
Precise shared cache analysis using optimal
interference placement

Kartik Nagar, Y.N. Srikant
Dept. of Computer Science and Automation,

Indian Institute of Science,
Bangalore, India.

Emails :{kartik.nagar, srikant}@csa.iisc.ernet.in

Abstract—Determining the Worst Case Execution Time
(WCET) of programs running on a multi-core architecture is
a challenging problem, that is hampering the use of multi-
cores in real-time systems. The highly imprecise WCET estimates
obtained using the current state-of-the-art analyses has prompted
research in the direction of making the multi-core architecture
itself more estimation-friendly, but there has been littleeffort to
make the WCET analysis more precise. The main difficulty in
analyzing programs running on multi-core architectures arises
from the fact that interferences to shared resources (such as
shared cache) from other cores can occur at any time. Hence,
to perform safe micro-architectural analysis, current approaches
assume that all interferences occur at all times, which results
in significantly imprecise analysis WCET estimates. However,
since we are interested in the WCET, we can instead assume
that the interferences will come at the worst possible program
points, causing maximum increase in the execution time. In our
work, we formulate a ILP problem to determine these worst case
interference points, from the perspective of a shared cache, and
determine the WCET by assuming that the interferences come
at those program points. Our approach provides a substantial
improvement in the precision of WCET over earlier analysis for
all benchmarks which perform a substantial number of accesses
to the shared cache.

I. I NTRODUCTION

Multi-cores are widespread in today’s computing devices,
from hand-held mobiles to servers and workstations. The
multi-core architecture allows one to leverage the increasing
computing power of chips without increasing the complexity
of their design. Multi-cores are here to stay, and it is expected
that the number of cores will continue to increase, providing
higher computational power. Using multi-cores for real time
systems has proved difficult, because real time systems require
guarantees on the execution time of programs, and obtaining
precise estimates of WCET on multi-core architectures has not
been easy.

Caches have a major impact on the execution time of
programs, and a number of techniques have been developed to
precisely capture this impact for different cache architectures
in single-core machines. Extending this techniques to shared
cache analysis in multi-core architecture, however, has not
worked. When a cache is analyzed from the point of view
of a single core, the sequence of accesses to the cache can be
determined with high precision, which results in highly precise
cache hit-miss analysis. However, a shared cache in a multi-
core architecture satisfies accesses originating from different
cores, and the sequence of these accesses cannot be known

statically, as all interleavings are possible at runtime.

If we assume that the tasks running on all cores are known,
then the accesses made to the shared cache by each task can be
determined. The current state-of-the-art approaches to shared
cache analysis [1] analyze the shared cache separately from
each core’s point of view. While performing the analysis from
one core (say corei), we know the exact sequence of accesses
from core i, and the set of accesses made by the rest of the
cores, but we do not know when these accesses will occur (or
their order). Hence, it is assumed that all acccesses from the
rest of the cores can occur between any two accesses from core
i, and the shared cache is updated accordingly. This results in
a highly pessimistic hit-miss analysis, since if the total number
of cache blocks accessed by other cores is greater than or equal
to the cache associativity (which is usually a small number),
all the accesses to the shared cache by corei will be classified
as misses.

Even though we do not know the sequence of accesses to
the shared cache from the other cores, we know the number
of accesses, and we know that these accesses will arrive at
some time during the execution of the task on corei. Let
us call the accesses arriving from other cores to the shared
cache as interfering accesses. An interfering access may or
may not cause any extra misses to corei. For example, (from
the point of view of corei) if the shared cache is empty, or
if none of the cache blocks in the shared cache are accessed
later by corei, then an interfering access will not cause any
miss. However, if all the cache blocks in the shared cache
are accessed immediately after the interfering access, then
it can cause many misses (atmost the cache associativity).
The damage done by an interfering access thus depends on
the sequence of accesses from corei, and can be statically
determined.

If we distribute the interfering accesses across the program
(running on corei) such that the maximum damage is caused,
then we can safely use the resulting hit-miss classification,
since any other arrival of the interfering accesses is guaranteed
to cause lesser damage. We propose an integer linear program-
ming (ILP) based approach to determine the distribution of
interfering accesses across the entire program, which willcause
the maximum damage. The rationale behind using ILP is that
we want all the interfering accesses to be distributed entirely on
the worst case path (i.e. the path having the maximum exection
time) in the program. Instead of distributing the interfering
accesses on each program path and then finding the worst
case path, we can use the Implicit Path Enumeration Technique



(IPET) [2] to find the worst case path. We encode the problem
of finding the optimal distribution of interfering accessesas an
ILP, and then combine this ILP with the ILP as proposed by
IPET.

