Energy Savings

technologies such as 90nm where the leakage fraction is relatively lesser. This is because our
scheme is geared towards reducing the transitions and associated energy overheads of transitions
which are more in bigger technologies. Thus, our scheme save significant leakage energy over
hardware scheme even in smaller technologies by reducing the transition energy overheads.
Consequently, the benefit in even smaller technologies such as 45nm are slightly less but still
significant. Because when the overall contribution of leakage is more and corresponding dynamic
energy contribution is less thereby the extra transitions and the impact of savings by reducing
these transitions is also slightly less. On average savings of our compiler directed scheme over
hardware only scheme are 14.18%, 17.95%, and 20.07% in the context of VLIW, 2-clustered and
4-clustered architectures respectively in 90 nm technology. Whereas the corresponding benefits

are 10.79%, 13.8% and 15.47% in 45 nm technology.

4.5 Application in the Context of Instruction De-
coder

The proposed technique is also applicable in the context of instruction decoder which is another
combinational circuit in VLIW processor. The application in the context of instruction decoder is

also motivated by the fact that instruction decoder in the context of VLIW and clustered VLIW

4.5 Application in the Context of Instruction Decoder 64

111 112 121 122 123 NOP

Instruction Alignment and Decoding

Decoder Signals
Monolithic Decoder Design

Figure 4.11: Traditional Monolithic Decoder Design

architectures is required to decode up to 8 (or more depending on issue width) instructions in
parallel. However, the full issue width is rarely utilized which leads to unnecessary leakage energy
consumption in the decoder circuitry. Moreover, frequent access to the instruction decoder
raises the temperature level and make not only the leakage energy consumption even worse
in the instruction decoder but also makes decoding circuitry a hot-spot in the chip[146][147].
However, unlike functional units, the traditional monolithic design of instruction decoder inhibit
the leakage energy management in instruction decoder. We consider a split instruction decoder
as described in next subsection that enable the leakage energy optimization. We also evaluate

the benefit of the proposed compiler scheduling algorithm in the context of instruction decoder.

4.5.1 Split Decoder Design

Decoding activity involves dividing a fetch packet into execute packets and then decoding in-
dividual micro-instructions in each execute-packet to issue signals. A parallel-bit is dedicated
in a VLIW micro-instruction that specifies whether the next micro-instruction is in the same
execute-packet (i.e., executes in the same cycle) or starts a new execute-packet. A traditional
monolithic design of instruction decoder as shown in Figure 4.11 inhibits any fine grained con-
trol for hibernating parts of the decoder circuit that are idle. A decoder circuit can be easily
pipelined and split as shown in Figure 4.12. This provides the benefits of ease of design and

verification of circuit and performance benefits of pipelining[148] and also enables leakage energy

4.5 Application in the Context of Instruction Decoder 65

111 |1 112 |o 121 |1] 122 |1 123 |o NOP; |o

[Execute Packet/ Extraction and Instruction Alignment

D1 D2 D3 ‘ D4 H D5 ’ ‘ D6
Active Transition Sleep

Split Decoder Design

Figure 4.12: Split Decoder Design

savings at the granularity of individual decoders. The performance benefits of pipelining the
decode stage have already been identified and such a design is in use in many high performance
commercial DSPs including the Texas Instruments’ VelociTI[13]. However, we capitalize on the

energy management capability of such a design as follows.

Due to variations in the ILP of the programs, the full issue width of the processor is rarely
utilized continuously and hence several decoder will be idle most of the time. The split decoder
design can leverage the capabilities of dual-threshold domino logic for fast transition from active
mode to sleep mode and vice versa in less than a cycle (as used in [34] for functional units) to
save tremendous amount of leakage energy in mostly idle decoder circuit. However, in order to
avoid the explicit penalty of activating a sleeping decoder, it is required to issue the activating
signal one cycle in advance. Fortunately, the parallel-bit that specifies the parallel instructions
in the current execute-packet can be used to drive the activation signal. To avoid introducing
any new hardware, in our machine model, we always keep first decoder active, and use the
parallel-bits in execute packet to drive the active signal for the required number of decoders.
It is important to note that these signals are activated during the first stage of decoding when
the execute packet is being extracted and aligned from the fetch packet. Thus, by the time the
micro-instructions reach stage two for actual decoding, the required number of decoders are in

active state to perform the decoding.

4.5 Application in the Context of Instruction Decoder 66

% Reduction (Transitions) E‘Z’LC':’:ster
[]4 Cluster
B0 oo
(T oY [SRR R [SIS
R s - -l |- - N -
50 —
40 -
30 +

20 —

10

Gpeg beg 'aw- gy, 9721, 9721. ideg mgs des dh cre Susa, AVG,
Caug;, dio Code €Coge

Figure 4.13: % Reduction in Transitions with Scheduling w.r.t. Hardware only Scheme
for ID

4.5.2 Experimental Evaluation

The result of applying the proposed compiler-assisted scheme in the context of split instruction
decoder (ID) design are depicted in Figure 4.13 and Figure 4.14.
Figure 4.13 shows the percentage reduction in the number of transitions due to our algorithm

as compared to the hardware-only scheme. We observe that the number of transitions reduce by

53%, 58.88%, and 62.74% for VLIW, 2-Clustered VLIW, and 4-Clustered VLIW respectively.

Figure 4.14 shows the energy overhead of '"MaxSleep’ and ’Optimized’ schemes as compared to
the 'NoOverhead’ scheme. 'MaxSleep’ and ’Optimized’ schemes show average energy overheads
of 27.29% and 14.99% respectively as compared to the 'NoOverhead’ scheme. The proposed
’Optimized’ scheme reduces the total energy overhead by 14.46% over the "MaxSleep’ scheme
which is significant taking into account that it is a purely software based scheme and does not

incur any hardware overhead.

The benefits of our scheme are more pronounced in the context of clustered architectures.
In the context of 2-clustered architecture 'MaxSleep’ and 'Optimized’ have average energy over-
heads of 29.37% and 14.6% respectively as compared to the 'NoOverhead’ scheme (Refer Figure
4.15). The energy benefits of ’Optimized’ over Maxsleep is 17.3% in the context of 2-clustered
architecture. For a 4-clustered configuration, '"MaxSleep’ and ’Optimized’ incur 29.88%, and

13.7% overhead as compared to 'NoOverhead’ scheme (Refer Figure 4.16). The ’Optimized’

4.5 Application in the Context of Instruction Decoder 67

% Energy Overhead (VLIW) [T MaxSleep
M Optimized

0

GYpeg djpeg faw lawg, 97210 9721 ideg mds des dh Crc Susa, AVg
Cay Udjp Ncoge de-

Figure 4.14: % Increase in Energy w.r.t Hypothetical No-overhead Scheme for ID (VLIW)

o)] MaxSleep
% Energy Overhead (2-Clustered VLIW) B Optimized

1

Gpeg dibeg 'aw Tawgy 9721¢ 9721 idea Mmds des dh Crc Susa, AVG
Cay Udip "COde de-
dio Code

Figure 4.15: % Increase in Energy w.r.t No-overhead Scheme for ID (2 Cluster)

4.6 Related Work 68

% Energy Overhead (4-Clustered VLIW) Eg;ﬁ:;’;
B0
30 [
20 11 [F b
10 1
0

Gpeg dipeg 'aw rawgy 9721¢ 9721 idea mds des dh Crc Susap AVG
;au udip Ncoqe de-
io Coda

Figure 4.16: % Increase in Energy w.r.t No-overhead Scheme for ID (4 Cluster)

scheme improves over the "MaxSleep’ scheme on the average by 18.74% in the context of 4-
clustered architectures. The reasons for more savings in the context of clustered architectures is
same as explained above i.e. some of the extra slack which is available while scheduling for clus-
tered architectures due to contention for inter-cluster communication is utilized to gain energy

benefits in our algorithms.

4.6 Related Work

In this section, we compare and contrast our work with some of the earlier related work in the
area, of instruction scheduling for clustered architectures, architectural approaches for leakage
energy management, and energy aware scheduling for VLIW architectures. Reader is referred
to chapter 2 for a general treatment on earlier work in the area of circuit, architectural, and

software techniques for energy optimization.

4.6.1 Scheduling for Clustered Architectures

Earlier proposals for scheduling on clustered VLIW architectures can be broadly classified into
two main categories. The phase-decoupled approach to scheduling[130][131][132][149] works
on a Dataflow graph (DFG) and partitions instructions into clusters to reduce inter-cluster

communication while approximately balancing the load among clusters. The annotated DFG

4.6 Related Work 69

is then scheduled using a traditional list scheduler while adhering to earlier spatial decisions.
However, the phase-decoupled approach to scheduling suffers from the well known phase-ordering
problem. A spatial scheduler has only an approximate knowledge (if any) of the usage of cross
paths, functional units, and load on clusters. This inexact knowledge often leads to spatial
decisions which may unnecessarily constrain a temporal scheduler and may lead to a suboptimal
schedule. We follow an integrated approach to scheduling[133][150][43] that tries to combat the
phase-ordering problem by combining spatial and temporal scheduling decisions into a single

phase. In what follows, each of these proposals is briefly described.

Faraboschi et al.,[131] have proposed a two phase algorithm called partial component clus-
tering (PCC). In the first phase the DAG to be scheduled is partitioned into several components
using a depth-first search algorithm and a maximum component size threshold. These compo-
nents are then clustered while striving for minimum ICC and balancing load among clusters.
The second phase is characterized by improving the initial binding of instructions using an it-
erative algorithm to reduce the schedule length or ICC. The major objective of this algorithm
is to minimize the communication among clusters. Gonzalez et al.,[130] have proposed a graph
partitioning based approach that is used as a pre-partitioning phase to modulo scheduling. The
first phase is graph coarsening in which a maximum edge weight matching algorithm is used
to find a graph matching and collapsing the match nodes into one. This is repeated until the
number of instructions are same as the number of clusters. This is followed by the partition
refining phase that considers possible movement of instructions among clusters with a view to
get better execution time. Lapinskii et al.,[132] have proposed an effective binding algorithm for
clustered VLIW processors. Their algorithm performs spatial scheduling of instructions among
clusters and relies on a list scheduling algorithm to carry out temporal scheduling. They com-
pute the cost of allocating an instruction to a cluster using a cost function that considers the
load on the resources and buses to assign the nodes to clusters. Mahlke et al., have proposed a
graph-partitioning based approach similar to [130] which they call as region-based hierarchical
operation partitioning (RHOP)[149]. RHOP assigns a weight to each node and edge of DFG
to be partitioned. Nodes are assigned weights so as to represent the load on resources while
edges are assigned weights to represent the cost of introducing a inter-cluster move operation
between node connected through the edge. Edge weights are used to coarsen the graph from

finer nodes to coarser nodes until the number of partition reaches a threshold. This is followed

4.6 Related Work 70

by an uncoarsening phase that improves the initial partition by considering the movement of
coarsened nodes available at this point to another clusters.

Ozer et al.,[133] have proposed an algorithm called unified-assign-and-schedule (UAS). UAS
extends the list scheduling algorithm with a cluster assignment decision while scheduling. Af-
ter picking the highest priority node, it considers clusters in some priority order and checks if
the operation can be scheduled in a cluster along with any communication needed due to this
binding. They have proposed various ways of ordering clusters for consideration such as, no
ordering, random ordering, magnitude weighted predecessors (MWP) and completion weighted
predecessors (CWP). Leupers[150] proposed an algorithm for integrated scheduling of clustered
VLIW processors. They use simulated annealing, a heuristic search algorithm for cluster binding
followed by a list scheduling algorithm. Kailas et al.,[43] have proposed an algorithm for com-
bined binding, scheduling and register allocation for clustered VLIW processors. Their greedy
algorithm binds a node to the cluster in which it can be executed at the earliest. This may lead
to a high inter-cluster communication in the future (while scheduling successor of this node) due
to the unavailability of a communication slot to schedule the required MV operation and this
may stretch the schedule as well. They also propose an on-the-fly register allocation scheme.

Insertion of spill code and scheduling of spill code is also integrated in the main algorithm.

4.6.2 Architectural Approaches for Leakage Energy Manage-
ment

Study of leakage energy management at the architectural level has mostly focused on storage
structure such as cache. Yang et al., propose power supply gating of L1 cache cells[31]. Kaxiras
et al., dynamically adjust the interval after which a cache line is put into low leakage mode[32].
Flaunter et al., propose a state-preserving drowsy cache design and a simple control scheme
which is able to deliver most of the leakage energy benefits[33]. A detailed description of leakage
energy management techniques for storage structure is available in chapter two.

In contrast to storage structures, little work has been done on architecture level leakage
energy management in the context of functional units. Our work directly improves over the
work due to Albonesi et al.,[34]. This work proposes and evaluates an architectural policy for
aggressively controlling leakage energy in integer ALUs. The 'MaxSleep’ policy puts a func-

tional unit into low leakage mode after one cycle of idleness. This scheme depends on dual

4.6 Related Work 71

threshold domino logic circuit with sleep mode proposed in [30] which has no delay penalty of
transition between active mode and sleep mode. However, their performance evaluation using
the same analytical energy models (as described in section) in the context of spec benchmarks
for superscalar architectures shows that for technology such as 65nm, the leakage energy benefit
gained by such an aggressive scheme is significant (i.e., on an average 30% energy overhead when
compared to a hypothetical 'NoOverhead’ scheme that is same as 'MaxSleep’ scheme but does
not incur any transition energy).

Our experimental evaluation using the same analytical energy model in the context of
VLIW /Clustered architecture demonstrates the effectiveness of our compiler-directed scheme in
reducing the spurious transitions thereby assisting the purely hardware based scheme ("MaxSleep’)

in achieving better leakage energy savings.

Decoder Energy Optimization

To the best of our knowledge, only work for energy optimization in the context of instruction
decoder is due to Kuo et al.,[148]. Kuo et al.,[148] consider instruction decoding as in super-
scalar architectures and propose to split (horizontally partition) instruction decoder circuitry
into two or more sub-decoders based on execution frequencies of different instructions. They
also propose to do pipelining (vertical partitioning) of the instruction decoder to achieve energy
and area benefits. The experimental results of Kuo et al., based on physical synthesis clearly
demonstrates that the horizontal and vertical partitioning of the instruction decoder is in general
useful in reducing the design complexity, power consumption, area overhead, and delay because
of simplification of circuitry. In contrast to the work of Kuo et al.,[148], partitioning of instruc-
tion decoder in our work is geared more toward VLIW and clustered VLIW architectures that
demands decoding of large number of instructions in parallel. Thus, compared to functionally
asymmetric partitioning of Kuo et al, we consider partitioning of instruction decoder circuitry
into functionally identical individual sub-decoders each of which can be controlled indepen-
dently. The pipelining of decoder as considered by us is more natural in VLIW context where
a fetch packet needs to be broken into execute packets and the current execute packet needs
to be aligned before actual decoding can begin. Apart from general benefits of a partitioned
design as demonstrated by Kuo et al., partitioned decoder design in our proposal also provides

an opportunity for fine grained leakage energy management in the instruction decoder.

4.6 Related Work 72

4.6.3 Energy-Efficient Scheduling

Earlier compiler level techniques for reducing energy consumption in functional components are
mostly proposed in the context of superscalar and flat VLIW architectures. In what follows, we
compare our work in the context of energy efficient scheduling for clustered VLIW architectures

with these earlier proposals.

Zhang et al.,[36] have proposed a rescheduling scheme to reduce dynamic and leakage en-
ergy in the functional units of a flat VLIW processor by exploiting the remnant slack of a
performance-oriented schedule. In contrast, our approach works on raw unscheduled code with
all the available slack for scheduling and complements a hardware based mechanism for leakage
energy management. Kim et al.,[25] have proposed a leakage energy management scheme for
flat VLIW processors that approximates the ILP available in the program using heuristics (as
the exact estimation problem is itself NP complete). The calculation is done at the loop level
granularity assuming that there is little variation in the ILP within the loop. Their scheme
keeps only a canonical subset of functional units that is sufficient to exploit this approximated
ILP active. In contrast, our approach in the context of clustered VLIW architectures adaptively
applies leakage energy management at a finer granularity based on available ILP thereby sub-
sumes the benefit of their approach and delivers better results even in the presence of a variation
in the ILP within a loop. Gupta et al.,[35] propose a novel data structure called power-aware
flow graph. Their leakage energy management scheme in the context of superscalar processors
works over this graph to determine larger program regions called power blocks which offer op-
portunities to save leakage energy. ISA and architectural support is needed to switch on and
off the functional unit at the boundaries of power blocks and nullify spurious on-off. Our ap-
proach in the context of clustered VLIW architectures is to nullify spurious on-off without any
special hardware support. Kim et al.,[37] have proposed a modulo scheduling algorithm that
produces a more balanced schedule for software pipelined loops with an objective to reduce the
peak power and step power dissipation. Though our algorithm is not directly designed towards
improving the peak power and step power dissipation, it generates a more balanced schedule. As
we demonstrated using an example, our scheme tries to keep the minimum number of functional
unit active and tries to use the active functional units as much as possible while keeping the idle

functional units in idle state for longer durations.

