Precise shared cache analysis using optimal
Interference placement

Kartik Nagar, Y.N. Srikant
Dept. of Computer Science and Automation,
Indian Institute of Science,
Bangalore, India.
Emails : {kartik.nagar, srikant@csa.iisc.ernet.in

Abstract—Determining the Worst Case Execution Time statically, as all interleavings are possible at runtime.

(WCET) of programs running on a multi-core architecture is .
a challenging problem, that is hampering the use of multi- If we assume that the tasks running on all cores are known,

cores in real-time systems. The highly imprecise WCET estiates then the accesses made to the shared cache by each task can be
obtained using the current state-of-the-art analyses hasrpmpted ~ determined. The current state-of-the-art approachesédcedh
research in the direction of making the multi-core architec¢ure cache analysis [1] analyze the shared cache separately from
itself more estimation-friendly, but there has been little effort to each core’s point of view. While performing the analysisiro

make the WCET analysis more precise. The main difficulty in one core (say coré), we know the exact sequence of accesses
analyzing programs running on multi-core architectures arises from corei, and the set of accesses made by the rest of the
from the fact that interferences to shared resources (such s cores, but we do not know when these accesses will occur (or
shared cache) from other cores can occur at any time. Hence, o orqer) Hence, it is assumed that all acccesses frem th

to perform safe micro-architectural analysis, current approaches fth b f
assume that all interferences occur at all times, which redts rest of the cores can occur between any two accesses from core

in significantly imprecise analysis WCET estimates. Howeve ¢ and the shared cache is updated accordingly. This results i
since we are interested in the WCET, we can instead assume @ highly pessimistic hit-miss analysis, since if the totatber

that the interferences will come at the worst possible progam of cache blocks accessed by other cores is greater than ak equ
points, causing maximum increase in the execution time. Inur to the cache associativity (which is usually a small number)
work, we formulate a ILP problem to determine these worst cas all the accesses to the shared cache by tord be classified
interference points, from the perspective of a shared cachend as misses.

determine the WCET by assuming that the interferences come

at those program points. Our approach provides a substantik Even though we do not know the sequence of accesses to

improvement in the precision of WCET over earlier analysis br the shared cache from the other cores, we know the number
all benchmarks which perform a substantial number of accesss of accesses, and we know that these accesses will arrive at
to the shared cache. some time during the execution of the task on card et
us call the accesses arriving from other cores to the shared
I, INTRODUCTION cache as interfering accesses. An interfering access may or
may not cause any extra misses to careor example, (from
Multi-cores are widespread in today’s computing devicesthe point of view of corei) if the shared cache is empty, or
from hand-held mobiles to servers and workstations. Théf none of the cache blocks in the shared cache are accessed
multi-core architecture allows one to leverage the indreps later by corei, then an interfering access will not cause any
computing power of chips without increasing the complexitymiss. However, if all the cache blocks in the shared cache
of their design. Multi-cores are here to stay, and it is exp@c are accessed immediately after the interfering access, the
that the number of cores will continue to increase, progdin it can cause many misses (atmost the cache associativity).
higher computational power. Using multi-cores for realdim The damage done by an interfering access thus depends on
systems has proved difficult, because real time systeméreequ the sequence of accesses from c@rand can be statically
guarantees on the execution time of programs, and obtainingetermined.
precise estimates of WCET on multi-core architectures loas n

been easy. If we distribute the interfering accesses across the pmgra

(running on core) such that the maximum damage is caused,
Caches have a major impact on the execution time ofhen we can safely use the resulting hit-miss classification
programs, and a number of techniques have been developeddimce any other arrival of the interfering accesses is gueeal
precisely capture this impact for different cache architexs to cause lesser damage. We propose an integer linear program
in single-core machines. Extending this techniques toeshar ming (ILP) based approach to determine the distribution of
cache analysis in multi-core architecture, however, hats ndnterfering accesses across the entire program, whiclcaiise
worked. When a cache is analyzed from the point of viemthe maximum damage. The rationale behind using ILP is that
of a single core, the sequence of accesses to the cache canvbewant all the interfering accesses to be distributed egiton
determined with high precision, which results in highlygise the worst case path (i.e. the path having the maximum exectio
cache hit-miss analysis. However, a shared cache in a multtime) in the program. Instead of distributing the intenfeyi
core architecture satisfies accesses originating froneréift accesses on each program path and then finding the worst
cores, and the sequence of these accesses cannot be knawase path, we can use the Implicit Path Enumeration Techniqu

(IPET) [2] to find the worst case path. We encode the problenand hence can be safely ignored while identifying intenfgri
of finding the optimal distribution of interfering accessssan accesses.

ILP, and then combine this ILP with the ILP as proposed b
IPET. prop y Hardware approaches ([9], [10], [11], [12]) focus on mak-

ing the multi-core architecture prediction-friendly byrimduc-

While generating the ILP, we maintain the property that ifing techniques such as cache locking, cache partitioniteg, e
any arrival of interfering accesses can cause a miss duringuch techniques make it safe to assume that no interfering
actual execution, then the same distribution of accesses iccesses arrive while performing the hit-miss analysishef t
our ILP will also cause a miss in the ILP. This ensures thakhared cache, thus making it as precise as normal cache
our approach will generate a safe WCET in the presence dadnalysis. However, the restrictions imposed may result in
interfering accesses, since the objective function of &t I wastage of resources and require support from the hardware.
maximizes the execution time while considering all feasibl Further, the schedulability analysis becomes complicatad
misses caused due to interferences. We have implemented atie constraints on task period and execution time imposed by
approach for shared L2 instruction cache in a 2-core systenhe schedulability test become more stringent [13], whigtlym
as an extension of the timing analyzer Chronos. Almost alprevent task sets to be scheduled.
benchmarks that make a substantial number of accesses to the
L2 cache benefit from our approach, and in many cases, the
precision improvement is very high. . Setup

Using ILPs raises the issue of scalability, and we found in ~We assume a standard multi-core architecture, where each
our experiments that determining the optimal distributafn ~ core has one (or more) private caches at lower levels and a
all interfering accesses may not be feasible for all progtam shared cache (shared between all cores) at the highest level
However, in such cases, depending on the time budget alld=or the discussion in this paper and as well as our experanent
cated to the WCET estimation phase, we can select a subs&e have only considered a shared instruction cache, but our
of interfering accesses to be distributed optimally. Wenfbu analysis can be directly applied to data cache or unified
substantial improvement in precision even for such sefecti cache without any changes. We also assume that the cache
distribution of interfering accesses. replacement policy is LRU (Least Recently Used).