While generating the ILP, we maintain the property that if
any arrival of interfering accesses can cause a miss during
actual execution, then the same distribution of accesses in
our ILP will also cause a miss in the ILP. This ensures that
our approach will generate a safe WCET in the presence of
interfering accesses, since the objective function of our ILP
maximizes the execution time while considering all feasible
misses caused due to interferences. We have implemented our
approach for shared L2 instruction cache in a 2-core system
as an extension of the timing analyzer Chronos. Almost all
benchmarks that make a substantial number of accesses to the
L2 cache benefit from our approach, and in many cases, the
precision improvement is very high.

Using ILPs raises the issue of scalability, and we found in
our experiments that determining the optimal distributionof
all interfering accesses may not be feasible for all programs.
However, in such cases, depending on the time budget allo-
cated to the WCET estimation phase, we can select a subset
of interfering accesses to be distributed optimally. We found
substantial improvement in precision even for such selective
distribution of interfering accesses.

II. RELATED WORK

While there are many variants of Shared cache analysis
in the literature, almost every approach assumes that all
intererences occur at all program points. Yan and Zhang [3] in-
troduced the ‘always-except-one’ classification for instructions
inside loops which access the shared cache, if the interfering
access is not inside a loop. However, their approach works only
for direct-mapped caches, and they assume that the interfering
access can occur anywhere in the program. In a later work [4],
they take into account the sequence of accesses to rule out
certain misses arising due to infeasible interfering accesses.
However, the feasible interferences could still occur anywhere
in the program.

Hardy et al. [1] proposed a shared cache analysis for set-
associative caches, where they first perform the normal cache
analysis of the shared cache separately for each core, assuming
no interference. Then, they change the shared cache state at
each program point, assuming all interfering accesses happen
just before the actual access. They also propose a hardware
mechanism that forces certain accesses to bypass the shared
cache, thus reducing the number of interfering accesses.

Yan Li et al. [5] propose a timing analysis for message-
passing programs, where they concentrate on the question of
whether two tasks can run concurrently, and if so, for how long.
Again, during the time that tasks are running concurrently,they
assume that all interferences can come at any program point.
The shared bus is another important hardware resource which
introduces unpredictability in timing analysis, and a number of
works ([6], [7]) have looked at precise analysis of shared bus,
and integrated analysis of shared bus and cache. For shared
cache analysis, these works use the same approach used by [1].
Model checking has also been used for shared cache analysis
in [8] to find out accesses which occur on infeasible paths

and hence can be safely ignored while identifying interfering
accesses.

Hardware approaches ([9], [10], [11], [12]) focus on mak-
ing the multi-core architecture prediction-friendly by introduc-
ing techniques such as cache locking, cache partitioning, etc.
Such techniques make it safe to assume that no interfering
accesses arrive while performing the hit-miss analysis of the
shared cache, thus making it as precise as normal cache
analysis. However, the restrictions imposed may result in
wastage of resources and require support from the hardware.
Further, the schedulability analysis becomes complicated, and
the constraints on task period and execution time imposed by
the schedulability test become more stringent [13], which may
prevent task sets to be scheduled.

III. SETUP

We assume a standard multi-core architecture, where each
core has one (or more) private caches at lower levels and a
shared cache (shared between all cores) at the highest level.
For the discussion in this paper and as well as our experiments,
we have only considered a shared instruction cache, but our
analysis can be directly applied to data cache or unified
cache without any changes. We also assume that the cache
replacement policy is LRU (Least Recently Used).

We perform the standard Must and May analysis [14] at
the private lower levels and the shared level separately for
each core. As a result, for each access in the programs (at all
the cores), we have a Cache Access Classification (CAC) and
Cache Hit Miss Classification (CHMC) at the shared cache
level. The CAC determines whether an instruction will access
a cache level, and can be Always (A), Uncertain (U) or Never
(N). In the first two cases, the access has to be considered
at the shared cache, and in the last case, the access does not
happen. Note that the CAC at the shared level depends only
on the analysis of caches at the lower levels, which are all
assumed to be private. Hence, interferences from other cores
will not affect the CAC.

The CHMC at the shared cache can be Always-Hit (AH),
Always-Miss (AM) or Uncertain (U). The CHMC will be
determined without considering interfering accesses fromother
cores. Accesses classified as AM or U will not be affected by
interferences, since they are already counted as misses, and
interfering accesses will only increase the number of misses.
Hence, we will concentrate on the accesses which are classified
as AH at the shared level. Note that for corei, the interfering
accesses will be those accesses from all other cores whose
CAC at the shared cache is A or U.