4.7 Conclusions 73

4.7 Conclusions

In this chapter, we have proposed a new energy-aware instruction scheduling algorithm for
VLIW and clustered VLIW architectures that is capable of reducing the number of transitions
in functional units and instruction decoder by exploiting the scheduling slack of instructions.
The experimental evaluation reveals that the proposed scheme is able to reduce the number
of transitions in functional units by approximately 48%, 54%, and 58% for VLIW, 2-Clustered
VLIW, and 4-Clustered VLIW respectively. This results in 11.85% energy savings in functional
units in the context of VLIW architecture while 15.11% and 16.92% energy savings in functional
units in the context of 2-clustered and 4-clustered VLIW architecture respectively, as compared
to a purely hardware based scheme. The corresponding energy benefits in instruction decoder
are 14.5%, 17.3%, and 18.7% for a VLIW, 2-clustered, and a 4-clustered VLIW architecture
respectively. The reasons for more savings in the context of clustered VLIW architecture is
that our scheme aggregate the extra idleness in functional components in clustered architectures
(attributed to contention for limited number of slow cross-paths for inter-cluster communication)
to gain the energy benefits. Our sensitivity analysis shows that the compiler scheduling scheme
gives significant benefits even in technologies such as 90nm and 45nm over a purely hardware
based scheme. In addition, the proposed scheme is able to generate a more balanced schedule

that helps in reducing the peak power and step power dissipation of the processor.

Chapter 5

INTACTE: An Interconnect Area,
Delay, and Energy Estimation Model

5.1 Introduction

On-chip interconnect for communication among spatially separate resources introduces major
performance, area, and energy bottlenecks for decentralized architectures. In Embedded domain,
trend towards using fine grained distribution to achieve scalability has been visible for quite
some time[11][151][152]. Multicore architectures take the idea of scalability by distribution even
furthers[153][154][155].

Interconnects are known to consume significantly high energy and area and are known to be
a major source of performance bottlenecks[156] for single-core decentralized architectures (such
as clustered superscalar and clustered VLIW). In context of multi-core architectures, it has been
observed that interconnects can easily consume power equivalent to one core, area equivalent
to three cores, and delay that account for over half the L2 access latency[157]. [157] clearly
demonstrates that design trade-offs made considering the interconnect as an independent entity
can often be quite opposite to the design trade-offs that are optimal from power and performance
point of view. Co-designing interconnects early along with other components when high level
architectural design trade-offs are being made is highly desirable for high level synthesis of
embedded SoCs.

In order to quantitatively evaluate different interconnect design trade-offs for decentralized

5.1 Introduction 75

architecture, one needs a reasonably accurate and fast model for the area, delay, and power for
these choices. Prior research in interconnect modeling and analysis has mostly dealt with specific
circuit level issues [28][38][39] and is not directly usable to make high level micro-architectural
trade-offs. For example, an architect would be interested in knowing what are the available trade-
offs in terms of pipeline latency and power, for a given bandwidth and interconnect distance.
This information could be used at a higher level of design to obtain the overall optimum for the
system. Similarly, it will be very useful to know the power and performance of the interconnect at
different operating voltages and frequencies, in order to evaluate dynamic voltage and frequency
scaling schemes. Hence, there is a need for a tool for the interconnect, which can give reasonably
accurate design points and their associated area and power costs for various architecture level
constraints such as bandwidth, latency etc. Similar models are available for caches[40], register
files[41] and functional components[34]. Availability of an interconnect model will be very helpful

for architects to involve interconnect in early design trade-offs.

This chapter proposes an interconnect modeling tool to get fast but reasonably accurate
estimates of interconnect delay, area, and power for a given technology, wire length, bit-width,
clock frequency, and latency. The tool solves an optimization problem of minimizing power
by finding the appropriate wire size, repeater size, and repeater spacing for varying degrees of
pipelining and area. We are currently limiting our work to cover point-to-point interconnects
only, as most of the high performance long distance interconnects will be of this form[158]. The
tool outputs a set of interconnect designs for a cross section of area and degrees of pipelining,
all of which meet the frequency and latency constraints. In addition, for each design a set of
power and performance numbers are also given across a range of supply voltages. These choices
enable the user to explore the micro-architecture design space for the system which includes this

interconnect.

The area, delay, and power estimation for the interconnect is built upon the corresponding
values for the low level component such as wires, repeaters, flops and buffers, which are in turn
obtained via accurate HSPICE[159] characterization. However, this one time characterization
is done in advance, and hence the tool itself is fast enough to explore many interconnect choices
rapidly. Furthermore, the power model is parameterized with respect to the activity factor
(probability of switching of any bit) and the coupling factor (probability of relative switching

between adjacent bits). An architect can profile the target workload to get these quantities

5.1 Introduction 76

in order to further improve the accuracy with respect to the target workload. We have also
validated the estimates of delay and power obtained by the tool with HSPICE simulation and
we found that the error is less than 15% in the worst and below 12% on average. Our tool
based approach to architectural modeling of interconnect parameters is analogous to that of
CACTI[40].

The proposed tool can be used by architects/compiler writers in many different ways. Since
different on-chip interconnects have different performance requirements, the tool can be used to
custormize the interconnect design to meet these goals at minimum power. The impact of different
interconnect choices with latency and power trade-offs can be evaluated at the architectural level
in concert with compiler optimizations. Thus, the tool enables the co-design of interconnects
along with the other components early in the design phase and its impact on the overall system
power and performance can be evaluated upfront. As mentioned earlier this has become very

important in new process generations[157]. The major contributions of this work are:

1. A tool which provides estimates of area and power for a power efficient interconnect to
meet target bandwidth and latency requirements for a range of technologies. The tool
optimizes for power by finding the optimal values of the wire widths, repeater sizes and

spacings, which can meet the target bandwidth and latency.

2. For each input requirement, the tool provides a range of design choices with respect to
area and degrees of pipelining which can be used by the user to explore micro-architectural
trade-offs at the system level. Furthermore, the tool provides estimates of power, band-
width and latency for a range of voltages, lower than the nominal. This allows character-

ization of the design for dynamic voltage and frequency scaling.

3. A detailed HSPICE validation of the tool varying different parameters such as length,
pitch, and technology that confirms that tool has known degree of unidirectional error

(15% in worse and below 12% on average).

We have specifically used the tool to evaluate the energy benefits of heterogeneous inter-
connects in the context of clustered architectures using the proposed interconnect model. The
next chapter describes our scheduler for heterogeneous interconnect clustered VLIW architec-
tures and the application of the proposed tool in evaluating interconnect energy benefits for the

proposed scheduling algorithm. As another illustrative example, we have used the tool to find

5.2 INTACTE Tool Description 77

the optimum degree of pipelining of the wire which minimizes the overall power (Section 4).
The rest of the chapter is organized as follows. We describe the tool and its implementation

in Section 2 and the associated delay and power models in Section 3. Section 4 gives the

experimental and validation results for the tool. Section 5 puts our work in the context of

earlier work in the area of interconnect modeling. Section 6 concludes this chapter.

5.2 INTACTE Tool Description

The core motivation behind the tool is to fill the gap between an architect’s requirements of the
interconnect and what the circuit level interconnect models provide. Figure 5.1 depicts the tool,
its inputs, and its outputs. The user provides the target technology, wire length, number of bits,
frequency, and latency (in number of cycles). There are a number of other parameters which
have the default values and can be overridden by the user. The supply and threshold voltages are
automatically derived from the specified technology based on the predictive technology models
(PTM)[160]. Activity factor is the probability of switching of a bit and the coupling factor is
probability of relative switching of two adjacent bits. Both can be obtained by profiling the
workload to override the default value of 0.5. For long interconnect running at a high frequency,
pipelining the interconnect becomes mandatory. Wire length estimates can be obtained from a
prior design or with some initial rough floor planning and models such as Rents rule[39].

The design variables that the tool considers for the interconnect optimization are as follows:

1. The wire width (w) and wire spacing (s). Increasing wire width reduces resistance and
increasing wire spacing reduces coupling capacitance. Both of these reduce number of
repeaters, up to a certain point. Too large a wire width or too small a wire spacing leads
to large wire capacitance which is counter productive. Wire width and spacing decides
the overall area taken by the interconnect which can be given as an optional constraint

by the user or tool work in a loop back manner for set of nominal area values.

2. Repeater Size (S) and Spacing (l,). Long wires have to be broken up with periodic
repeaters to reduce the impact of the wire resistance. There is an optimal repeater size
and spacing for minimum delay. But lower sizes and increased spacing can be used to

reduce power while meeting target delay[28].

5.2 INTACTE Tool Description 78

Power Breakup Vi V2 Vmax
Repeater Size
Repeater Spacing
Num of Repeaters
WireWidth
Wire Spacing
Tech
f
Length AL Plp2 pn
BitwWidth A2
vdd
Delay{# cycles}
(Vth) An
(Activity Factor)
(Coupling Factor)
. J

Figure 5.1: Overview of the INTACTE

3. Degree of Pipelining (p). Long interconnects will need intermediate flop stages in order

to meet the frequency target.

4. Supply (Vdd) and Threshold Voltage (Vth). These circuit level parameters can be used

to trade off dynamic power and leakage power of the interconnect.

Ideally the tool should find the optimal values for the above variables which will lead to
a design with minimum power, while meeting the target performance. Unfortunately, the op-
timization is very complex to solve as it is a mixed integer nonlinear programming problem.
Besides, the analytical formulas relating power and delay to all the design variables are also
quite complex. Hence we take a pragmatic approach of a mixed analytical and search technique
for finding the optimum values.

The tool explores a limited range of areas and pipeline depths. For any given area, the
wire pitch is obtained as the length and number of bits are known. For any pipeline depth,
the wire length in any pipeline is obtained by assuming equal pipeline segments. These two
calculations result in a smaller optimization problem of finding the optimal wire width, repeater
sizes, and spacing for a given wire pitch and unpipelined segment, which meets the target
cycle time. This problem is solved by using the well known delay and power models for the

repeaters and the wires [28]. We use a built-in optimization function in MATLABJ[161] to solve

5.2 INTACTE Tool Description 79

this problem. In addition to considering the activity and coupling factors for dynamic power,
we have also considered the leakage power which has been ignored in some of the previous
work[39]. We have taken care to include the flop overheads as well as the pre-drivers after
the flop into the timing and power calculations for the unpipelined segments. The delay and
power models for the repeaters, buffers, flops and the wires have been calibrated with HSPICE
simulations of these components over four different technology nodes using the PTM SPICE
models[160]. Once the problem for an unpipelined segment is solved, the total power for the
overall interconnect is easily obtained by scaling it by the number of pipe segments. At this
level, the flop and clock power are also included. Thus, a design which minimizes the power
for a given area, length, pipeline depth and target frequency is obtained and this is repeated
for a set of areas and pipeline depths. Of course, it is also possible to override this iterative
behavior to output the results for a specific area and pipeline depth too. Additional information
like the breakup of power between different components is also provided which is of interest to
a micro-architect. With emerging interest in dynamic voltage and frequency scaling[162][163],
it is of interest to see the performance-power trade-offs possible in the interconnect. Hence the
tool additionally estimates the power and performance (delay of each segment) for a range of
supply voltages lower than the nominal value. The other design parameters like width, sizes,
and spacings are kept the same as that obtained for the nominal value. So, in this respect, the
power, performance numbers are suboptimal when compared to re-optimizing the design again
for specific supply voltages. Nevertheless, these values will be of interest to the architect to
evaluate the feasibility and opportunities of dynamic voltage and frequency scaling[163]. One
can still obtain optimal design values for any other voltage, by explicitly specifying that voltage,
which will then override the default internal voltage value. Thus, the tool allows the architect

to choose the best interconnect options that suit their requirements.

The model retains its accuracy because determination of the delay, area, and power are
carried out using low level circuit estimation of resistance and capacitance of interconnect com-
ponents such as wires, repeaters, buffers, and flops using HSPICE[159]. However, these and
other technology and voltage dependent parameters are precomputed for different technology
nodes and voltage steps. Thus, the estimation is still fast enough (of the order of seconds)
compared to a full blown HSPICE[159] estimation (of the order of hours) attribute to man-

ual work and expertise involved in determining low level interconnect parameters. Moreover,

5.3 Modeling The Interconnect 80

pre-estimation of these values for different technology nodes also makes the model capable of
providing reasonably accurate estimates for delay, area and power across technologies. We will

next briefly go over the detailed models for delay and power used within the tool.

5.3 Modeling The Interconnect

We consider an interconnect as a set of lines where each line consists of number of pipelined
segments. The length of interconnect and the number of lines are given as input by the architect.
The architect can also give degree of pipelining as an input or the optimization is performed in
an iterative manner for a set of feasible degree of pipelining. The length of a pipelined segment
is determined by the length of interconnect and degree of pipelining. Each pipeline segment
is made of set of wire segments demarcated by repeaters, a flop, and a set of buffers to drive
the first repeater of the pipeline segment. The optimization is essentially performed for a single
pipelined segment. The four optimization variables are repeater size, repeater spacing, wire
width, and wire spacing. These are varied to obtain a delay that satisfies the latency specified
by the architect while minimizing the power. Algorithm 3 gives an outline of the optimization

process.

In what follows, we describe how the delay and power of interconnect is characterized in terms
of delay and power of a pipeline segment which in turn is determined by delay and power of
individual components such as wires, repeaters, flops, and buffers. Fig. 5.3 shows the schematic
of a set of parallel wire segments driven by repeaters at the end. A repeater is an inverter with
equivalent capacitance (Cgqze) at the input, and a series combination of an equivalent resistance
(R;) and equivalent capacitance at the output(Cp). A wire is modeled as a R-C = section (refer
Figure 5.2). To calculate the power and delay of a wire segment and associated repeaters, all
the parasitics such as 4, ¢y, Cgate, Tw, and ¢, are characterized for 4 different technology nodes
(90, 65, 45, 32) and 32 different voltage steps differing by 15 mV as described in Table 5.1.
The power and delay of flops and buffers are calculated by characterizing these values using

HSPICE[159] (Refer Table 5.1 for details).

5.3 Modeling The Interconnect 81

Algorithm 3 Outline of Optimization Problem

MINIMIZE:
Ptotal = BitWidth * p * Ptii,il
WHERE:
Piotar = Puire + Pl + Pofr + Prigy
P ;}?i]e = ;;?ge_dyn
P;:z? = P::I?_dyn + Pf:g_leak + P:eeg_short
Plifj‘gfer = Pbszfj‘]fer_dyn + Plqu]‘?fer_leak + Pbsfzf]gfer_short
P;leoi) = P;;oi)_dyn + P;lez)_leak + P;le(fp_short
SUBJECT TO:
(Dtotal =p* Dseg) S Delay
BitWidthx (w+s) <=W, w>=4%)\, s>=4%)
WHERE:
DS = D3, + Dt + Dy, + D,
VARY:

rep_size(S), rep_space(l,), wire_width(w), wire_space(s)

Rw

Figure 5.2: A Section of an On-chip Bus

5.3 Modeling The Interconnect 82

Rt Rw

Cp+Cw/2 —_— —Cgate +Cw/2

N N

Figure 5.3: m Model of the Interconnect

5.3.1 Delay Characterization

Delay of a pipeline segment is calculated as sum of the delay of wire segments, repeaters, flops
and buffers. A minimum sized flop may not have enough drive strength to drive a repeater at a
very high speed. Therefore a series of buffers are introduced such that each stage (including the
flop) drives a load of not more than 4 times its size. Thus the number of buffers (V) is given
by [(log(Sy)/log4)] where S, is the ratio of the repeater size to the minimum possible size (i.e.
4*\1) where size of i*" buffer (Sizel, £p) s 4'=1 x4 \. The delay equation for an interconnect
having p pipelined segment each of length L*®9 and n, repeaters (per segment) is determined as

follows :

Dtotal =px* D9 (51)

Equation 5.2 calculates the delay of a pipelined segment which has four components namely
delay of wire, delay of all repeaters in segment, delay of flop at the beginning of pipe segment,
and sum of delay of all buffers required to drive the first repeater respectively (refer Table 5.1.

for definitions of symbols) .

D®s :(Rt * ((Cp + Cgate) * Ty + Cw) + Ry, * (Cgate * Ny + Cw/z)) + Dflop + Z Dll;uff
i€(1..Nb)
(5.2)

where

1) is defined as half the feature size.

5.3 Modeling The Interconnect 83

Table 5.1: Symbols for Various Interconnect Components

T4 Output resistance of 1 um repeater size'
Cp Output capacitance of 1 um repeater size'
Cyate Input capacitance of 1 um repeater size'
Tw Resistance of 1 um wire length?.

Cw Capacitance of 1 um wire length?.

Cgnd, Cc, | Ground, coupling, and fringing

Cy capacitance components of c,,. 2

Diiop Delay of min sized (4*A NMOS) flop*

Priop ay Dynamic power/GHz of min sized flop’
Priopicar, | Leakage power of min sized flop!

Dy sy FO4 delay of min sized inverter!

Pyusiay | Dynamic power/GHz of min sized inverter'
Pyysfiear | Leakage power of min sized inverter!

Ry =r/S, Cp =cp* 8, Cyate = Cgate * S, Cuy = Cy * Lgeg and Ry = Ty * Lgeq

5.3.2 Power Characterization

The total power is determined by multiplying power of a pipeline segment (P,-%) with the

total number of pipelined segments (p) and total number of wires (BitWidth). Thus the total
Interconnect power is given by Equation 5.3:

Piotat = BitWidth +p* PicS, (53)

Whereas the calculation of power for each pipeline segment for a given repeater size, spacing,

wire width and wire spacing is done by calculating the dynamic, leakage, and short circuit power

for each of the component as follows:

seg __ pseg seg
Ptotal - de + P:ceg + })leak (54)

ISpice characterized
ZCalculated using PTM[160] models and ITRS parameters[164]

5.3 Modeling The Interconnect 84

Dynamic Power

Dynamic or switching power due to switching of repeaters, pipeline registers and its correspond-
ing buffers, and the wires is given by Equation 5.5 where, f is the frequency of operation, AF
is activity factor and CF is coupling factor. The activity factor is determined by averaging the
transitions on each line for a execution trace of a benchmark. Similarly, the coupling factor
is determined by averaging the coupling between adjacent lines (depending on the direction of

switching) for a execution trace of a benchmark.