We perform the standard Must and May analysis [14] at
Il RELATED WORK the private lower levels and the shared level separately for

While there are many variants of Shared cache analysigach core. As a result, for each access in the programs (at all
in the literature, almost every approach assumes that alfe cores), we have a Cache Access Classification (CAC) and
intererences occur at all program points. Yan and Zhangnf3] i Cache Hit Miss Classification (CHMC) at the shared cache
troduced the ‘always-except-one’ classification for instions level. The CAC determines whether an instruction will asces
inside loops which access the shared cache, if the intagferi & cache level, and can be Always (A), Uncertain (U) or Never
access is not inside a loop. However, their approach works on (N). In the first two cases, the access has to be considered
for direct-mapped caches, and they assume that the iriteyfer at the shared cache, and in the last case, the access does not
access can occur anywhere in the program. In a later work [4f)appen. Note that the CAC at the shared level depends only
they take into account the sequence of accesses to rule o®f the analysis of caches at the lower levels, which are all
certain misses arising due to infeasible interfering ase®s assumed to be private. Hence, interferences from othescore
However, the feasible interferences could still occur amgne ~ Will not affect the CAC.

in the program. The CHMC at the shared cache can be Always-Hit (AH),
Hardy et al. [1] proposed a shared cache analysis for seAlways-Miss (AM) or Uncertain (U). The CHMC will be
associative caches, where they first perform the normalecactdletermined without considering interfering accesses fotmer
analysis of the shared cache separately for each core, mgpumcores. Accesses classified as AM or U will not be affected by
no interference. Then, they change the shared cache stateiaterferences, since they are already counted as missds, an
each program point, assuming all interfering accessesdmppinterfering accesses will only increase the number of rsisse
just before the actual access. They also propose a hardwartence, we will concentrate on the accesses which are ctabsifi
mechanism that forces certain accesses to bypass the shagsiAH at the shared level. Note that for carehe interfering
cache, thus reducing the number of interfering accesses. accesses will be those accesses from all other cores whose

. - _ CAC at the shared cache is A or U.
Yan Li et al. [5] propose a timing analysis for message-

passing programs, where they concentrate on the question of The standard method to deal with interfering accesses is to
whether two tasks can run concurrently, and if so, for howglon find the number of interfering cache blocks for each cache set
Again, during the time that tasks are running concurretitgy ~ and then update the shared cache state obtained after tthe mus
assume that all interferences can come at any program poirdnalysis at each program point. Assuming no code-sharing
The shared bus is another important hardware resource whi@tross cores, the update simply increases the age of akk cach
introduces unpredictability in timing analysis, and a nembf blocks in the shared cache by the number of interfering cache
works ([6], [7]) have looked at precise analysis of shares, bu blocks. Since it is not known when the interfering accesses
and integrated analysis of shared bus and cache. For sharedl come, it is assumed that all interfering accesses caneco
cache analysis, these works use the same approach used by [iétween any two accesses of the program being analyzed. The
Model checking has also been used for shared cache analysipdated shared cache states are then used to obtain the new
in [8] to find out accesses which occur on infeasible pathgand safe) CHMC at the shared cache level.

maximum possible execution time, taking into account the
interfering accesses, which can obtained by estimating the
maximum number of misses caused by interferences. We have
’ ‘ b ‘ just seen that interfering accesses arriving at differeogmm
points can cause different number of cache misses, and the
damage caused depends only on the sequence of accesses in
the program being analyzed. If we can statically distrikttee
interfering accesses across the program such that the caus
the maximum possible number of misses, then we can use the
resultant shared cache states to obtain a safe CHMC.

o[o] <] E]I] We propose to use Integer Linear Programming to solve
this optimization problem. ILP is already an integral part

of the WCET estimation process, as most WCET analyzers
@) @ use the IPET formulation of ILP [2] to determine the worst
Fig. 1. Example to show the imprecision of current approgah.Program cz_’:lse_path n th-e program. ILP- has also been used- for cache
fragment (b) Shared cache states (c) Shared cache statesiragd interfering hit-miss analysis, by constructing the Cache Conflict Graph
access (CCG) of programs ([15], [16]). However, because of scal-
ability issues and the success of the Abstract Interpoetati
based approaches, most WCET analyzers employ Al-based
IV. EXAMPLE techniques for cache analysis.

As an example, consider the program fragment in Figure actual program execution will flow along some path in
la. Assume that, b, c, d are cache blocks at the shared cachepne program, and hence, it would be optimal to distribute all
level mapped to the_ same caphe set, and all the accesses reﬁfﬁ@rfering accesses along a single program path. One way to
the shared cache (i.e. CAC is A or U). Further, assume thglerform our analysis would be to take each possible program
the associativity of the shared cache is 2. Figure 1b Showﬁath, distribute the interfering accesses optimally aribe
the_shared cache states obtained after must analysis, iagsUMpath, compute its execution time, and then choose the péth wi
no interferences. Using these cache states, the CHMC of thge maximum execution time. Alternatively, we can leave the
second access to and the second access ¢owill be AH yropjem of finding the worst case path to the ILP. The IPET
(since botha andc are present in the cache just before theirformylation requires the worst case execution time of each
accesses). Now, suppose the program fragment is running |Rsruction in the program as a constant. In our formulation

a multi-core environment, and there is one interfering 8g€ce \ye relate the WCET of each instruction to the number of
coming from other cores. Figure 1c shows the updated Cachﬁterfering accesses before the instruction.

states, obtained by increasing the age of each cache block In
the original cache states by 1. Both the second accesses to As an example, consider the program fragment of Figure
andc will now be classifed as Miss (AM), since they are not 1a. We associate binary variablesandz. with the second ac-
present in the updated cache state just before their ascessecesses ta andc respectively. Integer variables, 2, 23, 24, 25
. . . . are associated with the program points P,Q,R,S,T respdgtiv

However, notice that if the interfering access comes aby they store the number of interfering accesses occuring
program pointsP or @, it will (_)nly_ affect the access ta. at those program points. Now, for the second access to
Similarly, if it arrives at5 or T', it will only affect the access 4 pecome a miss, there needs to be atleast one interfering
to ¢, while if it arrives atR, neither of the two accesses will

’ . access at P or Q, and for the second accegsttobecome a
be affected. Hence, one interfering access can cause atm

e (?ﬁFss, there needs to be atleast one interfering access at S or
one miss in the program, and one of the two accesses ¥ ~gnsider the following ILP:

guaranteed to remain a cache hit. Note that this example
can be easily expanded to contain more accesses of the form Mazimize Tq + 7o
m —m' —m, so that the second accessitowould be a cache

hit. The standard shared cache analysis will still repochea subject to

such access to be a cache miss with just one interferingscces Ta S 217 22 (1)
while during actual execution, atmost one cache miss would ZTe < za+ 25 (2)
be caused due to interferences. Similarly, if the entirg@m 14zttt <li (3)

fragment is enclosed in a loop, then accesses in all iterstio
will reported as Miss by the standard cache analysis. During
actual execution, the interfering access will come during o
iteration, causing atmost one cache miss.