The standard method to deal with interfering accesses is to
find the number of interfering cache blocks for each cache set
and then update the shared cache state obtained after the must
analysis at each program point. Assuming no code-sharing
across cores, the update simply increases the age of all cache
blocks in the shared cache by the number of interfering cache
blocks. Since it is not known when the interfering accesses
will come, it is assumed that all interfering accesses can come
between any two accesses of the program being analyzed. The
updated shared cache states are then used to obtain the new
(and safe) CHMC at the shared cache level.



a

b

a




d




a

b

a

a b




a

d 


a

b

a




d

P

Q

R

S

T

(a)

(b)

(
)

P

Q

R

S

T

Fig. 1. Example to show the imprecision of current approach.(a) Program
fragment (b) Shared cache states (c) Shared cache states assuming 1 interfering
access

IV. EXAMPLE

As an example, consider the program fragment in Figure
1a. Assume thata, b, c, d are cache blocks at the shared cache
level mapped to the same cache set, and all the accesses reach
the shared cache (i.e. CAC is A or U). Further, assume that
the associativity of the shared cache is 2. Figure 1b shows
the shared cache states obtained after must analysis, assuming
no interferences. Using these cache states, the CHMC of the
second access toa and the second access toc will be AH
(since botha and c are present in the cache just before their
accesses). Now, suppose the program fragment is running in
a multi-core environment, and there is one interfering access
coming from other cores. Figure 1c shows the updated cache
states, obtained by increasing the age of each cache block in
the original cache states by 1. Both the second accesses toa
andc will now be classifed as Miss (AM), since they are not
present in the updated cache state just before their accesses.

However, notice that if the interfering access comes at
program pointsP or Q, it will only affect the access toa.
Similarly, if it arrives atS or T , it will only affect the access
to c, while if it arrives atR, neither of the two accesses will
be affected. Hence, one interfering access can cause atmost
one miss in the program, and one of the two accesses is
guaranteed to remain a cache hit. Note that this example
can be easily expanded to contain more accesses of the form
m−m′−m, so that the second access tom would be a cache
hit. The standard shared cache analysis will still report each
such access to be a cache miss with just one interfering access,
while during actual execution, atmost one cache miss would
be caused due to interferences. Similarly, if the entire program
fragment is enclosed in a loop, then accesses in all iterations
will reported as Miss by the standard cache analysis. During
actual execution, the interfering access will come during one
iteration, causing atmost one cache miss.

Hence, it is clear that assuming all interferences occur at
all program points results in highly pessimistic analysis and
can blow up the WCET estimate. While it is true that the
interfering accesses can arrive at any program point during
actual execution, and thus no access can be safely classified
as Always Hit, we are not really interested in which accesses
are guaranteed to be hits. We are actually interested in the

maximum possible execution time, taking into account the
interfering accesses, which can obtained by estimating the
maximum number of misses caused by interferences. We have
just seen that interfering accesses arriving at different program
points can cause different number of cache misses, and the
damage caused depends only on the sequence of accesses in
the program being analyzed. If we can statically distributethe
interfering accesses across the program such that they cause
the maximum possible number of misses, then we can use the
resultant shared cache states to obtain a safe CHMC.

We propose to use Integer Linear Programming to solve
this optimization problem. ILP is already an integral part
of the WCET estimation process, as most WCET analyzers
use the IPET formulation of ILP [2] to determine the worst
case path in the program. ILP has also been used for cache
hit-miss analysis, by constructing the Cache Conflict Graph
(CCG) of programs ([15], [16]). However, because of scal-
ability issues and the success of the Abstract Interpretation
based approaches, most WCET analyzers employ AI-based
techniques for cache analysis.

Actual program execution will flow along some path in
the program, and hence, it would be optimal to distribute all
interfering accesses along a single program path. One way to
perform our analysis would be to take each possible program
path, distribute the interfering accesses optimally across the
path, compute its execution time, and then choose the path with
the maximum execution time. Alternatively, we can leave the
problem of finding the worst case path to the ILP. The IPET
formulation requires the worst case execution time of each
instruction in the program as a constant. In our formulation,
we relate the WCET of each instruction to the number of
interfering accesses before the instruction.