Pds;g =(AF * (Cyate + Cp) * np + Cup) * f x Vi + Priop.ay * [+

Y (Sizehuss* Pugpay* f) (5-5)
i€(1..Nb)
Cuwp = ((cgna +c) * AF + c. x CF) x L*%Y (5.6)

Static Power

Static power is consumed when the transistors are idle. This is due to the finite OFF state
current flowing in transistors in sub-threshold region and is given by Equation 5.7 where leakage

current of a 1 pum repeater (Ij.q) is determined using equations in [165].

Pra =ieak * S * 1y + Ppigp teak + Z (Sizeiuff * Pbluff_leak)) (5.7)
i€(1..Nb)

Short-circuit Power

The short circuit power of repeaters (the finite duration (¢,) in which both PMOS and NMOS
are on) is calculated by equation 5.8 where I, is the short circuit current of 1 yum repeater. The
short circuit power of flops and buffers are included in the dynamic power while characterizing

these elements.

P9 =T xS+ Vagxtr* f (5.8)

5.4 Experimental Results 85

5.4 Experimental Results

In this section, we present a small subset of results that we obtained using the tool. These results
exhibit various trends in the interconnect energy and serve to demonstrate how accurately our
tool models the interconnects. The results are presented for interconnects of different lengths
modeled at different technology nodes, with varying degree of pipelining, pitch values, and
operating at different frequencies. We also present and describe validation results for different
interconnect configurations obtained using HSPICE[159].

Figure 5.4 shows the change in the power as degree of pipelining is increased for two different
technology nodes (90 nm and 65 nm) and for two different frequency values (2 Ghz and 1 Ghz).
Increasing the pipeline stages for a particular frequency and technology first reduced the power
and then there is an increase in the power. In the left part of the graph, power reduction due to
decrease in repeater size and number (as a result of increase in degree of pipelining) overwhelms
the power overheads due to flops and buffers. However, the situation is opposite for higher
degree of pipelining (as shown in right part of the graph) where the power overheads due to
flops and buffers exceed the benefits because of already small repeaters. Thus, the inflexion
point corresponding to the optimal degree of pipelining shifts to the right for higher frequencies
and for lower technology nodes. This reinforces the need for higher degree of pipelining in
interconnects running at high frequencies and/or smaller technologies. The reduction in the
power of interconnect for smaller technologies is attributed to reduction of transistor capacitance
that leads to lower dynamic and short circuit power of repeaters and flops. Figure 5.5 brings
out this fact more clearly by showing that the dynamic power of repeater reduces significantly
whereas leakage power of repeater increases for smaller technology nodes. However, the leakage
power is a small fraction of overall power of repeater in Figure 5.5 or interconnect in Figure 5.4
because we consider a workload with high activity factor in these configurations. The component
wise power breakup and leakage trend in interconnect for different activity factors are presented
in Figure 5.6 and Figure 5.7 respectively which are discussed later.

Figure 5.4 also shows the HSPICE simulated power estimation for the 90 nm (2 GHz)
interconnect to validate our tool. We observe that the error in estimating power using our
model is 10.3% at the worst and 7.8% on an average for this configuration. The error estimates
for a 1 pum repeater running at 1 GHz is shown separately in Figure 5.5 which shows that the

error in estimation of repeater power is at most 14.6% across technologies. The important point

5.4 Experimental Results

86

35

90 nm(2 GHz)
90 nm(1 GHz)
65 Nnm(2 GHz)

w
P
AY 7 Al

T T
Spice—90 nm(2 GHz)

Max Error = 10.38 %
Avg Error =7.81 %

vV 'V

65 nm(1 GHz)
P ~.
_25F > 1~ => |
=
E
D
=2 N~ ——F>
S
L e o
D
p—o—0—°
10} A\ O
N A O VAN O <
s < N v
2 3 4 5 6 7

Number of Pipe Stages

Figure 5.4: Degree of Pipelining vs Power for 5 mm Interconnect with 12 « A Pitch

7 T
Il model dy
[1 model_leak Error = 4.4%
6 [spice_dy
[spice_leak
=5 |
= Error = 14.68%
S 4 1
o
o Error = 13.41%
L 3 I
<
[«5}
o
D
[a N
1l i
(0]

65 90
Tech Node

Figure 5.5: Validation of Dynamic and Leakage power for 1 um Repeater Operated at

1GHz for Different Technology Nodes

5.4 Experimental Results 87

12 ;
Hl wire
I repeater
10H 1 f|0p
[clock
Il buffer
8k
=
£ !
& Of
=
o
o
a+
2k
(0]

780 840 900 960 1020 1080 1140 1200
Voltage Steps (mV)

Figure 5.6: Component Wise Power Breakup for a 5 mm Interconnect with 16 x A Pitch
in 90 nm Tech Node Running at 1 GHz.

o
T

N A
T T

Leakage Power gs % of Total Pquer
O

N A OO
T

0.4 0.6 0.8 1
Activity Factor

OO
o
N

Figure 5.7: Leakage as % of Total Power for Different Activity Factors for Optimally
Pipelined 5 mm Interconnect with 12*)\ Pitch Running at 1 GHz

5.4 Experimental Results 88

90 nm(12*lambda)
90 nm(16*Lambda)
65 nm(12*lambda)
65 nm(16*lambda)
Spice—65 nm(16*lambda)

4y

N
o
T

Max Error = 15.45 %
Avg. Error = 14.51%

[
o
T

[6)
T

Total Power for Optimal Pipeline (mW)
|_\
a

"y

! !

1.5 2 2.5 3

.OO
6]
[y

Frequency (GHz)

Figure 5.8: Frequency vs. Power for Optimal Degree of Pipelining for 4 mm Interconnect

[
‘—’G’

A

)

90 Nnm(2.5 GHZz)
90 nm(1.5 GHz)
45 nm(2.5 GHz) M
Spice—45 nm(2.5 GHz)

45 nm(1.5 GHZz)

W
[
N

=
N
T

Max Error = 12.80 % 8
Avg Error = 7.59 %

[y
(@]
T

Total Power for Optimal Pipeline (m

> : 1 o : S : &
2 2.5 3 3.5 4 4.5 5 5.5
Pitch (Multiple of 4*Lambda)

Figure 5.9: Pitch Vs Power for Optimal Degree of Pipelining for 2 mm Interconnect

5.4 Experimental Results 89

to note is that our model has a discreet unidirectional error.

Figure 5.6 depicts component wise power breakup for 8 different voltage steps decreasing
by 60 mV from operating voltage (1.2 V) for three different degrees of pipelining (2 being the
optimal degree of pipelining in this configuration). It is clear from the graph that the wire power
is the major component in the overall power of interconnect and clock power is the next top
contributor. Figure 5.6 also shows the recurring trend that increasing the degree of pipelining
first reduces power till optimal degree of pipelining (middle bar in this case) and than there is
an increase because of reason explained earlier. The another trend depicted is the reduction in
overall power w.r.t reduction in voltage which is quadratic in nature as shown by plot connecting

the high points of the middle bar for different voltage steps.

Figure 5.7 depicts the leakage power percentage of total power for a 5 mm interconnect
which is optimally pipelined and running at 1 GHz for a range of activity factors. The leakage
power is high (20%) for smaller technologies such as (32 nm and 45 nm) and for low activity
factor as expected. Though the fraction is not as high as in combinational circuits because as
Figure 5.6 depicts that wire (which doesn’t have a leakage component) makes a major fraction

of interconnect power.

Figure 5.8 shows the change in power w.r.t frequency for optimal degree of pipelining for
two different technology nodes (90nm and 65nm) and for two different wire pitch values (12 % A
and 16 % \). The graph clearly shows the linear change in power w.r.t to the frequency for both
the technology nodes. Increasing wire pitch within a technology decreases coupling capacitance
which in turn reduces repeater size and number that leads to reduction in power. Again the
power reduces in smaller technologies because of the reason explained above. The HSPICE
validated graph for 65 nm and 16*)\ shows that the maximum error is 15.45% whereas the

average error is 14.51% for varying frequency.

Figure 5.9 clearly brings out the trend of reduction in power for optimal degree of pipelining
with increasing wire pitch for two different frequencies (2.5 GHz and 1.5 GHz) in two different
technology nodes (90 nm and 45 nm). The reduction in power is proportional to inverse of
the pitch. As mentioned above, increasing pitch actually reduces coupling capacitance which in
turn decreases the load on repeaters and makes it possible to reduce repeater size and number of

repeaters. Increasing wire pitch also reduces the optimal degree of pipelining as the signal can

5.5 Related Work 90

travel more distance for the same time period. Reduction in the degree of optimal pipeline re-
duces required number of flops which further reduces power. The trend towards linear reduction
in power with reduced frequency is also visible in this graph so as the trend towards reduction
in power in smaller technologies for the same length of interconnect. The HSPICE validation for

45 nm at 2.5 GHz shows that the maximum error is 12.8% whereas the average error is 7.59%.

5.5 Related Work

This section discusses some of the earlier work in the context of interconnect modeling and a
comparison of our work with the earlier work. Banerjee et al., analyze the effect of changing
repeater size and spacing on the power and delay of interconnects[27]. They observe that the
delay variation is very shallow near the minimum delay point, which can be utilized to minimize
power consumption. However, the wire width and spacing is fixed and its impact on power is not
considered in this work. [28] considers the effects of wire dimension on bandwidth (irrespective
of power) by considering two cases of same wire width and spacing and minimal spacing. In
contrast, we propose a complete tool for modeling different interconnects across technologies.
INTACTE optimizes the power by varying all the four parameters (i.e. repeater size, repeater
spacing, wire width and wire spacing) in order to obtain minimal power for the desired intercon-
nect. As our results show, wire width and spacing has significant impact on power and minimal
spacing leads to comparatively higher power consumption.

[157] presents strong evidences of interconnects being one of major performance and power
bottleneck in multi-core systems and a methodology of co-designing interconnect with other
processor components. The study is based on earlier circuit level estimates of interconnect
parameters[166][167][23]. [156] observes that different interconnects in processor have different
bandwidth and latency requirements and interconnects composed of wires with different char-
acteristics meet the power-performance goals of a system in a much better way. The evaluation
has been performed based on guesstimates on circuit level study performed in[28].

Gupta et al.,[39] propose a methodology for first level power estimation of interconnect. They
take into account activity factor and coupling factor in a similar fashion. They also propose
a wire length estimation model which is complementary to our work. The most important

limitation of their method is non-consideration of pipelining in interconnect and its overheads

5.6 Conclusions 91

in terms of power and delay which is indispensable for global and semi-global interconnect they
target. Many important components of power (such as leakage in repeaters and clock power)
are not modeled in their work. It is also not clear how easy it is to obtain power estimates of

desired interconnect across technologies by using their model.

[38] considers the impact of coupling between adjacent wires on power using a sophisticated
method. The proposed method takes into account the time difference between transitions on
adjacent wires using a timescale parameter called charge time which essentially represents the
correlation time length between two events. The proposed method relies on layout information
to be able to calculate coupling in a better fashion. Since we propose a high level methodology
for interconnect energy modeling, in absence of detailed layout information, a simple calculation

of coupling as done by profiling workload suffices to give reasonable accuracy in our model.

Orion is a simulator proposed for delay and power modeling specifically targeting off-chip
interconnects[168]. The approach used is event driven that takes into account the events during
execution to determine the power consumption in various logical interconnect components such
as FIFO, arbiter, and crossbar. They lack a link model and rely on standard published data
for accounting the power of links. However, link is an essential part of the communication and
they also recognize the need for a parameterizable model for link power to be able to perform
architectural design trade-offs[168]. Our work complements their work by providing a thoroughly

validated model for optimizing the power of link used to connect the logic modules.

5.6 Conclusions

In this chapter, we presented a tool that fills the gap between architect’s need and circuit level
models for design of interconnects. The tool takes architectural parameters such as length, bit-
width, latency and target technology and provides a set of interconnect options with varying
degree of area, pipelining, and power budget using pre-characterized estimates of circuit pa-
rameters for different interconnect components. The major motivation behind development of
this tool has been co-designing interconnect with other architectural components that is highly
desirable for high level synthesis and design of embedded SoCs. The proposed tool is not only
useful to make micro-architectural and architectural trade-offs but also to evaluate various ar-

chitectural and compiler optimizations. Though, the scope of the tool is much general, we have

5.6 Conclusions 92

specifically used the tool to evaluate the benefits of heterogeneous interconnects in the context

of clustered VLIW architectures as described in the next chapter.

Chapter 6

Energy Optimization for

Interconnects

6.1 Introduction

Clustered VLIW architectures helps to combat the scalability problem by making components
simpler and thereby improving performance and energy consumption. However, an interconnec-
tion network is required for the communication of data among different clusters. This commu-
nication happens over long wires having high load capacitance which in effect takes more time
and consumes more energy consumption[5][23]. Earlier studies report that a very high percent-
age (20% to 30%) of total processor energy consumption is attributed to interconnects[169][24].
Thus, interconnect is becoming major performance and power bottleneck in distributed ar-
chitectures. Clearly, clustered architectures are attractive only if their benefits outweighs the
performance and energy penalties due to interconnection network. Thus, efficient means of using
interconnects are important for clustered VLIW architectures. The primary goal so far has been
reduction in the latency of communication to minimize communication delays[12][42].

Wire delay is a function of its RC time constant where R and C are the resistance and the load
capacitance of the wire respectively. As described in the last chapter, R and C are both linear
functions of wire length and thus the wire delay has quadratic dependency on the wire length.
It is made linear by dividing the wire into segments and by using repeaters[23]. Closely spaced

repeaters can help to improve latency but have more area and energy overheads. By tuning the

6.2 Motivation 94

repeater size and spacing between successive repeaters, different latency and power profiles can
be obtained for wires. It has been shown that using 45nm technology, it is possible to design
repeaters consuming 1/5 the energy but having twice the delay[27][28]. Though VLSI technology
enables design of interconnects with wires having different energy characteristics, to the best of
our knowledge, there have been no efforts in terms of using energy efficient interconnects for

clustered VLIW architectures.

In this chapter, we propose and evaluate a new energy-aware instruction scheduling algo-
rithm which exploits interconnects of different characteristics in the context of clustered VLIW
architectures. The proposed algorithm takes into consideration the interconnect characteristics,
and communication slacks of data values together with the scheduling slacks of instructions while
steering the communication to an appropriate interconnect, thereby reducing energy consump-
tion without much performance degradation. We consider different flavors of interconnects such
as latency-optimized and energy-optimized together with the variation in degree of clustering to
perform a detailed performance evaluation. This helps in understanding the energy-performance
trade-off in using different varieties of clustered architecture and in making design decisions for
clustered architectures targeting embedded domains.

The rest of the chapter is organized as follows. In section 2, we present the motivation for this
work with some quantitative results. Section 3 gives a detailed description of our energy-aware
instruction scheduling algorithm with a brief mention of implementation details. We also give
an example in section 3 to illustrate the notion of communication slack and how it is exploited
by our algorithm to yield energy benefits without performance degradation. Section 4 presents
a detailed performance evaluation of the proposed algorithm. Section 5 presents related work

and we conclude in section 6.

6.2 Motivation

Previous studies have reported that performance degrades by 12% when the latency of com-
munication is doubled for a four clustered architecture, and that increasing the interconnection
bandwidth from one to two improves the performance by as much as 10%[43]. We also observe in
our experiments that increasing the inter-cluster communication bandwidth indeed gives similar

performance benefits. However, we argue that not all data values need to be communicated on a

6.2 Motivation 95

Communication Slack (2 Cluster Machine) W3

100 —

80

60 —

40 -

20 —

fay fayg 972 6?721 ide; Mmqgs des dh Crc Sus, Alg
Cay QUq,-O en. e- n
lio Code C Ode

Figure 6.1: Communication Slack for Two-Cluster Machine Model

high speed path. Though some communications are critical and delaying them can have severe
impact on performance, we observe that many communications are non-critical and can still
happen on a slow path without affecting performance. We define the communication slack of
a data value on clustered architectures as the number of cycles between the time when the data
value to be communicated becomes available (due to completion of execution of the producing
instruction) and when the instruction that requires the data value is actually scheduled. Various
causes that can affect the available communication slack of a data value on clustered architecture

are as follows :

1. Data dependency among instructions adds to the available communication slack of data
values because different parents of an instruction may produce results at different points

in time.

2. Limitation on the available number of functional units makes an instruction requiring com-

munication getting scheduled many cycles after it actually becomes ready to be scheduled.

3. Limitations on the number of available cross-paths, their bandwidth, and latency of cross-
path communication are another factors that add to the communication slack of data

values.

4. Finally, the peculiarities of cluster scheduling algorithms also add to the communication

slack of data values.