The objective function maximizes the number of misses

caused due to interferences (the other accesses in theaprogr

are already classified as misses and hence will not affegted b
Hence, it is clear that assuming all interferences occur ainterferences). Equations 1 and 2 depict the access coristra

all program points results in highly pessimistic analysisla which state the minimal requirements of interferences to

can blow up the WCET estimate. While it is true that thecause an access to be a miss. Equation 3 is the interference

interfering accesses can arrive at any program point duringudget constraint, which encodes the maximum number of

actual execution, and thus no access can be safely classifigtterferences available. Solving the above ILP will give th

as Always Hit, we are not really interested in which accessemaximum value of the objective function to be 1, with either

are guaranteed to be hits. We are actually interested in thene of 2, 25, 24, 25 assigned as 1.

TABLE I. N OTATION

is:
Symbol Explanation n
i Integer variable storing the execution count of basic blbgk Maximize Z €jyi, su bjeCt to
y? Binary variable indicating whether basic bloék is on the worst case path i=1
z Integer variable storing the number of shared cache hitgsiftction; Vi=1l,...,n yi= Z Wji = Z Wik
of basic blockb; jE€pred(bi) kesucc(by)
m;’; Integer variable storing the number of shared cache midsisstouction j Loop Constraints ...
of basic blockb;
z7; Integer variable storing the number of shared cache missiestouction j prec_i(b) and Succ(b) _glve the pre_dec_ess_ors and SUCCGSSOI‘.S of
of basic blockb; along pathr basic block respectively. The objective is to find the execution
Zij Integer variable storing the total number of interferingesses counts of basic blocks Wh"?h maximizes the eXGQUt'On time
occuring just before instruction of basic blockb; of the program. The execution counts are constrained by the
Wi Integer variable storing the execution count of edge betwee program StrUCtU_rea which bagsmally places th_e restrictioat
basic blocksb; andb, the number of times execution enters a basic block must be
5 Eviction distance of instructioy of basic blockb; along pathr the same as the number of times execution leaves the basic
ci Execution time of basic block; not affected by interferences bIOCk’ and thls, will also be the execution Co,unt of the baSIC
. — FrRSe— block. The variablev;; stores the number of times execution
umber of neriering accesses mapped to cache se left basic blocki and entered basic block
ng Number of interfering cache blocks mapped to set

The loop constraints give an upper bound on the header
basic block of each loop in the program, and are typically
supplied by the programmer. The WCET of basic blocks in
V. THEILP FORMULATION the above formulation are assumed to be constants and are
obtained using micro-architecture analysis. After sajvthe
ILP, the basic blocks whose execution counts are non-zero ar
considered to be on the worst-case path of the program, while
the maximum value of the objective function will be the WCET
of the program.

A. Notation

We now give a general description of our ILP for an
arbitrary program running on a multi-core architecture. &ke
alyze programs running on each core separatelyblet ., b,

be the basic blocks of the program running on cord et In our formulation, the WCET of basic blocks are not
ai1,...,ay, be the instructions in basic block; for all constants. The execution time of an instruction which s
i = 1,...,n, whose CAC is A or U at the shared cachethe shared cache depends on the interferences arriving from

level. Basic blocki containsl; such instructions. We ignore other cores. Our objective is to distribute the interfeesnc
accesses which are satisfied by the private caches, singe thgcross the program, such that they cause the maximum iecreas
will not be affected by the interferences from other cores. W in the execution time of shared cache-accessing instnstio
associate a constant with basic blockb;, which is the total and all interferences occur on the worst-case path. Canside
execution time of instructions im; which are not affected the following ILP:

by interferences. This includes accesses which are sdltisyie

the private caches, non-memory-accessing instructiond, et L. . d hoh
cb;; be the cache block in the shared cache accessed;by Maximize D _(ciyi+) (e} +e™x]'))
i=1 =1
Let A be the associativity of the shared cache. Adtbe subject to

the set of all cache blocks that can be stored in the shared . _ o L ,
cache. Letcachestate$; : {1,..., A} — 2™ be the abstract vi=l..on yi= Z Wi Z Wik

shared cache state of seas determined by the must analysis . . jepred(bi) l;esucc(bi)
(ignoring the interfering accesses), just before instoncj of Vi=1,....n, Vi=1,....L x;+x7 =y
basic blocki. If m € cachestate$;(h), thenh is theage of m Loop Constraints ...

just beforea;;. If cbi; € cachestatef;(h),1 < h < A, then the
instructiona,; will be a guaranteed shared cache hit (without Interf Budeet C .
interferences). Table | lists the variables and constéuatswill nterference Budget Lonstraints ...
be used in our ILP formulation.

Access Constraints ...

e ande™ are the execution time of an instruction, in the
event of a shared cache hit and shared cache miss respgctivel
In the objective function, we have separated out the cohstan
portion of the execution time of a basic block (tgy;), that
is not affected by interferences. For each instruction ssing

ati Be::ore spetmfylng.tr:e]?bjectlve fltj.nCt't(.)n of outr) '.L; flo_rmu- the shared cache, we have associated two variabfgsagd
ation for worst-case interference estimation, we briexylain z), which will store the hit/miss counts of the instruction in

the IPET formulation, which is used to find the worst case;.” ; ;
path in a program. Let,.....c, be the WCET of basic the shared cache. These variables will depend on the number

;) . of interferences affecting the instruction.
blocksby,. .., b,. y1,...,y, are integer variables storing the
execution count of basic blocks, amg; stores the execution Then, we have the constraints on the execution count of
count of the edge between andb;. The IPET formulation basic blocks and the loop constraints, which are the same as

B. Objective Function

those in the IPET formulation. Generally > ¢", hence, « and its hitting pathm = o’ — a; — ... — ax — a, where

in the absence of any other constraints, to maximize the anda’ access cache block: (which is mapped to cache
objective function, every instruction accessing the sthaexche sets). aq,...,a; are the intervening instructions on the path,
will be assumed to incur a miss. The Access constraints willvhich access cache blocks mapped to seSincer is a
place an upper bound on the number of shared cache misskitting path, the number of distinct cache blocks accessed
(i.e. zi7) experienced by an instruction, which will depend by the intervening instructions will be less than the cache
on the number of interferences affecting the instructione T associativity. Letp? be the eviction distance. Let, be a

Interference Budget constraints will place an upper boundinary variable, and let,, , ..., z,, be integer variables storing
on the number of interfering accesses for each cache sdhe number of interfering accesses (mappeds)taccuring
The objective function will ensure that the interferences a just before instructions, ..., a; respectively. Consider the

distributed in such a manner that they cause the maximurfollowing equation :

number of shared cache misses. In the next few subsections, -

we give a detailed explanation of the access and interferenc PaXa < Za +Za, +...+2a T2,

budget constraints. First, we will define the concept of arfyt First, note thatz,,,. .., za., 2« capture all the interferences

path of an instruction, which will allow us to link the number \ypich may occur on the hitting path If an interfering access
of interferences with the hit/miss status of an instruction occurs onr, it will happen aftera’ and beforea, and thus
before any of the intervening accesses. Thus, the r.h.s. of
C. Hitting Paths the above equation captures the total number of interfering
ccesses that may occur onlf z, is 1 in the above equation,
en the total number of interfering accesses have become
greater than or equal to the eviction distance. This willllteg
the access becoming a cache miss. Thus we have encoded an
access constraintwhich relates the integer variables storing
the number of interferences with the binary variable which
1) 7 begins with instructions’ which also accesses, indicates a cache hit/miss due to interferences.
2) m ends with instructior: and has no other accesses
to m besidesz anda/,
3) the number of distinct cache blocks (other thah
mapped tos and accessed by instructionssns less
than the cache associativityl).

We define a program path to be a sequence of instructio
of the program, which follow the program order. Given an
instruction ¢ which accesses the cache bloek mapped to
cache sek, a pathr in the program is called hitting path
of a if

Interferences occuring before instructiehwill not have
any effect on the cache hit-miss status of instructigrand
hence they can be ignored in the above equation. Note that
interfering accesses mapped to setill not affect the contents
of other cache sets. In the above formulation, we have agsume
that interfering accesses arrive just before instructiwhgh
access the set. This is safe because even if an interfering
access arrives earlier, its effect will only be seen on the
dnstructions accessing the set

Note thata anda’ could be the same instruction. Intuitively,
if the actual execution of the program reaches instructidny
flowing along a hitting path of:, then the cache blockn
(accessed by) is guaranteed to be in the cache, and henc
the access by: will a cache hit. This is because after the Also, note that for shared caches, the hitting path of
instructiona’, the cache blockn will be present in the cache any instruction should begin with an instruction which is
and will be the most recently accessed block. Now, at léast guaranteed to access the shared cache. In other words, the CA
distinct cache blocks (mapped to s¢heed to be broughtinto of the starting instruction of a hitting path must be Alwag.(

the cache to evictn. But since the number of distinct cache The intervening instructions on the hitting path (incluglihe
blocks accessed aftef is strictly less tham, m is guaranteed nstructiona) can have a CAC of Always or Uncertain.

to escape eviction, and hence instructiowill be a cache hit.

Conversely, if the instructiom experiences a cache hit, D. Access Constraints
then the execution must have passed through a hitting path of
a. Again, sincea is a cache hityjn must be in the cache, just
before the execution af. Consider the last instruction in the
execution flow, that brought: to the cache. The path starting
from this instruction and ending atwould be a hitting path.

If an instruction is classified as AH in the shared cache
(without assuming interferences), then for all paths fréma t
start of the program to the instruction, it will experience a
cache hit. In other words, every path from the start of the
program to the instruction should contain a hitting pathhef t

If the number of distinct cache blocks accessed on path instruction. For the instruction to incur a cache miss due to
(excludingm) is h, then the eviction distance of instructian interferences, the number of interfering accesses shaulekel
along 7 is defined to bed — h. The eviction distance gives the eviction distance on atleast one hitting path.
minimum number of extra cache blocks required to be accessed
on 7 to cause instruction to be a cache miss. Thus, at least
A — h interfering accesses, which are mapped to sseind
coming from other cores, must arrive during the execution o
the hitting pathr to cause instruction to be a cache miss.

Let instructionj of basic blocki (denoted bya;;) be a
cache hit in the shared cache, anddet. . ., 7,,, be the hitting
Paths of this instruction. For the moment, assume thatis
not inside any loop. Let the hitting path = ayj — a5, —
Coo— QG — @5 Let pfjl be the eviction distance along this
In the example in Figure 1, the hitting path of the secondpath. Then, the access constraints for patlare:

access ta is a—b—a, and its eviction distance is 1. Similarly, .

the hitting path of the second accesstis ¢ — d — ¢, and its Py X S Zinjy oo Zige 1 Zi (4)
eviction distance is also 1. In general, consider an instrnc x{j” <y (5)

xrm

T stores the number of shared cache misses along the pathe eviction distance of a hitting path in all iterations bét
m. Equation 4 gives the relation betweefii and the total loop. This is because the start instruction of a hitting path
number of interfering accesses ap, as we saw in the last guaranteed to bring the cache block to the shared cache and
subsection. Equation 5 ensures that the instruation occurs ~ to make it the most recently accessed block. Hence, in every
on the worst case path. if;/;» is not on the worst case path, iteration, the age of the accessed cache block will be reskt t
the hitting pathr; itself is not on the worst case path, and as the execution enters the hitting path, and so everyiierat
hence no shared cache misses can be caused along the pagiguires interfering accesses to cause a cache miss. In othe
Remember that we also want to distribute the interferencewords, if p] is the eviction distance of instructiom along
only on the worst case path, and hence, we have to ensupathr, and if = is inside a loop withl" iterations, atleast’p]
that interferences not on the worst case path do not cotgribuinterferences are required to arrive on the patio cause: to
in converting a cache hit to a cache miss. Hence, we modif{pe a cache miss on all iterations.

the Equation 4 as follows: Equivalently, if a total of Z interferences are supposed

P?}'X?}' < yiblziljl 4. +yi|izikjk +yib2ij (6) to .arrive on the pathr, V_/hic;h is inside a .Ioop,_ then these
Z interferences will be distributed across iterations suwdt t

y? is a binary variable which is 1 only if basic bloékis on exactlyp? interferences will arrive each iteration, so that the
the worst case path. We add the constrajzyj;tsg Yk, Vk = number of cache misses incurred hydue to interferences
1,...,n to the main ILP. If a basic block is not on the worst will be | Z/pZ |. This is the maximal number of misses tlat
case path, then all interferences occuring in the basikbldit interferences om can cause for instructio.
not have any effect on cache behaviour of instructions. §o fa
all our equations were linear, but the above equation ire®Ilv
multiplication of two variables. Multiplication of a bingand
integer variable can be easily handled by introducing a ne
integer variable. Lety be a binary variablez be an integer
variable, andz,,;» < z < zmaz- Thenyz can be replaced by
integer variablev with the following constraint:

Let us now look at the access constraints defined in the
previous subsection from the perspective of instructiosie
leops. If instruction; of basic blocki is not inside a loop, then

z? will be a binary variable, which will be 1 if the instruction
experiences a cache miss due to interferences on the weest ca
path. This is ensured by the access constraints added for eac
hitting path. On the other hand, if the instruction is inside
Zmin <V < YZmax (7) a loop, thenz]' will give the maximual number of misses
i . . that can be caused by the assigned interferences along the
We_ perf_orm the .above transformatlon for all such multipli- hitting pathr,. This is because according to Equatior‘rgl, —
ﬁ{ﬁ!ons mthEQUatlort\hS, wﬁ:zmm = O7Zmamb— fé Ff)_lr ?I%Ch L3, Ziggy &+ Y2 2o+ 0 2i5) /05 | = | Z/p])], whereZ
iting path;, we thus obtain an upper lo_un mﬁ] € would be the total number of interférences on the hittindnpat
accessz;; would become a cache missaf; is non-zero on \ye just argued earlier that this is the maximum number of

atleast one hitting path. In facty; will b_e_noh-zero foratmost misses thatZ interferences along a hitting path can cause for
one hitting path, since atmost one hitting path can be on thgp, instruction inside a loop.

worst case path, and we have ensured that all interferenees a _ o o
to be distributed on the worst case path only. The following If an instruction is not inside any loop, then atmost one

constraint imposes the upper bound f: hitting path of the instruction will be on the worst case
' path. However, consider an instruction inside any arhiyrar
" ™ ” nested loop. For each parent loop of the instruction, anlitti
Xj < Zx'j (8) path originating from the parent loop could be on the worst
=1

case path. Hencez;fjl may be non-zero for multiple hitting
The above constraints are added for instructions which argaths ;. Equation 8 ensures that the contribution of each
classified as AH without considering interferences. Fariis hitting path will be considered while finding the total numbe
tion a;; which accesses the shared cache and is classified 8 misses caused due to interferences. Also, the maximum

AM or U, we add the following constraint: number of misses caused by a hitting path would be upper
bounded by the number of times the first instruction of the
Xj =i (9) hitting path is executed (i.e. the number of times the Hhittin
path itself is executed). This is ensured by Equation 5. Note
E. Handling Loops that for a program point inside a 100p,in = 0, Zimaz =

If a instruction inside a loop is classified as AH, then (Number of iterations) x A.

in every iteration of the loop, the instruction experienees We note that this method of counting interferences occuring
cache hit. By our definition of hitting path, this means thatinside loops introduces slight imprecision in the analyBisr
every iteration of the loop passes through a hitting patthef t program points inside a loop, we only keep count of the total
instruction. The hitting path for the first iteration of th@op number of interferences arriving at the program point, but
may begin outside the loop, while the hitting path for the resthe distribution of interferences across iterations is patt

of the iterations will begin within the loop itself. of the ILP. We assume that if the interferences cause misses
to some instruction, then they will arrive optimally w.rtt

WRat instruction, so that the maximum number of misses are

experience a cache miss only if the number of interference - Cppib 1 .
exceed the eviction distance of a hitting path of the insionc S%Jesr(;?\.t Ii-:]c;\;\ﬁ\(/:(agrfge optimal distribution may be diffefent

For an instruction inside a loop to experience cache miss
in all iterations, the number of interferences should edcee For example, suppose a total of 6 interferences occur at

We have seen that interferences cause an instruction

some program point, which is on the hitting paths of twoall interfering accesses will increase the age of all cadbekis
instructionsa; and as. Suppose the eviction distance of in the shared cache. However, if programs running on differe
is 2, while the eviction distance afy is 3. Botha; and as cores use shared libraries, it is possible that same caolbkl
are inside the same loop. Now, the optimal distribution formay be accessed by multiple cores. A similar scenerio would
a1 would be 2 interference per iteration, which will result in occur for data caches, if programs on different cores shatie d

3 misses fora;. The optimal distribution for, would be 3 variables.

interference per iteration, which will result in 2 misses &g.
Hence, our ILP will count a total of 5 misses for and as,
but this will never occur during actual execution. The fbbesi
optimal distribution is 3 interferences for 2 iterationssulting
in a total for 4 misses (2 foti; andas).

We can simply ignore the sharing of code/data during our
analysis, since this only affects the precision of the agialyn
the presence of sharing, interfering cache blocks may djrea
be present in the cache, in which case they will not increase
the ages of older cache blocks. Consider instruatignwhich
accesses cache bloek mapped to cache set and letr
be a hitting path of the instruction. Le/™ be the set of

Since we know the tasks running on all the cores, we camache blocks mapped to sgtand accessed by the instructions
determine the number of interfering accesses that are giener in path 7. Interfering accesses which access cache blocks in
by each core. Each instruction in the program whose CAC i€ CBs; N M™ will not contribute in increasing the age of,
Always or Uncertain at the shared cache level is consideredince these cache blocks will also be accessed by instnsctio
to make an interfering access to the shared cache. As arguédthe hitting path. Hence, we calculate the 68t B, ~ MT™,
earlier, the interferences themselves do not have anytaffec and check if the number of cache blocks in this set is greater
the CAC of instructions at the shared cache level. For cor¢han or equal to the eviction distance of the hitting path. If
¢, Let B, be the total number of interfering accesses mappeges, then we add the access constraint for the hitting path.
to cache set. B; would be the sum of interfering accessesAgain, if this happens for all hitting paths of instructiag;,
from every other core apart from Let B<® be the number of then we conclude that this access can never cause a miss due
distinct interfering cache blocks mapped to setet CCB; to interferences, and hence add the constm@pt: Yi-
be the set of interfering cache blocks mapped tosset

F. Interference Budget Constraints

Let IN ST, be the set of instructions in the program whoseH. Proof of Safety
CAC is A or U, and which access cache blocks mapped to set
s. For every cache set, the interference budget constraint
would be:

Given an interference BudgéiB; } ;cs for each cache set
and programP running on corec, we would like to show
Z Wz < B (10) that the WCET Obtf?lil’led using our ILP Wou_ld t_Je greater
gt = s than the execution time of any actual execution instance of
P in the presence of interferences from the budget. The
The above constraint is added for each cachesséigain, objective function of our ILP finds a program path such that
the above equation involves the multiplication of a binarythe execution time of the program along the selected path
and integer variable, which we handle in the same way awould be maximum after assigning interferences on the path
demonstrated earlier. Also, i interfering accesses arrive at which generate the most number of misses. The ILP tries to
a program point, then the entire shared cache will be emptiethaximize the execution time subject to the access contdrain
(from the perspective of coré. Hence, a valid upper bound and the access constraints give an upper bound on the number
for the number of interfering accesses at a program poirt is of allowed shared cache misses due to interferences. Ifyever
multiplied by the number of times the program point is reache feasible shared cache miss due to interferences is alseeallo
on the worst case path. The following constraint is added foby the access constraints, this would mean that the ILP will
all 4, j: maximize execution time taking into account every feasible
zij < Ay, (12) shared cache miss. Hence, we will show that if an arrival
of interferences can cause a shared cache miss during actual
execution, then the same assignment of interferences in our
ILP will also result in a shared cache miss.