6.2 Motivation 96

Communication Slack (4 Cluster Machine) E:i

100 [J>=4
80 —
60 —
40 +
20 —+
0

ijeg dipeg faw rawgy 9721 9721 idea mds des dh Crc Susap Avg,
;au udio Ncoge de-
lio Code

Figure 6.2: Communication Slack for Four-Cluster Machine Model

Figure 6.1 presents quantitative results to substantiate our arguments. This figure presents
the percentage of required communication that has a slack of three cycles (two cycles and
four cycles) or more. These results are for a two-cluster machine which has two high speed
bidirectional cross-paths between clusters. We observe that all the benchmarks have many
communications with high slack values. In particular djpeg, g721encode, des, and crc have 70%
to 75% of communications with slack value of three cycles or higher. On an average, we observe
that 60.88% (82.51% and 43.16%) of communications can sustain a latency of three cycles
(two cycles and four cycles respectively) or higher. The corresponding results for a four-cluster
machine are shown in Figure 6.2. It is clear that that the available communication slack is even
higher for a four-clustered machine. Thus, even though having a cross-path with inter-cluster
communication bandwidth of two is desirable from a performance point of view, having both
the wires optimized for low latency is an over kill. This is because improving the latency of
communication channel requires closely spaced repeaters which increase the area and energy
overheads of repeaters[27]. A more suitable option is to design interconnect with some paths
optimized for latency and others for energy[28]. Thus critical communication can take place
over the fast but more energy-consuming wires, and the other not-so-critical communication can
happen on the slower but energy-efficient wires. Such a design is going to be beneficial only if
the target workload has a sufficient number of communications that are non-critical or as we call

it have enough communication slack. Further mechanisms (software or hardware) that can steer

6.3 The Scheduling Algorithm 97

the communications to the appropriate cross-path depending upon the communication slack of

the data value should be available. Our instruction scheduler is one such mechanism.

6.3 The Scheduling Algorithm

The Algorithm described in chapter 4 only exploits the instruction slack to optimize the leakage
energy in functional components. In this section, we present our instruction scheduling algorithm
that specifically exploits the communication slack of data values as well as scheduling slack of in-
structions to steers non-critical communication to slow-interconnects thereby saving energy in in-
terconnects. The proposed algorithm is implemented by modifying the list scheduling algorithm
(designed and implemented for flat VLIW architecture) in the ELCOR backend of Trimaran
infrastructure[137][145]. As mentioned earlier, we take an integrated approach[43][134][135] to
cluster scheduling that makes the cluster assignment decision during temporal scheduling as
compared to the phase-decoupled approaches[130][131][132] which perform cluster assignment
prior to temporal scheduling. Essentially, our integrated clustered scheduling algorithm consists

of the following main steps.

1. Prioritizing the ready instructions
2. Assignment of a cluster to the selected instruction

3. Assignment of cross-paths for transferring data values (from other clusters) to the target

cluster.

In what follows, we describe how each of these step is performed in our algorithm. An outline
of our algorithm is shown in Algorithm 4. A pseudo code of complete scheduling framework is

available in chapter 7.

6.3.1 Prioritizing the Ready Instructions

Instructions in the ReadyList are prioritized using a priority function that uses instruction slack
and number of consumers of the instruction respectively. The definition of instruction slack
and motivation behind using the above mentioned criteria to prioritize instructions is same as

explained in chapter 4.

6.3 The Scheduling Algorithm 98

Algorithm 4 Energy Efficient Scheduling for Interconnects

1:

e

10:
11:

12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:

25:

26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

Initialize ReadyList with root operations of the dependence graph of the
region to be scheduled
CurrentCycle < 0
while (ReadyList is not empty) do
Initialize EarlyCycle with CurrentCycle, and LateCycle with SchedulingCycle
determined using performance oriented scheduling
slack = LateCycle — EarlyCycle
while (Not all operations in ReadyList have been tried once) do
(CurrentOperations < UnSchedList.pop())
Initialize MinCommCost, MinCommOption and MinCommEnergy
for (CurrentCluster ranging from FirstCluster through LastCluster) do
Compute the Cross-path Requirements in CurrentCommOption
Compute the Communication Cost in CurrentCommCost and Communication
Energy Cost in CurrentCommEnergyCost
if (FU and Cross-paths required by CurrentOperation are not available in
CurrentCycle for CurrentCluster) then
CONTINUE
end if
if ((CurrentCommCost <= MinCommCost)) then
MinCommCost=Current CommCost
MinCommOption=CurrentCommOption
MinCommEnergy=CurrentCommEnergyCost
TargetCluster=CurrentCluster
end if
end for
if (CurrentCommEnergyCost < COMM _ THRESHOLD or Slack <
SLACK THRESHOLD) then
while (CurrentComm=CurrentCommOption.pop()) do
Determine the EarlyCommCycle, LateCommCycle, and the CommSlack
for CurrentComm
Schedule the CurrentComm using minimum energy consuming cross-path
between EarlyCommCycle and LateCommCycle
end while
Schedule CurrentOperation in CurrentCycle on TargetCluster
else
ReadyList.add(CurrentOperation)
end if
end while
CurrentCycle < CurrentCycle + 1
ReadyList.update()
update FU Status()
end while

6.3 The Scheduling Algorithm 99

6.3.2 Cluster Assignment

Once an instruction has been selected for scheduling, we make a cluster assignment decision. The
constraints for a cluster to be considered for binding are as follows and are same as mentioned

earlier in chapter 4:

e The chosen cluster should have at least one free resource of the type needed to perform

this operation

e Given the bandwidth of the channels among clusters and their usage, it should be possible
to satisfy the communication needs of the operands of this instruction on the cluster by

scheduling these communications in the earlier cycles.

Selection of a cluster from the set of the feasible clusters is done based on the following criteria.
We determine the earliest time when we can schedule the operation under consideration on each
of the clusters in the feasible cluster list while adhering to all the resource and communication
constraints. The operation is primarily assigned to that cluster where it can be scheduled at the
earliest after accommodating all the communications. In case of a tie in this metric, the operation
is assigned to the cluster that minimizes communication requirements. The communication cost
is computed by determining the number and type of communications needed by a binding
in the earlier cycles as well as the communication that will happen in the future. Future
communications are determined by considering the successors of this instruction which have
one of their parents bound on a cluster different from the cluster under consideration. This
is because if the instruction is bound to the cluster under consideration, it will surely lead to
communication(s) in the future while scheduling the successor of the instructions in the future
(refer chapter 3 for an example). Although, we have experimented with many other heuristics
for cluster assignment, the above mentioned heuristic seems to generate the best schedule in

almost all cases.

6.3.3 Cross-path Binding

The cross-path assignment scheme is designed to minimize the energy consumption due to inter-
cluster communication without affecting runtime performance. In order to meet this objective,
the low power cross-paths are used in preference to the high power cross-paths wherever pos-

sible. More precisely, the assignment of cross-paths to communications is done as follow. To

6.3 The Scheduling Algorithm 100

schedule a communication, its earliest scheduling cycle, latest scheduling cycle, and slack values
are determined first. The earliest scheduling cycle for a communication is the cycle in which the
data value to be communicated is produced in the source cluster, plus one. The latest scheduling
time for communication is the scheduling cycle of first consuming instruction, minus one. The
difference between the earliest scheduling cycle and the latest scheduling cycle is the communi-
cation slack. In order to avoid delaying the consuming instruction and the consequent possible
stretch of the schedule, a communication is assigned to a least energy consuming cross-path that
can transfer the data value within the available slack for communication. Thus the cross-path
assignment scheme maximizes the usage of low power cross-paths subject to the availability of
slack in the communication, and thus, as far as possible, performance degradation is minimized

and energy saving is maximized.

The algorithm exploits the instruction slack also and converts it to communication slack to
aggressively save the communication energy. Thus, the algorithm defer an instruction that re-
quires communications with total energy cost above communication threshold (COMM_THRESHOLD)
if it possess a slack that is above a slack threshold (SLACK_.THRESHOLD). The average en-
ergy cost of communications associated with a binding is determined according to following cost

metric.

CommEmnergyCost =(A Z FastComm + B x* Z SlowComm+ (6.)
6.1
C * Z FutureComm)/TotalComm

Where FastComm represents number of transfer that can happen on fast cross path. Slow-
Comm represents number of communication that can happen over slow cross path and Fu-
tureComm represents future communication which will happen on fast or slow cross-path de-
pending on availability. TotalComm is the total number of communication that happen as a side
effect of this binding. The selection of A, B, and C is architecture specific and depends on avail-
able communication options in a clustered architecture and their relative cost. A=1.0, B=0.33
and C=.67 work well in practice for the kind of heterogeneous interconnect, we consider in our
experiments. Of course, the weight can be chosen to reflect the heterogeneous interconnect under
consideration. We have found that SLACK_THRESHOLD = 1 and COMM_THRESHOLD=.67
is a suitable choice of scheduler parameters for the heterogeneous interconnect under consider-
ation. The above heuristic leads to scheduling the instruction under consideration at a later

cycle preferably on a slow but more energy efficient cross-path but with minimum possibility

6.3 The Scheduling Algorithm 101

Clugter?

ADD2 ADD?2
ADD3A_. z ! s

MPY2 MPY'1 MPY1

Figure 6.4: Possible Schedules For Clustered VLIW Architecture (a) Schedule 1 (b) Sched-
ule 2

of stretching the schedule. Again it is important to note that the next time this instruction
is picked up for scheduling, its earliest scheduling time and hence the slack get updated. This
guarantees that the slack of an instruction reduces monotonically and eventually comes below

the threshold ensuring that it is scheduled. Hence the algorithm is guaranteed to terminate.

6.3.4 An Example

In this subsection, we present an example to illustrate the notion of communication slack and
how it is exploited by the proposed scheduling algorithm to get energy benefits without hurting
performance. Figure 6.3 shows a portion of a data dependency graph and Figure 6.4 shows two
possible schedules for this dependency graph. We Assume a two-clustered machine with each
cluster having an adder, a multiplier and a fast cross-path. Schedule 1 has ADD1 and ADD2

scheduled on adders of cluster 1 and cluster 2 respectively in cycle 1. To perform multiplication,

6.4 Experimental Evaluation 102

the results of these operations are transferred to the other cluster in cycle 2. The remaining
addition operation ADD3 is also initiated in cycle 2 on cluster 1. The results of ADD1 and
ADD2 can be used in cycle 3 on cluster 1 and cluster 2 respectively to perform MPY2 and MPY1
multipliers. Though MPY3 does not require any inter-cluster communication, it is still executed
in cluster 1 at cycle 4 because of non-availability of a multiplier in cycle 3. The scheduler decides
to schedule MPY?2 ahead of MPY3 in schedule 1 assuming that MPY2 is on the critical path.
However, MPY3 gets preference if it is on the critical path as shown in schedule 2. Note that in
this case, MPY2 needs to be scheduled in cycle 4 on cluster 1 again because cluster 1 has only
one multiplier. The important point to note here is that the scheduler when scheduling MPY2 in
cycle 4 in cluster 2 has the knowledge that it can take two cycles to transfer the result of ADD2
over the communication channel without stretching the schedule. In such a situation if a slow
but more energy-efficient cross-path is available, our schedulers decide to steer communication
to such a cross-path (as shown with darker arrow in schedule 2). Notably, even though three
additions are ready to be scheduled in the first cycle only two of them can be scheduled (only two
adders are available in this case). Similarly though the addition operations finish in opposite
clusters in cycle one the results can not be utilized for multiplications in cycle 2 because it
takes at least one cycle to transfer the results to the other clusters. This shows how contention
among computation and communication resources in clustered architectures manifests itself in
the form of greater computation and communication slack. Notably, the contention for resources
is more in clustered architectures as compared to flat architectures because of distribution of
resources. Our scheduling algorithm leverages this increased slack and takes into consideration
the criticality of an instruction and the available cycles to communicate requisite data values
while scheduling an instruction in a given cycle. Accordingly, communication is assigned to
the most energy-efficient cross-path that can transfer the value in the available communication

cycles.

6.4 Experimental Evaluation

We have performed a detailed experimental evaluation of the proposed algorithm in terms of
execution time and interconnect energy benefits for a 2-clustered and a 4-clustered machine

model. The cluster configurations are same as described earlier in Chapter 3. The inter-cluster

6.4 Experimental Evaluation 103

cross-paths allow transfer of two data values between clusters per cycle. The interconnect energy
benefits of using LP configuration (having 1 fast and 1 slow cross-path) with the proposed
scheduling algorithm are presented with respect to the LL configuration (having 2 fast cross-

path) as described in the following subsection.

6.4.1 Energy Model

For determining the benefits in interconnects, we have used the INTACTE energy model de-
scribed in last chapter[46]. INTACTE is a CACTTI like tool which takes as input high level
architectural parameters for interconnects such as delay, degree of pipelining, technology, volt-
age, length, and pitch etc and provide the energy estimates of the interconnect that meets the
specified delay constraint in target technology at specified voltage. For our experiments, we
have determined the energy cost of 1 mm interconnect at three different technologies i.e. 90 nm,
65 nm, and 45 nm and for 1.5 GHz clock. The delay for fast interconnect (called L) is set to 1
clock cycle and delay for slow interconnect (called P) is set to 3 clock cycles. The dynamic and
leakage energy estimates given by INTACTE are used along with the usage statistics determined
by trimaran simulation to calculate the interconnect energy estimates. We refer the reader to

the last chapter for details on INTACTE energy estimation methodology.

6.4.2 Results

We have performed a detailed experimental evaluation of the proposed algorithms in terms of
execution time, energy benefits, as well as impact of technology scaling on the energy benefits.

Figure 6.5 presents the percentage increase in execution time of using LP configuration (hav-
ing 1 fast and 1 slow cross-path) with the proposed scheduling algorithm over LL configuration
(having 2 fast cross-path). The average percentage increase in execution time is 1.8% and 1.5%
for 2-clustered and 4-clustered machine respectively. Figure 6.6 depicts that the percentage
energy benefit of using LP configuration (as compared to LL configuration) scheduled using
Algorithm 4 is 41.5% and 46.8% respectively for 2-clustered and 4-clustered machine. These
results are determined using the INTACTE[46] interconnect energy model. Programs having
more communications with high slack values viz. djpeg, g721encode, des, and crc suffer only
a marginal performance degradation and gives significant energy benefit because many of the

communication in these programs are scheduled on slow cross-path by the proposed scheduling

6.4 Experimental Evaluation 104

% Increase in Execution Time I 2 Cluster
M 4 Cluster

Gpeg djpeg ray frawg 972; 9727 ldey des dh mgs Crc Susy AVg
C.au audio en. de. n
dio Coge Code

Figure 6.5: % Increase in Execution Time of LP Conf. w.r.t. LL Conf.

[2 Cluster

o .
% Interconnect Energy Savings B 4 Cluster

B0

Gipe g djpe g ray fra Wdy 9727 o 9721 idea deg dh mqs Crc Susy n A VG,
Cay Udig "Code de.
dio C Ode

Figure 6.6: % Energy Benefit of LP Conf. w.r.t. LL Conf.

6.4 Experimental Evaluation 105

Scalability Results (IC Energy Savings) [2 Cluster
M 4 Cluster

90nm GSnm 45nm

Figure 6.7: Scalability Results for Interconnect Energy Savings

algorithm 4. In Contrast, programs with fewer communications with high slack values viz. idea,
mdb, and susan suffer a moderate performance degradation with the LP configuration and give
relatively less energy benefits. However, a very small overall performance degradation occurs
with the LP configuration whereas a significant amount of communication energy savings are
obtained. This shows the effectiveness of our communication scheduling mechanism that se-
lectively maps communications with high latency tolerance onto a high latency cross-path and

communication with low latency tolerance to low latency cross-path.

6.4.3 Sensitivity Analysis

Figure 6.7 depicts the impact of technology scaling on the benefit of our compiler scheduling
scheme for heterogeneous interconnect for three different technology nodes namely 90nm 65nm
and 45nm. The parameters for different technology nodes for scalability analysis were obtained
from INTACTE. From Figure 6.7, it is clear that our scheme gives roughly the same benefits
across different technology nodes with slight variations. This is because the smaller technologies
though leads to increase in leakage part in some interconnect components such as repeaters,
buffers, and flops (note that wire does not have the leakage component), there is also reduc-
tion in dynamic component of the voltage in all the components including wires. This leads
to roughly the same benefits of using the slower interconnect over faster interconnect across

different technology nodes. Thus the scheme gives appreciable benefit across technologies and

6.5 Related Work 106

is particularly useful for more decentralized architectures where interconnects increasingly make

major proportion of the total energy consumption of processor.

6.5 Related Work

In this section we compare and contrast our work with some of the earlier work in the context of
efficient interconnect design. Reader is referred to chapter 2 for a general description on circuit
level techniques for interconnect energy savings and chapter 5 for a description on interconnect

modeling related work.

As compared to reducing energy consumption in function blocks, study of energy efficiency
in interconnects is still in its infancy. Previous work has concentrated on improving latency for
interconnects in the context of decentralized architectures. Gonzalez et al.,[42] have evaluated
different kinds of interconnects with different topologies and concluded that a point-to-point
interconnect with an effective steering scheme is more efficient than a bus-based interconnect.
Their experimental results also demonstrate that an asynchronous interconnect offers a perfor-
mance comparable to an idealized interconnect at a low hardware implementation cost. Terechko
et al.,[12] has proposed various inter-cluster communication models for clustered architecture

and perform a quantitative analysis to compare their benefits.

Balasubramonian et al.,[29]. have used the interconnect energy estimates proposed in [28] to
evaluate techniques such as cache pipelining, exploiting narrow bit-width operands, and intercon-
nect load balancing in the context of superscalar architectures with heterogeneous interconnect.
In contrast, our work is more focused on how communication slack in the context of clustered
VLIW architecture can be exploited to gain the energy benefits. Our results demonstrate that
compile-time instruction scheduling utilizing a larger view of program can combine the instruc-
tion scheduling and communication scheduling in a profitable manner. On the other hand, a
architecture with dynamic scheduling suffers from the problem of limited program view and
incurs overheads and complexities of extra hardware for exploiting heterogeneous interconnects
at run-time. Thus, the choice of a heterogeneous interconnect is more suitable and beneficial for

statically scheduled VLIW architectures as compared to dynamically scheduled architectures.