ai,jEINSTS

In general, the number of interfering accessBs,could be
much larger than the number of interfering cache blodkd,
While distributing interferences across the entire prograre
have to useB;, but while distributing accesses on a single An instruction can suffer a feasible shared cache miss
hitting path, we can usB¢. An instruction will suffer a cache only if it experiences a shared cache hit without interfegsn
miss due to interferences on a hitting path only if both theHence, the CHMC of the instruction without interferences
number of interfering accesses and the number of intederinshould be U or AH. First, consider an instruction whose
cache blocks exceeds the eviction distance of the hittirtlg. pa CHMC is U and which experiences a shared cache miss due
Hence, we only add the access constraint for the hitting patto interferences during actual execution. Such instrastiare

m of an instructiona,;, if B is greater than or equal to the already considered as shared cache misses in our ILP (Bquati
eviction distance)fjl. If this happens for all hitting paths of the 9).
instruction, no access constraint will be added for anyrigjtt

path, and instead we will add the constrai:nj]t — 4. Now, consider an instructiom whose CHMC is AH.

Suppose experiences a shared cache miss due to interferences
G. Handling Code/Data sharing alon_g the .hlttmg patblr during actual execution. Assume that
begins at instruction’. Suppose the interferences arrive before
So far, we have assumed that interfering cache blocks wilinstructionsa, ..., a; on the path. If the CAC of instruction
be different from the cache blocks accessed by cosp that «’ is Always (A), then there will be an access constraintsfor

TABLE II. L2 PERFORMANCE OFBENCHMARKS WITH NO

in our ILP. The CAC of instructionsa, ..., a, must be either INTERFERENCE

Always or Uncertain, so the interference variablgs .. ., z,,
will be part of the access constraint. If the sum of intenfiees Benchmark 9% of L2 accesses % of L2 hitp Benchmark % of L2 accesses % of L2 hits

exceeds the eviction distance during actual executiom the _adeem 10.02 99.78 | insertsort 0.00 8.33
the same assignment of interferences{g. . . ., z,, will also bs 891 000 ffdcint 1474 90.04
exceed the eviction distance in the access constraint., Thus bsortioo 0.01 98.94 ms 147 7478
the shared cache miss will be allowed and will be taken into o 001 714 matmult 0.01 0.00
consideration by the ILP. cover 572 87.77 minver 28.25 013

cre 0.34 2.96 ndes 8.89 18.36

If the CAC of @’ is Uncertain, then there will be hitting
path#’ such thatr is a sub-path oft’. This is because is
classified as AH, and hence there must be some instruetion
beforea which accesses the cache block accesseaddnd has

duff 2.41 4.55 ns 0.25 6.67

expint 16.10 97.89 prime 6.37 98.17

|
|
|
|
|
|
edn 0.00 0.00 | nsichneu 26.13 0.04
|
|
|
|
|
|

agas . . fdct 2.65 1.30 rt- 40.20 0.00
a CAC of Always. The hitting path starting froaf (call it 7') — — — qs°qu:mm — —
will contain the accesses, ..., a;. Hence,z,,, . .., zq, Will " 0'07 6'67 - 6'57 58'33
be part of the access constraint for, which will allow the : O'OG 2'192 — 3’405 0'66

. . . St . B statemate 3 .|
shared cache miss for the same assignment of interferences: - — —
u R .
VI. EXPERIMENTAL RESULTS TABLE IlI. C OMPARISON OFWCET OBTAINED USING OUR APPROACH

AND HARDY ET AL.”S APPROACH
We have implemented our technique of optimal interfer-
ence placement on top of the Chronos [17] WCET analyzer. Benchmark WCET WCET WCET % Abs. % Rel.
R K (No-Interf) (All-Interf) (Opt-Interf) improv. improv.

Chronos is an open-source WCET analyzer which supports

precise instruction and data cache analysis for a 2-leveHeea ___29PCM 255153 599097 257082 5708 9944
hierarchy using the standard Abstract Interpretatioretdap- expint 6543 20847 10093 52.49 7518
proach. We extended Chronos by adding support for multi- ims 647803 795115 650659 18.16 98.06
core shared instruction cache analysis. We implemented tWo g, 3172 5100 3724 3895 8115
techniques for performing shared cache analysis : (1) Herdy :

al’s [1] approach, which assumes that all interfering ases prme 31100 ooo12 S1%04 Lo 9re
to the shared cache occur at all program points and (2) OQur Ps°t100 7360848 7385448 7361136 038 9882
approach, which solves an ILP to obtain the optimal placeamen fft 62827 63331 63235 0.15 19.04
of interferences, causing maximum increase in executioa.ti ndes 138677 159965 147197 8 60
As stated earlier, most of the current approaches for shared™ 13677 15501 14445 68 579

cache analysis assume all interferences at all programspoin
Hence, we compare the precision of WCET obtained using our
approach and Hardy et al.'s approach.

sqrt 1037 1541 1229 20.24 61.90

jfdctint 1721591 5221751 4467863 14.44 2153
(25%)

To generate the ILP, we have to determine the access
constraints for each instruction which is classified as ARIST
requires finding all the hitting paths of such an instructibom assuming no interferences to the shared cache. Thesesresult
determine the hitting paths, we use a simple breadth firstkea are obtained using the normal abstract interpretation dbase
(BFS) of the program CFG in the reverse direction startingcache analysis of the benchmarks. Hence, L2 hit percentage
from the instruction. We continue the search until we findconsiders only guaranteed L2 hits, while L2 access pergenta
another instruction which accesses the same cache block andnsiders all possible L2 acesses.
has a CAC of Always. We keep track of the instructions which .
access the same cache set on each such path returned by %H%Tovsgrggga?n\év?hi[?rfeabbeenncchhr?z;arLk r?J':]g gr'lcgfeaég?'ete; d
BFS. If an instruction is inside a loop, then during the BFS ’

we only allow one traversal of the back edge of the loop and"€ yvorst-caseb advferiary d("e' rt]he l_)enchcrjnark V.Vh'd; causes
its parent loops. maximum number of shared cache misses due to interferences)

runs on the other core. Table Il shows the WCET assuming

For the experiment, we assume a 2-core architecture witho interference (Column 1), WCET assuming all interfer-
a shared L2 instruction cache. Our cache architecture is: Iences at all program points (Column 2), WCET assuming
KB 4-way L1 cache with block size 32 bytes, and a 4-KB optimal interference placement (Column 3). Column 4 shows
8-way L2 cache with block size 32 bytes. We assume that Lthe absolute precision improvement of OPT-INTERF over
hit takes 1 cycle, L2 Hit takes 6 cycles, and memory acceséLL-INTERF (computed aS%}’XﬁETO”). Column 5
takes 30 cycles. We use 27 benchmarks from the Malardaleshows the relative precision improvement, which is defined
WCET benchmark suite [18]. The L2 cache performance obs Yyze2i—\EETET It represents the precision improvement
the benchmarks is crucial in determining the impact of sthare of OPT-INTERF "over ALL-INTERF as a percentage of the
cache analysis on WCET. Clearly, more L2 accesses and Laximum possible improvement. In other words, it quantifies
hits would mean more reliance on the precision of sharedecacthow closer OPT-INTERF is to the interference-free WCET.
classification. Table Il gives the percentage of L2 acceses The relative precision improvement is useful for benchmark
accesses/Total accesses) and percentage of L2 Hits (R2hits whose absolute precision improvement is low because of
accesses) for all benchmarks for the above cache architectu smaller number of L2 accesses.