6.6 Conclusions 107

6.6 Conclusions

In this chapter, we proposed a new energy-aware instruction scheduling algorithm for clus-
tered VLIW architectures that is capable of exploiting interconnect characteristics to get en-
ergy benefits without showing high performance degradation. The major conclusion that we
draw form this work is that clustered architecture with heterogeneous interconnect offers better
energy-performance trade-offs when used with an effective scheduling algorithm as compared
to a cluster VLIW architecture with homogeneous interconnect optimized for latency. Experi-
mental results using INTACTE model for interconnect energy estimation demonstrate that our
instruction scheduling algorithm achieves 41.5% and 46.8% reduction in communication energy
respectively for a 2-cluster and a 4-cluster machines with a marginal 1.8% and 1.5% degradation
in performance. Scalability Analysis clearly shows that our techniques gives similar benefits
across technologies. Thus, we believe that our technique will become more important with the
continuing trends towards decentralized architectures with interconnects consuming more and

more chip area.

Chapter 7

Integrated Energy Optimization for

Functional Units and Interconnects

7.1 Introduction

In this chapter, we present an integrated scheduling algorithm that combines the schemes pro-
posed earlier for energy savings in functional units and interconnects to simultaneously reduce
the energy consumption in functional units as well as interconnects. The contention for limited
number of functional and communication resources in clustered VLIW architecture leads to in-
creased cycles of execution on a clustered machine as compared to an equivalent VLIW machine.
Our combined scheme aggregates the scheduling slack of instructions and communication slack
of data values to convert the inherent idleness of functional and communication resources in
clustered architecture to energy gains. The rest of the chapter is structured as follows. Section
2 describes our combined scheme to optimize energy for functional units as well as interconnects.
Section 3 describes our scheduling framework using pseudo code for major routines. Section 4

presents experimental results and a detailed analysis of results. We conclude in section 5.

7.2 The Scheduling Algorithm

Algorithm 5 is a combined algorithm that performs both leakage energy management in func-

tional units as well as energy optimization in interconnect. However, It is important to note

7.2 The Scheduling Algorithm 109

that the combined Algorithm 5 gives preference to leakage energy management in functional
units when exploiting slack and uses any left over slack for energy optimization in interconnects.
This avoids excessive performance degradation as well as extra transitions in the functional units
and associated energy overheads. Another reason for giving preference to functional units when
exploiting slack is that its contribution to overall processor energy consumption is more and it
is one of the hot-spot and hence demands more aggressive energy saving.

We have implemented the combined algorithm in the ELCOR backend of the trimaran
compiler infrastructure by modifying the core scheduling algorithm. This algorithm as well as
the scheduling algorithms proposed in earlier chapters use the common scheduling routines as
explained with pseudo code in section 3. All the algorithms essentially have the same steps (as
described below) but they differ with respect to the criteria and preference for cluster selection,
functional unit binding, and cross-path assignment policies. It is also important to note that
the decisions with respect to selecting cluster, functional units, and cross-paths are interleaved

and the order given below is used just for the ease of explaining the algorithm.

1. Prioritizing the ready instructions
2. Assignment of a cluster to the selected instruction
3. Assignment of functional unit to selected instruction in target cluster

4. Assignment of cross-paths for communicating the data values to target cluster

In what follows, we describe how each of these step is performed and how the combined schedul-
ing Algorithm 5 proposed in this chapter differs in its functioning from algorithms proposed in

the earlier chapters.

7.2.1 Prioritizing the Ready Instructions

Instructions in the ReadyList are prioritized using a priority function that uses instruction slack
and number of consumers of the instruction. The procedure to calculate and update the dynamic
slack of instructions while scheduling and the rationale behind this criterion for prioritizing of

instructions is already explained in chapter 4 and chapter 6.

7.2 The Scheduling Algorithm 110

7.2.2 Cluster Assignment

The feasible set of clusters where an instruction under consideration can be scheduled is de-
termined based on compute and communication resource availability as explained earlier. As
described earlier, selection of a cluster from the set of the feasible clusters is done based on two
criteria. Criterion one is to give preference to cluster that have an active functional unit to
schedule the operation under consideration. Criterion two is to give preference to cluster that
reduces the overall cost of communication. Algorithm 5 uses criterion one as a primary criterion
for cluster selection and criterion two is used as secondary criterion. This is because Algorithm
5 gives preference to saving energy in functional units and also avoids performance loss.

The communication cost is computed by determining the number and type of communica-
tions needed by a binding in the earlier cycles as well as the communication that will happen in

the future as explained in the last chapter.

7.2.3 Functional Unit Binding

The functional unit binding criterion are the same as those used by the earlier algorithm ex-
plained in chapter 4. We briefly explain the criterion here for clarity and completeness. The
algorithm maintains an FU map that explicitly keeps track of the status of each functional unit.
A functional unit is marked to be in sleep mode after one cycle of idleness and activated on next

use.

If the functional unit required for the instruction under consideration is active in the target
cluster, it is bound as usual. otherwise, the available slack of the instruction is considered. If
the slack is below a threshold (we use the threshold value of 0 in our experiment) the functional
unit required by the instruction is woken up. In case there is more than one alternative available
(for activating), the functional unit which is in sleep mode for a longer duration is woken up
in order to amortize the cost of waking up. In case the instruction possesses enough slack, its
scheduling is deferred to a future cycle and it is put back in the ReadyList. Note that the
next time this instruction is picked up for scheduling, its earliest scheduling time and hence
the slack gets updated. This guarantees that the slack of an instruction reduces monotonically
and eventually comes below the threshold ensuring that it is scheduled. Hence the algorithm is

guaranteed to terminate.

7.3 Scheduler Implementation 111

7.2.4 Cross-path Binding

The cross-path assignment scheme is designed to minimize the energy consumption due to inter-
cluster communication without affecting runtime performance. As described in the last chapter,
the cross-path assignment scheme maximizes the usage of low power cross-paths subject to the
availability of slack in the communication, and thus, as far as possible, performance degradation
is minimized and energy saving is maximized. The calculation of communication slack is also
done in the same fashion as described in the last chapter.

Combined Algorithm 5 differs from Algorithm 4 explained in chapter 6 in an important
way. The Algorithm 4 (explained in chapter 6) uses a more aggressive scheme that exploits the
instruction slack also and converts it to communication slack in order to defer instructions and
save energy in interconnects. In contrast, the combined Algorithm 5 exploits instruction slack
only for leakage energy management in functional units (as Algorithm 1) and uses the commu-
nication slack only for interconnect energy optimization. This limits the excessive performance

degradation and improves the overall energy-delay product in a much appreciable way.

7.3 Scheduler Implementation

This section explains the implementation of scheduler in detail with the pseudo code for various
procedures (refer Algorithm 5 and Procedure 6 to Procedure 11) mimicking the code-base of our
scheduler infrastructures. The cycle scheduler as implemented in Trimaran[137] targets a flat
VLIW class of architectures[145]. It maintains a ReadyList of operations whose predecessors
have already been scheduled. In each iteration of the main scheduling loop, the highest priority
operation is selected from the ReadyList and scheduled in the current cycle if it satisfies all the
resource constraints. In our implementation, slack and hence priority is recalculated at the be-
ginning of each cycle for all the operations in the ReadyList using the schedule time determined
in an earlier performance oriented scheduling pass. After taking the highest priority instruc-
tion, DetermineBestAlternative determines all scheduling alternatives of CurrentOperation in all
clusters. DetermineBestAlternative scans each cluster one by one and checks if the instruction
under consideration can be scheduled in the current cycle on the cluster under consideration us-
ing some functional unit (though it can be in sleep mode) and available cross-path for requisite

communication (for this scheduling). It prioritizes clusters which match this feasibility criterion

7.3 Scheduler Implementation 112

into two categories. FirstTarget stores the cluster that can accommodate the instruction under
consideration in the current cycle with minimum communication cost and also has an active
functional unit. SecondTarget stores the cluster that can accommodate the instruction under
consideration in the current cycle with minimum communication cost but does not have an

active functional unit.

Algorithm 5 Energy Efficient Scheduling for Fus and ICs (priority to Fus)

1: Initialize ReadyList with root operations of the dependence graph of the region to be
scheduled
2: CurrentCycle < 1
3: while (ReadyList is not empty) do
4: Initialize EarlyCycle with CurrentCycle, and LateCycle with SchedulingCycle de-
termined using performance driven schduling

5: slack = LateCycle — EarlyCycle
6: while (Not all operations in ReadyList have been tried once) do
7: CurrentOperations <— UnSchedList.pop()
8: Cluster Priority <— 1 # Scheduling for clustered configuration
9: Target + DetermineBestAlternative(
CurrentOperation, CurrentCycle, Cluster Priority)
10: if ((TargetCluster == —1) or (Slack > SLACK THRESHOLD
and (Target.Wakeup == 1))) then
11: ReadyList.add(CurrentOperation)
12: CONTINUE
13: end if
14: ScheduleComm(Target.CommOption)
15: ScheduleFu(CurrentOp, Target. fu, Target.Cluster, CurrentCycle)

16: end while

17: CurrentCycle < CurrentCycle + 1
18: ReadyList.update()

19: end while

To make these decisions, it uses procedures DetermineBestFuAlternative and DetermineBest-
CommAlternative to return the best functional unit for scheduling the instruction under con-
sideration and the best option for communicating the requisite data values for the instruction
under consideration and its associated cost. The best functional unit for performing the opera-
tion is one which is available and active. If no functional units is active, this procedure returns
the functional unit which is in sleep mode for the longest time as FallBackAlternative. For de-
termining the best alternative for communication, procedure DetermineBestCommAlternative

considers each required communication one by one, and for each such communication it chooses

7.3 Scheduler Implementation 113

Procedure 6 DetermineBestAlternative

—

1

11:

12:

13:

14:

15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:
38:
39:

e

INPUT: ThisOp, ThisCycle, ClusterPriority
OUTPUT: Determines best scheduling alternative for this binding
FirstTarget.Cluster <+ —1;
FirstTarget.CommCost < 1000000;
FirstTarget.CommEnergyCost < 1000000;
SecondTarget.Cluster < —1
SecondTarget.CommCost < 1000000;
SecondTarget.CommEnerqgyCost < 1000000;
for (CurrentCluster ranging from FirstCluster through LastCluster) do
if (FU required by ThisOp is available in ThisCycle for CurrentCluster) then

if

(Cross-paths required by ThisOp are available in ThisCycle for CurrentCluster)

then

CommAlternative < DetermineBestCommAlternatives(
ThisOperation, CurrentCluster, ThisCycle)
FuAlternative < DetermineBest FuAlternatives(
ThisOperation, CurrentCluster, ThisCycle)
if ((FU under consideration is in active mode) and (FirstTar-
get.CommEnergycost > CommAlternative.CommEnergyCost)) then
FirstTarget.CommCost <+ CommAlternative.CommCost
FirstTarget.CommEnergyCost < CommAlternative.CommEnerqgyCost
FirstTarget.CommOption < CommAlternative.CommQOption
FirstTarget.Cluster < CurrentCluster
FirstTarget.Fu < FuAlternative.Fu
else
if (SecondTarget.CommEnergycost > CommAlternative.CommEnergyCost)
then
SecondT arget.CommCost < CommAlternative.CommCost

SecondTarget.CommPEnergyCost + CommAlternative.CommEnergyCost

SecondT arget.CommOption < CommAlternative.CommQOption
SecondTarget.Cluster < CurrentCluster
SecondT arget.Fu < FuAlternative.FallBackFu
end if
end if

end if

end

if

end for
if ((FirstTarget.cluster! = —1) and (Cluster Priority == 0 or

FirstTarget.CommCost < SecondTarget.CommCost)) then

FinalTarget < FirstTarget
FinalT arget. W akeup < 0

else

FinalT arget < SecondT'arget
FinalTarget. W akeup < 1

end if

RETURN FinalTarget

7.3 Scheduler Implementation 114

Procedure 7 DetermineBestFuAlternative
1: INPUT: ThisOp, ThisCluster, ThisCycle
2: QUTPUT: Best functional unit and fallback functional unit for this Binding
3: for (CurrentFu ranging from FirstFu through LastFu in ThisCluster) do

4: if (CurrentFu is available in ThisCycle and Current Fu can execute ThisOp) then
5: if (CurrentFu is active) then
6: Target.Fu < CurrentFu
7 Target.FallBackFu < —1
8: RETURN Target,
9: else
10: if (CurrentFu.SleepPeriod > Target.SleepPeriod) then
11: Target.FallBackFu < CurrentFu
12: Target.SleepPeriod < CurrentFu.SleepPeriod # Length of sleep mode
13: end if
14: end if
15: end if
16: end for

17: RETURN Target

Procedure 8 DetermineBestCommAlternative
1: INPUT: ThisOp, ThisCluster, ThisCycle
: OUTPUT: Best communication alternatives and cost for this binding
: for (All Communiction required for scheduling ThisOp on ThisCluster in ThisCycle)
do
CurrentCommOption < DetermineBestCommOption(CurrentComm)
Target.CommOption.add(CurrentCommOption)
Target.CommCost+=DetermineCommunicationCost (CurrentCommOption)
Target.CommEnergyCost+=DetermineCommEnergyCost(CurrentCommOption)
end for
: RETURN Target

W N

Procedure 9 DetermineBestCommOption

1: INPUT : ThisComm

2: OUTPUT: A tuple CommOption (Comm, Cross) that associates best cross-path with
ThisComm

3: CommOption.Comm < ThisComm

4: Determine the EarlyCommCycle, LateCommCycle and the CommS§Slack
for ThisComm

5: Determine the free minimum energy consuming cross-path, target_cross that can tran-
fer CurrentComm between EarlyCommCycle and LateCommCycle

6: CommOption.Cross < target_cross
7. RETURN CommOption

7.3 Scheduler Implementation 115

Procedure 10 ScheduleComm

1: INPUT: ThisCommOption

2: while (CurrentComm=ThisCommOption.pop()) do

3: Schedule CurrentComm.Comm on CurrentComm.CrossPath
on CurrentComm.ScheduleCycle

4: Mark CurrentComm.CrossPath busy from CurrentComm.ScheduleCycle for
CurrentComm.CrossPath.Latency Cycles

5: end while

Procedure 11 ScheduleFu
1: INPUT: ThisOp, ThisFu, ThisCluster, ThisCycle
2: Schedule ThisOp on ThisFu on ThisCluster on ThisCycle
3: Mark ThisFu in ThisCluster Busy from ThisCycle for ThisFu.Latency Cycles

the best communication option using procedure DetermineBestCommOption. Procedure Deter-
mineBestCommOption returns the minimum energy consuming cross-path that is available and
can schedule the communication under consideration within the available communication slack
associated with the communication under consideration. The procedure DetermineBestCom-
mOption finally aggregates the cost of all communication so determined to calculate the overall
cost of the binding. It also computes the average energy cost of the binding by averaging the
energy cost of all requisite communication for this binding using the cost function described in
earlier chapter 6. Finally, the procedure DetermineBestAlternative decides between the Tar-
get clusters determined using two criteria mentioned above. Algorithm 4 described in chapter
6 uses FirstTarget or SecondTarget as FinalTarget depending on which one has the minimum
communication cost. Algorithm 1 described in chapter 4 and Algorithm 5 of this chapter use
FirstTarget if it is not empty otherwise they use SecondTarget.

The top level scheduling algorithm proceeds after getting information about FinalTarget.
Algorithm 1 puts back the instruction into the ReadyList if it requires waking up a resource in
TargetCluster (i.e., there is no cluster in current cycle with an active functional unit to schedule
the instruction) and instruction slack is above a threshold. Thus, this scheme exploits scheduling
slack of instructions to save energy in function resources by keeping them idle for a longer period
of time while reducing transitions. Algorithm 4 puts the instruction back in the ReadyList if
the FinalTarget.CommCost is above a threshold and instruction also has enough slack. By
doing this, it converts the instruction slack into communication slack in order to save energy

in interconnects. However, if this is not the case the instruction is scheduled in Target.Cluster

7.4 Experimental Evaluation 116

on Target. Fu using Target. CommOption. Procedures ScheduleComm and ScheduleFu associate
the communication and computation resources for this binding and mark them busy. Finally,
Algorithm 5 does cluster selection based on communication cost subject to the availability of
active resources and delays scheduling an instruction in the current cycle if it possesses enough
slack and requires waking up a resource. Of course, the cross-path assignment scheme still assigns
the communication required by this instruction to slower cross-paths subject to availability and
saves energy in interconnects. However, an important difference between 5 and Algorithm 4 is
that unlike Algorithm 4, instruction slack is not exploited to delay instructions in Algorithm 5 to
save communication energy. As described earlier, the reason for giving preference to functional
units when exploiting slack is because its contribution to overall processor energy consumption
is more and it is one of the hot-spot and hence demands more aggressive energy saving. At the
same time, this also avoids excessive performance degradation as well as extra transitions (and

associated energy overheads) in functional units.

7.4 Experimental Evaluation

We have performed a detailed experimental evaluation of the proposed combined algorithm in
terms of execution time, energy benefits, and overall energy-delay product for a 2-clustered and
a 4-clustered machine model. The cluster configurations are same as described earlier in chapter
3. The functional unit energy benefits are presented with respect to the hardware only scheme
("MaxSleep’) described in chapter 4. The interconnect energy benefits of using LP configuration
(having 1 fast and 1 slow cross-path) with the proposed scheduling algorithm are presented with
respect to the LL configuration (having 2 fast cross-paths). The usage statistics for functional
units and interconnects (from trimaran simulation) is plugged into energy models to obtain the
energy benefits for respective components. The energy model for determining functional unit
energy benefit is same as the one described in chapter 4. The interconnect energy benefit is
obtained by using INTACTE energy model in the same way as described in chapter 7. We
present the energy results for the combined scheme for the current 65nm fabrication technology.
Refer chapter 4, chapter 5, and chapter 6 for a detailed sensitivity analysis for functional unit

energy savings and interconnect energy savings across technologies.

7.4 Experimental Evaluation 117

% Increase in Execution Time I 2 Cluster
B 4 Cluster

Gbeg ‘7jpeg fay fawg 9727 9727 ideg des dh Mmgs Crc Susy Avg
(‘.au augi, en- de. n
dio Coge Codq

Figure 7.1: % Increase in Execution Time of LP conf. w.r.t. LL conf. for Algorithm 5

7.4.1 Results

Figure 7.1 presents the percentage increase in execution time by applying Algorithm 5 that
exploit the instruction slack to save leakage energy in functional units by reducing the transition
and also migrates the communication with high slack value to slow cross-path. The percentage
increase is presented with respect to clustered architecture with LL configuration scheduled by
performance oriented scheduler and have a hardware based scheme to optimize leakage energy
in functional units[34]. The average increase in execution time is 3.3% and 2.5% for 2-clustered
and 4-clustered architectures which is higher than the average increase in execution time for
Algorithm 4 that only optimizes the interconnect energy. This is because the combined scheme
uses instruction slack for doing the leakage energy management in functional units and this leads
to more cases where two communication simultaneously need the fast cross-path. In other words
some of the instruction slack that was used up implicitly in Algorithm 4 is no longer available
(because it is already used up in Algorithm 5 the for better leakage energy management in
functional units) and this shows up in the form of extra execution cycles in the combined

scheme.
Figure 7.2 shows the percentage saving in communication energy of scheduling Algorithm 5
on LP configuration as compared to LL configuration. Algorithm 5 reduces the average com-

munication energy by 37.1% and 43.1% which is slightly lesser than Algorithm 4 because the

7.4 Experimental Evaluation 118

% Interconnect Energy Savings @2 Cluster
° gy g M 4 Cluster

B0 — -~

Gibeg qipeg faw lfawg, 9727, 9721 ideq deg dh Mmgs Crc Susy, AV,
Cay Udiy "COde de.
dio Code

Figure 7.2: % Energy Benefit of LP conf. w.r.t. LL conf. for Algorithm 5

[2 Cluster

o H i i
% Functional Unit Energy Savings B 4 Cluster

Gpeg djpeg faw lfawg, 97270 9721 idea Mmds des dh Crc Susa, AVG,
Cay Udip Ncoge de-
dio Code

Figure 7.3: % Functional Unit Energy Benefits of Scheduling over H/W only scheme for
Algorithm 5

7.4 Experimental Evaluation 119

% Improvement In Energy-Delay Product Ejgﬁzz:

) dj fay. k 7. 7. id, d d, m cr, s A
Ipeg Upeg c: ::1 - dz) Wdla, i d2e Tep, jz czl;lt; leq es h d5 C Usan VG,
{[o} ()

Figure 7.4: % Overall Benefit in EDP of Scheduling Algorithm 5 on LP conf. as compared
to LL conf. and H/W only scheme for Fu Transitions

Algorithm 5 does not exploit instruction slack for saving communication energy explicitly and it
gives priority to saving energy in functional units. However, there is still significant communica-
tion energy savings achieved by the combined Algorithm attributed to available communication
slack. Figure 7.3 presents the percentage savings in functional unit energy of the combined
Algorithm as compared to the hardware only scheme. The average saving in functional unit en-
ergy is 15.3% and 17.2% for 2-clustered and 4-clustered machine respectively. As expected the
percentage savings are roughly the same as Algorithm 1 because the combined algorithm gives
first priority to functional unit energy savings. The slight increase in functional unit energy for
the combined scheduling algorithm is attributed to the increased execution time (due to usage

of slow cross-path) that increases the idleness duration in the functional units.

Figure 7.4 gives the percentage savings in energy-delay product of processor by using the
combined scheme conservatively assuming that functional units constitute 30% of processor
energy and interconnect constitute 20% of processor energy (though the actual figure can vary
from system to system and has strong dependence and circuit, design style and technology
parameters). We observe that even with these conservative assumption, the overall energy-
delay product of the processor is improved on an average by 8.1% and 10% for 2-clustered and

4-clustered architectures respectively which is a significant saving.

7.5 Conclusions 120

7.5 Conclusions

In this chapter, we have presented a combined energy-aware instruction scheduling algorithm
that exploits instruction slack and communication slack together to simultaneously save energy
in functional units and interconnect. A detailed experimental evaluation using trimaran frame-
work confirms that proposed schemes are capable of providing significant energy savings thereby
improving the usability of clustered architectures specifically in smaller technologies. The com-
bined scheme obtains slightly better energy benefit in functional units and 37% and 43% energy
benefit in interconnect with slightly higher performance degradation. Even with the conserva-
tive estimates of contribution of functional unit and interconnect to overall processor energy
consumption, the proposed combined scheme obtains on an average 8% and 10% improvement
in overall energy-delay product with 3.5% and 2% performance degradation for a 2-clustered

and a 4-clustered machine respectively.

Chapter 8

Conclusions and Future Directions

8.1 Conclusions

The increasing ubiquity of embedded systems has opened up many new research issues. The
design challenges posed by these systems are ostensibly different from those offered by general
purpose systems due to their specific and conflicting requirements. Embedded systems can be
characterized by factors such as, very high performance demand (to operate in real-time), low
power consumption, low cost, less chip area, low temperature, and small time to market. The
ever increasing trend towards miniaturization of devices makes utilizing huge transistor budget in
a manner that enables high clock speed, low design complexity, and less energy consumption even
more challenging[5]. However, resolving this challenge can enable the deployment of embedded

systems for many performance-demanding never-before embedded applications at a lower cost.

Traditional ILP architectures (such as superscalar and VLIW) connect multiple pipelined
functional units to a single unified register file in parallel to attain better performance. However,
as the number of arithmetic units in a processor increases, register storage and communication
between arithmetic units become critical factors dominating the area, cycle time, and power
dissipation of the processor. Thus, the centralized monolithic architectures (both superscalar
and VLIW) which use long wires for connecting spatially separated resources may not benefit
from the advancements in the semiconductor technology specifically because of the increasing
significance of wire delays in smaller technologies[5][6]. Another challenge posed by the techno-

logical advancement is the rising level of the leakage energy consumption in the logic[7]. With

8.1 Conclusions 122

the 65nm and smaller technologies currently in fabrication, the leakage energy is on par with the
dynamic energy consumption. In future technologies the leakage energy will further dominate

the overall energy consumption|8].

A clustered VLIW architecture[11] solves the scalability problem associated with centralized
VLIW architectures by having more than one register file and connecting only a subset of the
functional units to a register file. Groups of small computation clusters can be interconnected
using some interconnection topology and communication can be enabled using any of the vari-
ous inter-cluster communication models[12]. Though clustering helps to combat the scalability
problem by making components simpler and thereby increasing clock rate and reducing dy-
namic energy consumption of functional components, an interconnection network is required for
the communication of data values among different components. This communication happens
over long wires having high load capacitance which in effect takes more time and incurs more
energy consumption[5][23]. Apart from the interconnects, functional units are another major
source of energy consumption in clustered architectures. The contention for limited number of
slow interconnects leads to many short idle cycles and that further increases the leakage energy
consumption in functional units. The frequent accesses to functional units raises the tempera-
ture level and makes the leakage energy consumption which is specifically a concern in smaller
technologies even worse. Clustered VLIW architectures rely on compile-time scheduling. The
static scheduling simplifies the issue logic by alleviating the need for a dedicated hardware for
scheduling. Thus, a significant fraction of the total energy consumption in clustered VLIW
architectures is attributed to interconnects and functional units[24][25][26]. Thus, optimizing
energy in interconnects and functional units in clustered architectures is becoming more and

more important from one process generation to another.

In the past, study of leakage energy management at the architectural level has mostly focused
on storage structure such as cache[31][32][33]. Relatively, little work has been done on architec-
ture level leakage energy management in functional units[34][35] in the context of superscalar
processors and energy efficient scheduling in the context of VLIW architectures[36][25][37]. To
the best of our knowledge, there has been no such work in the past targeting clustered VLIW
architectures specifically focusing on smaller technologies. In the absence of any high level model
for interconnect energy estimation, the primary focus of research in the context of interconnects

had been to reduce the latency of communication[42] and evaluation of various inter-cluster

8.1 Conclusions 123

communication models[12]. Again to the best of our knowledge, we are not aware of any work

that aims to reduce energy consumption in interconnects in clustered VLIW architectures.

However, functional units and interconnects are often underutilized in clustered VLIW ar-
chitectures. Apart from other usual causes such as data dependencies, the under-utilization of
functional units is also due to the contention for limited number of slow interconnect channels
that introduce many short idle cycles in the operation of functional units. At the same time, since
the functional units are distributed among clusters, there is also more contention for functional
resources which leads to underutilization of interconnects. Finally, the contention for functional
and interconnect resources in clustered VLIW architectures combine in a synergistic fashion and
leads to greater available slack in clustered architectures as compared to VLIW architectures.
The advancements in VLSI technology now also enable designing interconnects and functional
units with different power and performance modes. It is possible to design wires consuming 1/5
the energy but having twice the delay[27]. Similarly the capabilities of dual-threshold domino
logic with sleep mode can be utilized to do leakage energy management for short idle cycles in
functional units[30][34]. In this thesis, we proposed a compiler-directed approach that leverages
on these advancements in the VLSI technology to improve the usability of clustered VLIW archi-
tecture in smaller technologies, targeting the two major source of energy consumption, namely

interconnects and functional units.

More specifically, we proposed a compiler directed leakage energy optimization technique in
the context of VLIW /clustered VLIW architectures targeting the underutilized components such
as functional units that reduce the average energy consumption of functional units by 15.1% and
16.9% in the context of a 2-clustered and a 4-clustered VLIW architectures respectively, with
negligible performance degradation, on the top of a hardware-only scheme (already obtaining
significant leakage energy benefits). Apart from obtaining benefit without performance loss the
proposed technique also serves to reduce peak power and step power consumption that impacts
the reliability of the chip[44]. We also evaluate the benefit of the proposed compiler scheduling
algorithm in the context of instruction decoder, considering a split instruction decoder that
enables the leakage energy optimization in instruction decoder. The average energy benefits in
instruction decoder are 17.3% and 18.7% for a 2-clustered, and a 4-clustered VLIW architecture

respectively.

In the context of interconnects, we propose a high level model of estimation of interconnect

8.2 Future Directions 124

delay and energy (in contrast to low level circuit level models proposed earlier) that make it
possible to do architectural and compiler optimization specifically targeting the interconnect.
The proposed model fills the gap between the architect’s need and circuit level models. The
model takes architectural parameters such as length, bit-width, latency and target technology
and provides a set of interconnect options with varying degree of area, pipelining, and power
budget using pre-characterized estimates of circuit parameters for different interconnect com-
ponents. We introduce the notion of heterogeneity in interconnects and propose a compiler
directed technique for energy optimization in interconnect of clustered VLIW architectures.
The interconnect energy optimization scheme (evaluated using the proposed model[46]) reduces
the energy consumption of interconnects on an average by 41.5% and 46.8% for a 2-clustered
and a 4-clustered machine respectively with 2% and 1.5% performance degradation[47]. We also
propose an integrated scheme for simultaneous energy optimization in functional components
as well as interconnects in a novel fashion and evaluate the energy benefits of the combined
schemes[48]. The combined scheme obtains slightly better energy benefits in functional units
and 37.1% and 43.1% energy benefit in interconnects with slightly higher performance degrada-
tion. Even with the conservative estimates of contribution of functional unit and interconnect
to overall processor energy consumption, the proposed combined scheme obtains on an aver-
age 8% and 10% improvement in overall energy-delay product with 3.5% and 2% performance

degradation for a 2-clustered and a 4-clustered machine respectively.

8.2 Future Directions

Our work is the first effort in the direction of improving the energy efficient of clustered VLIW
architectures thereby improving their usability in future technologies. These are some of the

ways in which this work can be extended :

1. We have focused on leakage energy savings in the context of clustered VLIW architectures.
However, temperature is another important concern for handheld devices because of their
small form factor. The leakage energy has a symbiotic and exponential dependence on
temperature. Reduction in leakage energy reduces temperature which in turn reduces the
leakage energy and vice versa. The proposed technique can also be evaluated to measure

its temperature benefits. This will also give insights to extend the present technique and

8.2 Future Directions 125

develop new techniques that try to improve leakage as well as keep the temperature below

the threshold (as dictated by the packaging of the chip).

2. The focus of our research has been to optimize energy in functional units and interconnects
which represent two major sources of energy consumption in the absence of complicated
scheduling hardware (as in superscalar processors). However, the other components of the
clustered VLIW processors such as register file, fetch units etc can also be looked at from
the point of view of energy savings. Specifically register file is one of the hot-spots along
with the functional units. Techniques that target to keep the temperature of register file
below the packaging-directed threshold will be specifically useful. We refer the reader to

[170] for some of our preliminary results in this direction.

3. The interconnect energy model we have proposed is limited to design of the point to point
interconnects which represent the most important and a major fraction of all on-chip
interconnects. The proposed model can be extended to other kinds of interconnects such

as bus based interconnects that may be of use in multi-core architectures.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

B. Ramakrishna Rau and Joseph A. Fisher. Instruction-level Parallel Processing: History,

Overview, and Perspective. Journal of Supercomputing, pages 9-50, July 1993.
William Johnson. Superscalar Microprocessor Design. Prentice-Hall, 1991.

Joseph A. Fisher. Very Long Instruction Word Architectures and the ELI-512. In 25
years of the International Symposium on Computer Architecture (selected papers), pages

263-273. ACM Press, 1998.

Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. Complexity-Effective Super-
scalar Processors. In Proceedings of 24th Annual International Symposium on Computer

architecture, pages 206-218. ACM Press, 1997.

D. Matzke. Will Physical Scalability Sabotage Performance Gains. IEEE Computer,
September 1997.

R. Ho, K Mai, and M. Horowitz. The Future of Wires. Proceeding of IEEE, April 2001.

Trevor N. Mudge. Power: A First Class Design Constraint for Future Architecture and
Automation. In Proceedings of the 7th International Conference on High Performance

Computing, pages 215-224, London, UK, 2000. Springer-Verlag.

Dennis Sylvester and Himanshu Kaul. Power-Driven Challenges in Nanometer Design.

IEEE Design and Test of Computers, 18(6):12-22, 2001.

Andrea Capitanio, Nikil Dutt, and Alexandru Nicolau. Partitioned Register Files for
VLIWSs: A Preliminary Analysis of Tradeoffs. In Proceedings of the 25th Annual Inter-
national Symposium on Microarchitecture, pages 292-300. IEEE Computer Society Press,
1992.

BIBLIOGRAPHY 127

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko Vranesic. The Multicluster
Architecture: Reducing Cycle Time Through Partitioning. In Proceedings of the 30th
Annual ACM/IEEE International Symposium on Microarchitecture, pages 149-159. IEEE
Computer Society, 1997.

Paolo Faraboschi, Geoffrey Brown, Joseph A. Fisher, and Giuseppe Desoli. Clustered

Instruction-level Parallel Processors. Technical report, Hewlett-Packard, 1998.

Andrei Terechko, Erwan Le Thenaff, Manish Garg, Jos Van Eijndhoven, and Henk Corpo-
raal. Inter-Cluster Communication Models for Clustered VLIW Processors. In Proceedings

of International Symposium on High-Performance Computer Architecture, page 354, 2003.

Texas Instruments Inc. TMS320C6000 CPU and Instruction Set reference Guide. http:
//www.ti.com/sc/docs/products/dsp/c6000/index.htm, 1998.

Paolo Faraboschi, Geoffrey Brown, Joseph A. Fisher, Giuseppe Desoli, and Fred Home-
wood. Lx: A Technology Platform for Customizable VLIW Embedded Processing. In
Proceedings of 27th Annual International Symposium on Computer architecture, pages

203-213, 2000.

J. Fridman and Zvi Greefield. The TigerSHARC DSP Architecture. IEEE Micro, pages
66-76, 2000.

G. G. Pechanek and S. Vassiliadis. The ManArray Embedded Processor Architecture. In

Proceedings of Euromicro Conference, pages 348-355, 2000.

J. Derby and J. Moreno. A High-performance Embedded DSP Core with Novel SIMD
Features. In Proceedings of 2008 International Conference on Acoustics, Speech, and

Signal Processing, 2003.

J.M. Parcerisa R. Canal and A. Gonzalez. Dynamic Cluster Assignment Mechanisms.
In Proceedings of Sixth IEEE International Symposium on High Performance Computer
Architecture, 2000.

Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar Processors. In 25
Years ISCA: Retrospectives and Reprints, pages 521-532, 1998.

BIBLIOGRAPHY 128

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Ujval Kapasi, William J. Dally, Scott Rixner, John D. Owens, and Brucek Khailany. The
Imagine Stream Processor. In Proceedings of 2002 IEEE International Conference on
Computer Design: VLSI in Computers and Processors (ICCD’02), page 282, Washington,
DC, USA, 2002. IEEE Computer Society.

Pedro Marcuello and Antonio Gonzalez. Clustered Speculative Multithreaded Processors.
In ICS ’99: Proceedings of 13th International Conference on Supercomputing, pages 365—
372, New York, NY, USA, 1999. ACM Press.

James E. Smith. Instruction-Level Distributed Processing. Computer, 34(4):59-65, 2001.