TABLE IV. RESULTS OBTAINED BY HALVING THE L2 CACHE TABLE V. RESULTS OBTAINED BY HALVING THE L1 CACHE
Benchmark % of L2 hits % Abs. improv. % Rel. improv. Benchmark % of L2 accesses % of L2 hits % Abs. % Rel.
improv. improv.
adpcm 49.89 24.34 98.92
- fdct (50%) 22.27 88.34 17.39 27.43
expint 13.92 10.01 87.88
- fft 3.24 13.23 4.37 82.43
prime 48.75 25.74 98.33
fir 2.27 97.33 30.25 93.53
ndes 15.32 1.45 13.10
P ud 10.55 17.88 1.44 12.90
jfdctint (25%) 85.96 13.54 22.76
insertsort 0.06 99.64 1.37 99.28

The results in Table Il are shown for the 10 benchmarks
for which we found substantial precision improvement beeau of 6 of the 11 benchmarks in Table Il became 0. Hence,
of optimal interference placement. For the rest of the benchthese benchmarks did not show any precision improvement
marks, the WCET obtained using OPT-INTERF and ALL- using our approach. The L2 hit percentage of the rest of the
INTERF were almost the same. We note that in those casebgnchmarks, along with the precision improvement in their
WCET obtained assuming no interference was also the sam&/CET, are shown in Table IV.
as WCET obtained using ALL-INTERF. Hence, the reason for

no precision improvement was because of the L2 performance 1 he results indicate that as the L2 hit percentage de-
of those benchmarks. creases, the absolute improvement in precision of WCET also

decreases, which is as expected. The relative improvement

The benchmarks in Table Il are exactly those benchmarkstill remains quite high, which indicates that the increase
which exhibit substantial number of L2 accesses and L2VCET obtained using our approach, due to the smaller L2
hits (as shown in Table Il). The massive absolute precisiorcache, is proportional to the increase in WCET assuming no
improvement in benchmarks such a8pcm, expint, prime interferences. In other words, our approach is still able to
corresponds to the almost perfect L2 behaviour of thesachieve a high percentage of the total precision improvémen
benchmarks. Similarlypsort100 and fft show very low possible. The average absolute precision improvementtbeer
absolute improvement, but these benchmarks hardly acceSsbenchmarksis 15.02 %. Again, for th¢dctint benchmark,
the shared L2 cache. Moreover, all benchmarks (ex¢¢pf we had to limit optimal interference placement for 2 of the 8
show very high relative precision improvement, which meansache sets.
OPT-INTERF is able to achieve a high percentage of the .
total improvement possible. For almost all the benchmarks, A number of benchmarks in Table Il have low L2 access
the worst case adversary was eith@tichneu or statemate, ~ Percentage for the original cache configuration, so we eecid
as these benchmarks perform a large number of L2 accessd@,decrease the L1 cache size, and see whether our approach
and also access a large number of distinct cache blocks in L8 able to provide better precision for more benchmarks. We

(becuase of which their own L2 hit percentage is very low). changed L1 to be a 0.5-KB 4-way cache with block size 32
bytes (half of the original L1 size), and restored L2 to its

The average absolute precision improvement over the 1griginal size. As a result, we found precision improvement
benchmarks is 24.32 %, while the average relative precisiofh the WCET of 5 more benchmarks (apart from those in
improvement in 70.07%. Exceptfdctint, the analysis time Table Ill). The precision improvement along with the L2
(including time for solving the ILP) for all the benchmarks performance of these benchmarks is listed in Table V.
was reasonably small (~few seconds). However, the ILP solve
was not able to solve the ILP fgifdctint in any reasonable Again, the precision improvement is correlated with the
duration of time.jfdctint makes approximately 150K L2 increased L2 access (and hit) percentage of the benchmarks,
accesses, most of which are inside loops. To reduce thehile the benchmarks which do not show any precision im-
analysis time, we picked 4 cache sets (out of 16) to perfornprovement (not shown in the table) continued to have very
optimal interference placement, and assumed all interéee low L2 access percentage for the new cache configuration
at all program points for rest of the cache sets. With such &s well. Note that the benchmarks which showed precision
selective strategy for approximately 25% of the L2 accessesmprovement with the original cache configuration contihue
the ILP solver was able to solve the ILP in a reasonable amour@ do so with new cache configuration. For the benchmark
of time (~30 minutes). The absolute precision improvemént o fdct, we had to limit optimal interference placement for 8 of
the WCET so obtained was 14.44 %. However, the relativdhe 16 cache sets.
precision improvement is low, which suggests that there is
room for more precision by performing optimal interference
placement for more accesses.

Scalability: The scalability of our approach depends on the
hardness of the generated ILP, which in turn depends on the
number of L2 hits to be analyzed, the number of hitting paths,

Changing L1, L2 cache sizes: It can be seen that the number of interfering accesses to be distributed, etc. |
the precision improvement obtained using our approach iparticular, we found during our experiments that the number
dependent on the L2 performance of the program. Since sonw distinct L2 hits in the program to be analyzed significantl
of the benchmarks showed almost perfect L2 behaviour, weffected the complexity of the ILP (bothfdctint and fdct
decided to decrease the L2 cache size and then measure thad large number of distinct L2 cache hits). There is a triideo
precision improvement. Keeping the same L1 cache size, wketween scalability and precision of the WCET, and to aghiev
changed L2 to be a 2-KB 8-way cache with block size 32 bytescalability we propose the following strategies to simptifie
(half of the original L2 size). As a result, the L2 hit percage ILP problem :