R. Ho, K Mai, and M. Horowitz. The Future of Wires. Proceedings of IEEE, 89(4):490-504,
2001.

Hangsheng Wang, Li-Shiuan Peh, and Sharad Malik. Power-driven Design of Router Mi-
croarchitectures in On-chip Networks. In Proceedings of Symposium on Microarchitecture,

page 105, 2003.

H. S. Kim, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. Adapting Instruction Level
Parallelism for Optimizing Leakage in VLIW Architectures. In Proceedings of Conference

on Language, Compiler, and Tool for Embedded Systems, pages 275-283, 2003.

J. Adam Butts and Gurindar S. Sohi. A Static Power Model for Architects. In MICRO
33: Proceedings of the 33rd Annual ACM/IEEE International Symposium on Microarchi-
tecture, pages 191-201, New York, NY, USA, 2000. ACM Press.

Kaustav Banerjee and Amit Mehrotra. A Power-Optimal Repeater Insertion Methodology
for Global Interconnects in Nanometer Designs. In Proceedings of IEEE Transactions on

Electron Devices, pages 2001-2007, November 2002.

Man Lung Mui, Kaustav Banerjee, and Amit Mehrotra. A Global Interconnect Optimiza-
tion Scheme for Nanometer Scale VLSI with Implications for Latency, Bandwidth and

Power Dissipation. In IEEE Transactions on Electron Devices, pages 195-203, 2004.

Rajeev Balasubramonian, Naveen Muralimanohar, Karthik Ramani, and Venkatanand

Venkatachalapathy. Microarchitectural Wire Management for Performance and Power

BIBLIOGRAPHY 129

[30]

[31]

[32]

[33]

[34]

[35]

[36]

in Partitioned Architectures. In Proceedings of International Symposium on High-

Performance Computer Architecture, pages 28-39, 2005.

Volkan Kursun and Eby G. Friedman. Low swing Dual Threshold Voltage Domino Logic.
In GLSVLSI ’02: Proceedings of the 12th ACM Great Lakes Symposium on VLSI, pages
47-52, New York, NY, USA, 2002. ACM Press.

Se-Hyun Yang, Babak Falsafi, Michael D. Powell, Kaushik Roy, and T. N. Vijaykumar. An
Integrated Circuit/Architecture Approach to Reducing Leakage in Deep-Submicron High-
Performance I-Caches. In HPCA ’01: Proceedings of the 7th International Symposium on
High-Performance Computer Architecture, page 147, Washington, DC, USA, 2001. IEEE

Computer Society.

Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Cache decay: Exploiting Gen-
erational Behavior to Reduce Cache Leakage Power. In Proceedings of the 28th Annual
International Symposium on Computer architecture, pages 240-251, New York, NY, USA,
2001. ACM Press.

Krisztin Flautner, Steve Reinhardt, and Trevor Mudge. Automatic Performance Setting
for Dynamic Voltage Scaling. In Proceedings of the 7th Annual International Conference
on Mobile Computing and Networking, pages 260-271, New York, NY, USA, 2001. ACM

Press.

Steven Dropsho, Volkan Kursun, David H. Albonesi, Sandhya Dwarkadas, and Eby G.
Friedman. Managing Static Leakage Energy in Microprocessor Functional Units. In Pro-
ceedings of the 85th Annual ACM/IEEE International Symposium on Microarchitecture,
pages 321-332, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

Siddharth Rele, Santosh Pande, Soner Onder, and Rajiv Gupta. Optimizing Static Power
Dissipation by Functional Units in Superscalar Processors. In Proceedings of 11th Inter-

national Conference on Compiler Construction, pages 261-275, 2002.

W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, D. Duarte, and Y-F. Tsai. Ex-
ploiting VLIW Schedule Slacks for Dynamic and Leakage Energy Reduction. In Proceed-
ings of International Symposium on Microarchitecture, pages 102-113, 2001.

BIBLIOGRAPHY 130

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

H.S Yun and J. Kim. Power-aware Modulo Scheduling for High-Performance VLIW Pro-
cessors. In Proceedings of 2001 International Symposium on Low Power FElectronics and

Design, pages 40-45. ACM Press, 2001.

Taku Uchino and Jason Cong. An Interconnect Energy Model Considering Coupling
Effects. In Proceedings of the Conference on Design automation, pages 555-558, 2001.

Pallav Gupta, Lin Zhong, and Niraj K. Jha. A High-level Interconnect Power Model for
Design Space Exploration. In Proceedings of the International Conference on Computer-

aided design, page 551, 2003.

S. Wilton and N. Jouppi. CACTI: An Enhanced Cache Access and Cycle Time Model.
IEEE Journal of Solid-State Circuits, 31(5):677-688, May 1996.

J. H. Tseng and K. Asanovic. Energy-Efficient Register Access. In Proceedings of the
Symposium on Integrated circuits and systems design, page 377, 2000.

Antonio Gonzalez Joan-Manuel Parcerisa, Julio Sahuquillo and Jos Duato. Efficient In-
terconnects for Clustered Microarchitectures. In Proceedings of International Conference

on Parallel Architectures and Compilation Technigues, pages 291-300, 2002.

Krishnan Kailas, Ashok Agrawala, and Kemal Ebcioglu. CARS: A New Code Generation
Framework for Clustered ILP Processors. In Proceedings of 7th International Symposium

on High-Performance Computer Architecture, page 133, 2001.

Rahul Nagpal and Y. N. Srikant. Compiler-assisted Leakage Energy Optimization for Clus-
tered VLIW Architectures. In Proceedings of the International Conference on Embedded
Software, pages 233-241, 2006.

Rahul Nagpal and Y. N. Srikant. Compiler-Assisted Instruction Decoder Energy Optimiza-
tion for Clustered VLIW Architectures. In Proceedings of the International Conference on

High Performance Computing, pages 405-417, 2007.

Rahul Nagpal, Arvind Madan, Amrutur Bhardwaj, and Y. N. Srikant. INTACTE: An In-
terconnect Area, Delay, and Energy Estimation Tool for Microarchitectural Explorations.
In Proceedings of the International Conference on Compilers, Architecture, and Synthesis

for Embedded Systems, pages 238-247, 2007.

BIBLIOGRAPHY 131

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Rahul Nagpal and Y. N. Srikant. Exploring Energy-Performance Trade-Offs for Hetero-
geneous Interconnect Clustered VLIW Processors. In Proceedings of the International

Conference on High Performance Computing, pages 497-508, 2006.

Rahul Nagpal and Y. N. Srikant. Compiler-Assisted Energy Optimization for Clus-
tered VLIW Processors. Technical Report, Dept. of CSA, Indian Institute of Science
(http://www.archive.csa.iisc.ernet.in/TR), 2008.

J. Ebergen, J. Gainsley, , and P. Cunningham. Transistor Sizing: How to Control the Speed
and Energy Consumption of a Circuit. Proceedings of 10th International Symposium on

Asynchronous Circuits and Systems, pages 51-61, 2004.

E. Kursun, S. Ghiasi, and M. Sarrafzadeh. Transistor Level Budgeting for Power Opti-
mization. In Proceedings of the 5th International Symposium on Quality Electronic Design,

pages 116-121, Washington, DC, USA, 2004. IEEE Computer Society.

Anup Kumar Sultania, Dennis Sylvester, and Sachin S. Sapatnekar. Transistor and Pin
Reordering for Gate Oxide Leakage Reduction in Dual Tox Circuits. In Proceedings of the
IEEE International Conference on Computer Design, pages 228-233, Washington, DC,
USA, 2004. IEEE Computer Society.

Rob A. Rutenbar, L. Richard Carley, Roberto Zafalon, and Nicola Dragone. Low-power
Technology Mapping for Mixed-Swing Logic. In ISLPED ’01: Proceedings of the 2001
International Symposium on Low power electronics and design, pages 291-294, New York,

NY, USA, 2001. ACM.

J. Madsen, Mahadevan, S., and K Virk. Interconnect Centric Design for Advanced SoC
and NoC. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.

A. G. M. Strollo, E. Napoli, and D. De Caro. New Clock-Gating Techniques for Low-Power
Flip-Flops. In Proceedings of the 2000 International Symposium on Low Power Electronics
and Design, pages 114-119, New York, NY, USA, 2000. ACM Press.

S. Kong B., Kim and Y. Jun. Conditional-Capture Flip-Flop for Statistical Power Reduc-
tion. IEEE Journal on Solid State Circuits, 36(8):1263-1271, 2001.

BIBLIOGRAPHY 132

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Benton H. Calhoun, Frank A. Honore, and Anantha Chandrakasan. Design Methodology
for Fine-Grained Leakage Control in MTCMOS. In Proceedings of the 2003 International

Symposium on Low Power Electronics and Design, pages 104-109, New York, NY, USA,
2003. ACM Press.

Hyo-Sig Won, Kyo-Sun Kim, Kwang-Ok Jeong, Ki-Tae Park, Kyu-Myung Choi, and
Jeong-Taek Kong. An MTCMOS Design Methodology and its Application to Mobile
Computing. In ISLPED ’03: Proceedings of the 2008 International Symposium on Low
power electronics and design, pages 110-115, New York, NY, USA, 2003. ACM.

Michael Liu, Wei-Shen Wang, and Michael Orshansky. Leakage power Reduction by Dual-
vth Designs Under Probabilistic Analysis of Vth Variation. In Proceedings of the 2004
International Symposium on Low Power FElectronics and Design, pages 2-7, New York,

NY, USA, 2004. ACM Press.

R. Krane, J. Parsons, and A. Bar-Cohen. Design of a Candidate Thermal Control System
for a Cryogenically Cooled Computer. IEEE Transaction on Components, Packaging, and
Manufacturing Technology, 11(4):545-556, 1998.

Clark N. Taylor, Sujit Dey, and Yi Zhao. Modeling and Minimization of Interconnect
Energy Dissipation in Nanometer Technologies. In Proceedings of the 38th Conference on

Design automation, pages 754-757, New York, NY, USA, 2001. ACM Press.

Hui Zhang and Jan Rabaey. Low-swing interconnect interface circuits. In Proceedings of

the 1998 International Symposium on Low power electronics and design, pages 161-166,

New York, NY, USA, 1998. ACM Press.

W.-B. Jone, J. S. Wang, Hsueh-I Lu, I. P. Hsu, and J.-Y. Chen. Design Theory and
Implementation for Low-Power Segmented Bus Systems. ACM Transaction on Design

and Automation of Electronic Systems, 8(1):38-54, 2003.

William J. Dally and Brian Towles. Route Packets, Not Wires: On-Chip Inteconnection
Networks. In Proceedings of the 38th Conference on Design automation, pages 684-689,
New York, NY, USA, 2001. ACM Press.

Kanad Ghose and Milind B. Kamble. Reducing Power in Superscalar Processor Caches

Using Subbanking, Multiple Line Buffers and Bit-Line Segmentation. In Proceedings of

BIBLIOGRAPHY 133

[65]

[66]

[67]

[68]

[69]

[70]

[71]

the 1999 International Symposium on Low power electronics and design, pages 70-75, New

York, NY, USA, 1999. ACM Press.

V. De La Luz, M. Kandemir, and I. Kolcu. Automatic Data Migration for Reducing Energy
Consumption in Multi-Bank Memory Systems. In Proceedings of the 39th Conference on
Design automation, pages 213-218, New York, NY, USA, 2002. ACM Press.

Johnson Kin, Manish Gupta, and William H. Mangione-Smith. The Filter Cache: An
Energy Efficient Memory Structure. In Proceedings of the 80th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, pages 184-193, Washington, DC, USA, 1997.
IEEE Computer Society.

Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. On-chip vs. Off-Chip Mem-
ory: The Data Partitioning Problem in Embedded Processor-Based Systems. ACM Trans-
action on Design and Automation of Electronic Systems, 5(3):682-704, 2000.

J. S. Hu, N. Vijaykrishnan, M. J. Irwin, and M. Kandemir. Using Dynamic Branch
Behavior for Power-Efficient Instruction Fetch. In Proceedings of the IEEE Computer
Society Annual Symposium on VLSI (ISVLSI’03), page 127, Washington, DC, USA, 2003.
IEEE Computer Society.

Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N. Vijaykumar. Re-
ducing Leakage in a High-Performance Deep-Submicron Instruction Cache. ACM Trans-

action on Design and Automation of Electronic Systems, 9(1):77-90, 2001.

Nam Sung Kim, Krisztin Flautner, David Blaauw, and Trevor Mudge. Drowsy Instruction
Caches: Leakage Power Reduction Using Dynamic Voltage Scaling and Cache Sub-Bank
Prediction. In Proceedings of the 35th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 219-230, Los Alamitos, CA, USA, 2002. IEEE Computer Society

Press.

J. S. Hu, A. Nadgir, N. Vijaykrishnan, M. J. Irwin, and M. Kandemir. Exploiting Pro-
gram Hotspots and Code Sequentiality for Instruction Cache Leakage Management. In

Proceedings of the 2003 International Symposium on Low power electronics and design,

pages 402-407, New York, NY, USA, 2003. ACM Press.

BIBLIOGRAPHY 134

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Mohan G. Kabadi, Natarajan Kannan, Palanidaran Chidambaram, Suriya Narayanan,
M. Subramanian, and Ranjani Parthasarathi. Dead-Block Elimination in Cache: A Mech-
anism to Reduce I-cache Power Consumption in High Performance Microprocessors. In
Proceedings of the 9th International Conference on High Performance Computing, pages

79-88, London, UK, 2002. Springer-Verlag.

Alper Buyuktosunoglu, Stanley Schuster, David Brooks, Pradip Bose, Peter W. Cook, and
David H. Albonesi. An Adaptive Issue Queue for Reduced Power at High Performance.
In Proceedings of the First International Workshop on Power-Aware Computer Systems-

Revised Papers, pages 25-39, London, UK, 2001. Springer-Verlag.

R. Iris Bahar and Srilatha Manne. Power and Energy Reduction via Pipeline Balancing.
In Proceedings of the 28th Annual International Symposium on Computer architecture,

pages 218-229, New York, NY, USA, 2001. ACM Press.

Daniele Folegnani and Antonio Gonzalez. Energy-Effective Issue Logic. In Proceedings of
the 28th Annual International Symposium on Computer architecture, pages 230-239, New
York, NY, USA, 2001. ACM Press.

Thomas L. Martin and Daniel P. Siewiorek. Nonideal Battery and Main Memory Effects
on CPU Speed-Setting for Low Power. IEEE Transaction Very Large Scale Integr. Syst.,
9(1):29-34, 2001.

M. Weiser, B. Welch, A. J. Demers, and S. Shenker. Scheduling for Reduced CPU Energy.
In 1st USENIX Symposium on Operating Systems Design and Implementation, pages 13—
23, New York, NY, USA, 1994. ACM Press.

Frank Bellosa. The Benefits of Event Driven Energy Accounting in Power-Sensitive Sys-
tems. In EW 9: Proceedings of the 9th workshop on ACM SIGOPS European workshop,
pages 37-42, New York, NY, USA, 2000. ACM Press.

Wanghong Yuan and Klara Nahrstedt. Energy-efficient Soft Real-Time CPU Scheduling
for Mobile Multimedia Systems. In Proceedings of the nineteenth ACM Symposium on
Operating systems principles, pages 149-163, New York, NY, USA, 2003. ACM Press.

Jacob R. Lorch and Alan Jay Smith. Improving Dynamic Voltage Scaling Algorithms
with PACE. In Proceedings of the 2001 ACM SIGMETRICS International Conference

BIBLIOGRAPHY 135

[81]

[82]

[83]

[84]

[85]

[86]

[87]

on Measurement and Modeling of Computer Systems, pages 50-61, New York, NY, USA,
2001. ACM Press.

Dongkun Shin, Jihong Kim, and Seongsoo Lee. Low-energy Intra-Task Voltage Scheduling
Using Static Timing Analysis. In Proceedings of the 38th Conference on Design automa-
tion, pages 438-443, New York, NY, USA, 2001. ACM Press.

Chung-Hsing Hsu and Ulrich Kremer. The Design, Implementation, and Evaluation of a
Compiler Algorithm for CPU Energy Reduction. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming language design and implementation, pages 38-48, New

York, NY, USA, 2003. ACM Press.

Greg Semeraro, Grigorios Magkils, Rajeev Balasubramonian, David H Albonesi, Sandhya
Dwarakadas and Michael L Scott. Energy-Efficient Processor Design using Multiple Clock
Domains with Dynamic Voltage and Frequency Scaling. In International Symposium on

High Performance Computer Architecture, 2002.

Greg Semeraro, David H. Albonesi, Steven G. Dropsho, Grigorios Magklis, Sandhya
Dwarkadas, and Michael L. Scott. Dynamic Frequency and Voltage Control for a Multiple
Clock Domain Microarchitecture. In Proceedings of the 35th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, pages 356-367, Los Alamitos, CA, USA, 2002.
IEEE Computer Society Press.

Qiang Wu, Philo Juang, Margaret Martonosi, and Douglas W. Clark. Voltage and Fre-
quency Control With Adaptive Reaction Time in Multiple-Clock-Domain Processors. In
Proceedings of the 11th International Symposium on High-Performance Computer Archi-

tecture, pages 178-189, Washington, DC, USA, 2005. IEEE Computer Society.

Grigorios Magklis, Michael L. Scott, Greg Semeraro, David H. Albonesi, and Steven Drop-
sho. Profile-based Dynamic Voltage and Frequency Scaling for a Multiple Clock Domain
Microprocessor. In Proceedings of the 30th Annual International Symposium on Computer

architecture, pages 14-27, New York, NY, USA, 2003. ACM Press.

A. B. Dalton and C. S. Ellis. Sensing User Intention and Context for Energy Management.
In Proceedings of the 9th Workshop on Hot Topics in Operating Systems, pages 151-156,
2003.

BIBLIOGRAPHY 136

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Jason Flinn and M. Satyanarayanan. Energy-Aware Adaptation for Mobile Applications.
In Proceedings of the seventeenth ACM Symposium on Operating systems principles, pages

4863, New York, NY, USA, 1999. ACM Press.

Xiaodong Li, Zhenmin Li, Francis David, Pin Zhou, Yuanyuan Zhou, Sarita Adve, and
Sanjeev Kumar. Performance Directed Energy Management for Main Memory and Disks.
In Proceedings of the 11th International Conference on Architectural support for program-
ming languages and operating systems, pages 271-283, New York, NY, USA, 2004. ACM

Press.

Sudhanva, Gurumurthi, Anand Sivasubramaniam, Mahmut Kandemir, and Hubertus
Franke. DRPM: Dynamic Speed Control for Power Management in Server Class Disks. In
Proceedings of the 30th Annual International Symposium on Computer architecture, pages

169-181, New York, NY, USA, 2003. ACM Press.

A. E. Papathanasiou and M. L. Scott. Increasing Disk Burstiness for Energy Efficiency.
Technical report, University of Rochester, Rochester, NY, USA, 2002.

M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. Influence of Compiler Opti-
mizations on System Power. In DAC ’00: Proceedings of the 37th Conference on Design
automation, pages 304-307, New York, NY, USA, 2000. ACM Press.

M. Valluri and L. John. Is Compiling for Performance == Compiling for Power. In
The 5th Annual Workshop on Interaction between Compilers and Computer Architectures

(INTERACT-5), January 2001.

W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin.
Compiler-Directed Instruction Cache Leakage Optimization. In MICRO 85: Proceedings
of the 85th Annual ACM/IEEE International Symposium on Microarchitecture, pages 208
218, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

W. Zhang, M. Karakoy, M. Kandemir, and G. Chen. A compiler Approach for Reducing
Data Cache Energy. In ICS ’03: Proceedings of the 17th Annual International Conference
on Supercomputing, pages 76-85, New York, NY, USA, 2003. ACM Press.

BIBLIOGRAPHY 137

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Chingren Lee, Jenq Kuen Lee, Tingting Hwang, and Shi-Chun Tsai. Compiler optimiza-
tion on VLIW instruction scheduling for low power. ACM Transaction on Design and

Automation of Electronic Systems, 8(2):252-268, 2003.

Jeffrey Palm, Han Lee, Amer Diwan, and J. Eliot B. Moss. When to Use a Compilation
Service? In LCTES/SCOPES ’02: Proceedings of the Joint Conference on Languages,
Compilers and Tools for Embedded Systems, pages 194-203, New York, NY, USA, 2002.
ACM Press.

G. Chen, B. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and R. Chandramouli.
Energy-Aware Compilation and Execution in Java-Enabled Mobile Devices. In IPDPS ’03:

Proceedings of the 17th International Symposium on Parallel and Distributed Processing,

page 34.1, Washington, DC, USA, 2003. IEEE Computer Society.

T. K. Tan, A. Raghunathan, and N. K. Jha. Software Architectural Transformations: A
New Approach to Low Energy Embedded Software. In DATE ’03: Proceedings of the

Conference on Design, Automation and Test in Europe, page 11046, Washington, DC,
USA, 2003. IEEE Computer Society.

Adve S. Sachs D. and D. Jones. Cross-Layer Adaptive Video Coding to Reduce Energy
on General Purpose Processors. In Proceedings of the International Conference on Image

Processing, pages 109-112, 2003.

Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. ECOSystem: Managing
Energy as a First Class Operating System Resource. In ASPLOS-X: Proceedings of the
10th International Conference on Architectural support for programming languages and

operating systems, pages 123-132, New York, NY, USA, 2002. ACM Press.

Gupta R. Pereira C. and Srivastava M. PASA: A Software Architecture for Building
Power Aware Embedded Systems. In IEEE CAS Workshop on Wireless Communication
and Networking. IEEE, 2002.

Heath T., Pinheiro E., Hom J., Kremer U., and Bianchini R. Code Transformations for

Energy-Efficient Device Management. IEEE Transaction on Computers, 53(8), 2004.

Shivajit Mohapatra, Radu Cornea, Nikil Dutt, Alex Nicolau, and Nalini Venkatasubrama-

nian. Integrated Power Management for Video Streaming to Mobile Handheld Devices.

BIBLIOGRAPHY 138

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

In MULTIMEDIA ’03: Proceedings of the Eleventh ACM International Conference on
Multimedia, pages 582-591, New York, NY, USA, 2003. ACM Press.

Wanghong Yuan and Klara Nahrstedt. Energy-Efficient Soft Real-Time CPU Scheduling
for Mobile Multimedia Systems. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, pages 149-163, New York, NY, USA, 2003. ACM Press.

Yunsi Fei, Lin Zhong, and Niraj K. Jha. An Energy-Aware Framework for Coordinated
Dynamic Software Management in Mobile Computers. In Proceedings of the The IEEE
Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems (MASCOTS’04), pages 306—
317, Washington, DC, USA, 2004. IEEE Computer Society.

Nevine AbouGhazaleh, Bruce Childers, Daniel Mosse, Rami Melhem, and Matthew
Craven. Energy Management for Real-Time Embedded Applications with Compiler Sup-
port. In Proceedings of the 2003 ACM SIGPLAN Conference on Language, compiler, and
tool for embedded systems, pages 284-293, New York, NY, USA, 2003. ACM Press.

Carmean D. Gunther S., Binns F. and Hall J. Managing the Impact of Increasing Micro-

processor Power Consumption. Intel Technical Journal, 2001.

Gochman S., Ronen R., Anati 1., Berkovits A., Kurts T., Naveh A., Saeed A., Sperber
Z., and Valentine R. The Intel Pentium M processor: Microarchitecture and performance.

Intel Technical Journal, 7(2):21-59, 2003.
Crusoe Processor Product Brief: Model TM5800, 2003.

B. Brock and K. Rajamani. Dynamic Power Management for Embedded Systems. In In
Proceedings of the IEEE International SOC Conference, pages 416-419. IEEE, 2003.

Sandeep Dhar, Dragan Maksimovic, and Bruno Kranzen. Closed-Loop Adaptive Voltage
Scaling Controller for Standard-cell ASICs. In ISLPED ’02: Proceedings of the 2002
International Symposium on Low power electronics and design, pages 103—107, New York,

NY, USA, 2002. ACM Press.

Kanishka Lahiri, Sujit Dey, Debashis Panigrahi, and Anand Raghunathan. Battery-Driven

BIBLIOGRAPHY 139

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

System Design: A New Frontier in Low Power Design. In Proceedings of the 2002 Confer-
ence on Asia South Pacific design automation/VLSI Design, page 261, Washington, DC,
USA, 2002. IEEE Computer Society.

C. Dyer. Fuel Cells and Portable Electronics. In Symposium On VLSI Circuits Digest of
Technical Papers, pages 124-127, 2004.

Epstein A. Millimeter-scale, Micro-Electromechanical Systems Gas Turbine Engines. J.

Eng. Gas Turb. Power, 126:205-226, 2003.

Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power Analysis of Embedded Software:
A First Step Towards Software Power Minimization. In ICCAD ’9j: Proceedings of the
1994 IEEE/ACM International Conference on Computer-aided design, pages 384-390, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee. Instruction Level
Power Analysis and Optimization of Software. In VLSID ’96: Proceedings of the 9th
International Conference on VLSI Design: VLSI in Mobile Communication, page 326,
Washington, DC, USA, 1996. IEEE Computer Society.

Mike Tien-Chien Lee, Masahiro Fujita, Vivek Tiwari, and Sharad Malik. Power Analysis
and Minimization Techniques for Embedded DSP Software. IEEE Transaction on Very
Large Scale Integration Systems, 5(1):123-135, 1997.

Amit Sinha and Anantha P. Chandrakasan. JouleTrack: A Web Based Tool for Software
Energy Profiling. In DAC ’01: Proceedings of the 38th Conference on Design automation,
pages 220225, New York, NY, USA, 2001. ACM Press.

S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An Accurate and Fine Grain
Instruction-Level Energy Model supporting Software Optimizations. In In International
Workshop on Power And Timing Modeling, Optimization and Simulation (PATMOS),
2001.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In ISCA ’00: Proceedings of the

27th Annual International Symposium on Computer architecture, pages 83-94, New York,
NY, USA, 2000. ACM Press.

BIBLIOGRAPHY 140

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The Design and use of Sim-
plepower: A Cycle-Accurate Energy Estimation Tool. In DAC ’00: Proceedings of the
37th Conference on Design automation, pages 340-345, New York, NY, USA, 2000. ACM

Press.

George Z. N. Cai and Chee How Lim. Architectural Level Power/Performance Optimiza-
tion and Dynamic Power Estimation. In Cool Chips Tutorial in Conjunction with the 32nd

International Symposium on Microarchitecture, 1999.

Jason Flinn and M. Satyanarayanan. PowerScope: A Tool for Profiling the Energy Usage
of Mobile Applications. In WMCSA ’99: Proceedings of the Second IEEE Workshop on
Mobile Computer Systems and Applications, page 2, Washington, DC, USA, 1999. IEEE

Computer Society.

J. Eyre and J. Bier. The Evolution of DSP Processors. Technical Report, Berkeley Design
Technology,, 2000.

Scott Rixner, William J. Dally, Brucek Khailany, Peter Mattson, Ujval J. Kapasi, and
John D. Owens. Register Organization for Media Processing. Proceedings of International

Symposium on High Performance Computer Architecture, pages 375-386, 2000.

Manoj Franklin and Gurindar S. Sohi. Register Traffic Analysis for Streamlining Inter-
Operation Communication in Fine-Grain Parallel Processors. SIGMICRO Newsl., 23(1-
2):236-245, 1992.

N. Seshan. High VelociTI Processing. IEEE Signal Processing Magazine, March 1998.

Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee,
Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb, Saman
Amarasinghe, and Anant Agarwal. Baring it all to software: Raw machines. Computer,

30(9):86-93, 1997.

Alex Aleta, Josep M. Codina, Jesus Sanchez, and Antonio Gonzalez. Graph-partitioning
based Instruction Scheduling for Clustered Processors. In Proceedings of International

Symposium on Microarchitecture, pages 150-159, 2001.

BIBLIOGRAPHY 141

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

Giuseppe Desoli. Instruction Assignment for Clustered VLIW DSP Compilers: A New
Approach. Technical Report, Hewlett-Packard, 1998.

Viktor S. Lapinskii, Margarida F. Jacome, and Gustavo A. De Veciana. Cluster Assign-
ment for High-performance Embedded VLIW processors. ACM Transaction on Design
and Automation of Electronic Systems, 7(3):430-454, 2002.

Emre Ozer, Sanjeev Banerjia, and Thomas M. Conte. Unified Assign and Schedule: A New
Approach to Scheduling for Clustered Register File Microarchitectures. In Proceedings of
International Symposium on Microarchitecture, pages 308-315, 1998.

Rahul Nagpal and Y. N. Srikant. Integrated Temporal and Spatial Scheduling for Ex-
tended Operand Clustered VLIW Processors. In Proceedings of International Conference
on Computing Frontiers, pages 457-470, 2004.

Rahul Nagpal and Y. N. Srikant. Pragmatic Integrated Scheduling for Clustered VLIW
Processors. Software Practice and Ezperience, 38(3):227-257, 2008.

Smotherman M., Krishnamurthy S., Aravid P., and Hunnicutt D. Efficient DAG Con-
struction and Heuristic Calculation for Instruction Scheduling. In Proceedings of the 24th

Annual International Symposium on Microarchitecture, pages 93-102. ACM Press, 1991.
Trimaran System. http://www.trimaran.org/.

Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communications Systems. International

Symposium on Microarchitecture, 1997.
MediaBench . http://cares.icsl.ucla.edu/MediaBench/.

B. Mangione-Smith Gokhan Memic and W. Hu. NetBench: A Benchmarking Suit for
Network Processor. CARES Technical Report, 2002.

NetBench. http://cares.icsl.ucla.edu/NetBench/.

Jeffrey Ringenberg Matthew Guthaus and Dan Ernst. MiBench: A Free, Commercially
Representative Embedded Benchmark Suite. IEEE jth Annual Workshop on Workload
Characterization, 2001.

BIBLIOGRAPHY 142

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

MiBench. http://www.eecs.umich.edu/mibench/.

Shekhar Borkar. Design Challenges of Technology Scaling. IEEE Micro, 19(4):23-29,
1999.

Santosh G. Abraham, Waleed M. Meleis, and Ivan D. Baev. Efficient Backtracking In-
struction Schedulers. In Proceedings of International Conference on Parallel Architectures

and Compilation Techniques, pages 301-308, 2000.

Srilatha Manne, Artur Klauser, and Dirk Grunwald. Pipeline Gating: Speculation Con-
trol for Energy Reduction. In Proceedings of the International Symposium on Computer

architecture, pages 132-141, Washington, DC, USA, 1998. IEEE Computer Society.

Keith D. Cooper and Todd Waterman. Understanding Energy Consumption on the C62x.
In Proceedings of the Workshop on Compilers and Operating Systems for Low Power, 2002.

Wu-An Kuo, Tingting Hwang, and Allen C.-H. Wu. Decomposition of Instruction De-
coders for Low-power Designs. ACM Transaction on Design and Automation of Electronic

Systems, 11(4), 2006.

Michael Chu, Kevin Fan, and Scott Mahlke. Region-based Hierarchical Operation Parti-
tioning for Multicluster Processors. SIGPLAN Notices, pages 300-311, 2003.

Rainer Leupers. Instruction scheduling for clustered VLIW DSPs. In PACT ’00: Proceed-
ings of 2000 International Conference on Parallel Architectures and Compilation Tech-

niques, page 291, Washington, DC, USA, 2000. IEEE Computer Society.

J. M. Parcerisa R. Canal and A. Gonzalez. Dynamic Cluster Assignment Mechanisms.
In Proceedings of Sizth IEEE International Symposium on High Performance Computer
Architecture, 2000.

Jung Ho Ahn, William J. Dally, Brucek Khailany, Ujval J. Kapasi, and Abhishek Das.
Evaluating the Imagine Stream Architecture. In Proceedings of International Symposium

on Computer architecture, page 14, 2004.

ARM MPCore. http://www.arm.com.

BIBLIOGRAPHY 143

[154]

[155]

[156]

[157]

[158]

[159]
[160]
[161]

[162]

163

[164]

[165]

B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. POWERS5
System Microarchitecture. IBM Journal of Research and Development, 49(4/5):505-521,
2005.

Christopher G.and Matthew Eastwood, Jie Wu, and Addison Snell. Intel Brings Dual-
Core Capabilities to Itanium 2 with Montecito Processor. Manufacturing Insights, July

2006.

Rajeev Balasubramonian, Naveen Muralimanohar, Karthik Ramani, and Venkatanand
Venkatachalapathy. Microarchitectural Wire Management for Performance and Power
in Partitioned Architectures. In Proceedings of the International Symposium on High-

Performance Computer Architecture, pages 28-39, 2005.

Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections in Multi-Core
Architectures: Understanding Mechanisms, Overheads and Scaling. In Proceedings of the

International Symposium on Computer Architecture, pages 408-419, 2005.

William J. Dally and Brian Towles. Route Packets, Not Wires: On-Chip Inteconnection

Networks. In Proceedings of the Conference on Design automation, pages 684—689, 2001.
HSPICE. http://wuw.synopsys.com/products/hspice.html.

Predictive Technology Model. http://www.eas.asu.edu/ "ptm/.

MATLAB. http://www.mathworks.com/products/matlab/.

Chung Hsing Hsu and Ulrich Kremer. The Design, Implementation, and Evaluation of a
Compiler Algorithm for CPU Energy Reduction. In Proceedings of Conference on Pro-

gramming language design and implementation, pages 3848, 2003.

Alex Aleta, Josep M. Codina, Antonio Gonzalez, and David Kaeli. Heterogeneous Clus-
tered VLIW Microarchitectures. In Proceedings of International Symposium on Code Gen-

eration and Optimization, March 2007.
International Technology Roadmap for Semiconductors. http://www.itrs.net/.

BSIM4.6.0. http://www-device.eecs.berkeley.edu/"bsim3/bsimé4.html.

BIBLIOGRAPHY 144

[166]

[167]

[168]

[169]

[170]

T. N. Theis. The Future of Interconnection Technology. IBM Journal of Research and
Development, 44(3), 2000.

J. D. Warnock, J. M. Keaty, J. G. Clabes J. Petrovick, C. J. Kircher, B. L. Krauter, P. J.
Restle, B. A. Zoric, and C. J. Anderson. The Circuit and Physical Design of the POWER4
Microprocessor. IBM Journal of Research and Development, 46(1), 2002.

Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and Sharad Malik. Orion: A Power-
Performance Simulator for Interconnection Networks. In Proceedings of the International

Symposium on Microarchitecture, pages 294-305, 2002.

Nir Magen, Avinoam Kolodny, Uri Weiser, and Nachum Shamir. Interconnect-power
Dissipation in a Microprocessor. In Proceedings of International workshop on System

Level Interconnect Prediction, pages 7-13, 2004.

Rahul Nagpal and Y. N. Srikant. Register File Energy Optimization for Snooping Based
Clustered VLIW Architectures. In Proceedings of the International Symposium on Com-
puter Architecture and High Performance Computing, pages 161-168, 2007.