Cache Set Selection : This is a selective optimizationwvork, we propose a new approach for shared cache analysis,
strategy, where we perform optimal interference placewhere we assume that interferences from other cores will
ment for interferences belonging to few selected cacharrive at the worst possible program points, causing maximu
sets. The interferences belonging to the remainingiumber of shared cache misses. We build an ILP to locate
cache sets will be assumed to occur at all progranthe worst possible program points and to optimally distebu
points. This strategy not only reduces the number othe interferences across them. To build the ILP, we find the
interferences to be distributed, but also reduces théitting paths for each shared cache hit, which are pathsen th
number of L2 hits to be analyzed, as L2 hits accessprogram where the arriving interferences can cause damage.
ing the un-optimized cache sets will be classified asWe specify the minimum number of interferences required for
hit/miss before the ILP formulation. We have useda shared cache miss, and then leave the optimal distribafion
this strategy in our experiments for batlidctint and interferences to the ILP.

fdet, resulting in improved precision of the WCET

which is obtained in a reasonable duration of time. We have implemented our approach in Chronos, an open-

source WCET analyzer, and compared the WCETs obtained
Interference Selection : If an interfering cache blockusing our approach and earlier approaches for a large number
is accessed large number of times (by the other coreshf benchmarks. For all benchmarks which make sufficient
then it can be assumed that the interfering accesaumber of shared cache accesses, our approach is sigrjficant
to the cache block occurs at all program point. Thismore precise than earlier approaches. We also test ouragpro
will reduce the number of interfering accesses to befor different cache configurations, and show that it corgswu
distributed. to give better precision. We also discuss the scalabiliéyas
|related to our approach, and give a number of techniques to

Program Area Selection : In this approach, optimal o o
g P P gecrease the analysis time at the cost of lower precision.

interference placement is carried out over a selecte

program segment. It is assumed that all interferences The nature of the problem of optimal interference place-
occur at all program points for the rest of the pro- ment suggests that there could be algorithmic approaches to
gram. For example, loops running for large numbersplye the problem. Such approaches may scale better over
of iterations and containing L2 hits would be an ideal larger programs. Also, our approach has the property that
candidate for optimal interference placement, as th&maller number of interferences will lead to lower WCET -esti
number of distinct L2 hits would be small, and the mates. Hence, there is scope for new scheduling algoritbms f
interference budget may limit the L2 misses t0 ayea|-time systems which could minimize the cache interfeee
portion of the iterations. This strategy could be usefulpetween tasks scheduled on different cores. This could also
for large programs containing many loops. lead to a relaxed schedulability test, allowing more tasts-s

Different approaches may work for different types of to be scheduled.

programs, and the selection also depends of the type of the
adversary programs (i.e. the programs running on othesgore
For each approach, there are choices which may providerbette
precision in smaller amount of analysis time. For example, 1]
in the cache set selection approach, there is a choice of
which cache sets should be selected for optimal interferenc 2]
placement. Heuristics such as higher number of L2 hits,
smaller number of distinct L2 hits, etc. can be used to select[3]
appropriate cache sets.

We note that in our experiments, while using the cache setl*!
selection strategy, we arranged the cache sets in the dewea
order of L2 hits mapped to the cache set, and then picked th%]
first 4 (or 8) cache sets for optimal interference placement.
We found that this approach provided better precision than
an ad-hoc selection, but there is scope for future work in g
experimenting with different heuristics to obtain the best
possible precision in a reasonable amount of time. Simgjlarl
in the program area selection approach, heuristics candm us [7]
to identify program segments which will benefit from optimal
interference placement. 8]

VII. CONCLUSION AND FUTURE WORK 9]

Estimating the WCET of programs running on multi-core
architectures is an important step towards using multesan
real-time systems. Current approaches for WCET estimation
are highly imprecise, and most of the imprecision stems fronhl]
the shared cache analysis, which assumes that all intedese
from other cores can arrive at all program points. In our

REFERENCES

Damien Hardy, Thomas Piquet, and Isabelle Puaut. Usingass
to tighten WCET estimates for multi-core processors wittaret
instruction caches. IRTSS, 2009.

Yan-Tsun Steven Lee and Sharad Malik. Performance aisalgf
embedded software using implicit path enumerationDAC, 1995.

Jun Yan and Wei Zhang. WCET analysis for multi-core pesmes with
shared 12 instruction caches. RTAS 2008.

Jun Yan and Wei Zhang. Accurately estimating worst-casecution
time for multi-core processors with shared direct-mappestriction
caches. INRTCSA, 2009.

Yan Li, Vivy Suhendra, Yun Liang, Tulika Mitra, and AbhiRoychoud-
hury. Timing analysis of concurrent programs running orretia¢ache
multi-cores. INRTSS, 2009.

Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulkitra. Mod-
eling shared cache and bus in multi-cores for timing anslysin
SCOPES, 2010.

Sudipta Chattopadhyay, Chong Lee Kee, Abhik Roychoughlimon
Kelter, Marwedel Peter, and Falk Heiko. A unified WCET analys
framework for multi-core platforms. IIRTAS 2012.

Sudipta Chattopadhyay and Abhik Roychoudhury. Scelalnd precise
refinement of cache timing analysis via model checkingRTSS, 2011.

Vivy Suhendra and Tulika Mitra. Exploring locking and rfisoning
for predictable shared caches on multi-coresDIXC, 2008.

Marco Paolieri, Eduardo Quifiones, Franciso J. Caz@lillem Bernat,
and Mateo Valero. Hardware support for WCET analysis of haed
time multicore systems. IKSCA, 2009.

Man-ki Yoon, Jung-Eun Kim, and Sha Lui. Optimizing tioha
WCET with shared resource allocation and arbitration irdtreal-time
multicore systems. IRRTSS 2011.

[12]

(23]
[14]

[15]

[16]

[17]

(18]

Bryan C. Ward, Jonathan L. Herman, Christopher J. Keand James
H. Anderson. Making shared caches more predictable on cotsti
platforms. INECRTS, 2013.

Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-awateduling
and analysis for multicores. IEMSOFT, 2012.

Damien Hardy and Isabelle Puaut. WCET analysis of rielel non-
inclusive set-associative instruction cachesRIFSS, 2008.

Yan-Tsun Steven Lee, Sharad Malik, and Andrew Wolfe.ficket
microarchitecture modeling and path analysis for reaktigoftware.
In RTSS, 1995.

Yan-Tsun Steven Lee, Sharad Malik, and Andrew Wolfe. chea
modeling for real-time software: Beyond direct mapped rirdton
caches. INRRTSS 1996.

Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychalury.
Chronos: A timing analyzer for embedded softwareScience of
Computer Programming, 69(1-3):56—67, 2007. http://www.comp.nus.
edu.sgtrpembed/chronos.

Jan Gustafsson, Adam Betts, Andreas Ermedahl, andhBjisper. The
Malardalen WCET benchmarks — past, present and futureespag7—
147, Brussels, Belgium, July 2010. OCG.