As an example, consider the program fragment of Figure
1a. We associate binary variablesxa andxc with the second ac-
cesses toa andc respectively. Integer variablesz1, z2, z3, z4, z5
are associated with the program points P,Q,R,S,T respectively,
and they store the number of interfering accesses occuring
at those program points. Now, for the second access toa
to become a miss, there needs to be atleast one interfering
access at P or Q, and for the second access toc to become a
miss, there needs to be atleast one interfering access at S or
T. Consider the following ILP:

Maximize xa + xc

subject to

xa ≤ z1 + z2 (1)
xc ≤ z4 + z5 (2)

z1 + z2 + z3 + z4 + z5 ≤ 1 (3)

The objective function maximizes the number of misses
caused due to interferences (the other accesses in the program
are already classified as misses and hence will not affected by
interferences). Equations 1 and 2 depict the access constraints,
which state the minimal requirements of interferences to
cause an access to be a miss. Equation 3 is the interference
budget constraint, which encodes the maximum number of
interferences available. Solving the above ILP will give the
maximum value of the objective function to be 1, with either
one ofz1, z2, z4, z5 assigned as 1.



TABLE I. N OTATION

Symbol Explanation

yi Integer variable storing the execution count of basic blockbi

yb
i Binary variable indicating whether basic blockbi is on the worst case path

xh
ij Integer variable storing the number of shared cache hits of instructionj

of basic blockbi

xm
ij Integer variable storing the number of shared cache misses of instructionj

of basic blockbi

xπ
ij Integer variable storing the number of shared cache misses of instructionj

of basic blockbi along pathπ

zij Integer variable storing the total number of interfering accesses
occuring just before instructionj of basic blockbi

wij Integer variable storing the execution count of edge between
basic blocksbi andbj

pπ
ij Eviction distance of instructionj of basic blockbi along pathπ

ci Execution time of basic blockbi not affected by interferences

Bs Number of interfering accesses mapped to cache sets

Bcb
s Number of interfering cache blocks mapped to sets

V. THE ILP FORMULATION

A. Notation

We now give a general description of our ILP for an
arbitrary program running on a multi-core architecture. Wean-
alyze programs running on each core separately. Letb1, . . . , bn
be the basic blocks of the program running on corec. Let
ai1, . . . , aili be the instructions in basic blockbi for all
i = 1, . . . , n, whose CAC is A or U at the shared cache
level. Basic blocki containsli such instructions. We ignore
accesses which are satisfied by the private caches, since they
will not be affected by the interferences from other cores. We
associate a constantci with basic blockbi, which is the total
execution time of instructions inbi which are not affected
by interferences. This includes accesses which are satisfied by
the private caches, non-memory-accessing instructions, etc. Let
cbij be the cache block in the shared cache accessed byaij .

Let A be the associativity of the shared cache. LetM be
the set of all cache blocks that can be stored in the shared
cache. Letcachestatesij : {1, . . . , A} → 2M be the abstract
shared cache state of sets as determined by the must analysis
(ignoring the interfering accesses), just before instruction j of
basic blocki. If m ∈ cachestatesij(h), thenh is theage of m
just beforeaij . If cbij ∈ cachestatesij(h), 1 ≤ h ≤ A, then the
instructionaij will be a guaranteed shared cache hit (without
interferences). Table I lists the variables and constants that will
be used in our ILP formulation.

B. Objective Function

Before specifying the objective function of our ILP formu-
lation for worst-case interference estimation, we briefly explain
the IPET formulation, which is used to find the worst case
path in a program. Lete1, . . . , en be the WCET of basic
blocks b1, . . . , bn. y1, . . . , yn are integer variables storing the
execution count of basic blocks, andwij stores the execution
count of the edge betweenbi and bj. The IPET formulation

is:

Maximize

n∑

i=1

eiyi, subject to

∀i = 1, . . . , n, yi =
∑

j∈pred(bi)

wji =
∑

k∈succ(bi)

wik

Loop Constraints ...

pred(b) and succ(b) give the predecessors and successors of
basic blockb respectively. The objective is to find the execution
counts of basic blocks which maximizes the execution time
of the program. The execution counts are constrained by the
program structure, which basically places the restrictionthat
the number of times execution enters a basic block must be
the same as the number of times execution leaves the basic
block, and this will also be the execution count of the basic
block. The variablewij stores the number of times execution
left basic blocki and entered basic blockj.

The loop constraints give an upper bound on the header
basic block of each loop in the program, and are typically
supplied by the programmer. The WCET of basic blocks in
the above formulation are assumed to be constants and are
obtained using micro-architecture analysis. After solving the
ILP, the basic blocks whose execution counts are non-zero are
considered to be on the worst-case path of the program, while
the maximum value of the objective function will be the WCET
of the program.

In our formulation, the WCET of basic blocks are not
constants. The execution time of an instruction which accesses
the shared cache depends on the interferences arriving from
other cores. Our objective is to distribute the interferences
across the program, such that they cause the maximum increase
in the execution time of shared cache-accessing instructions,
and all interferences occur on the worst-case path. Consider
the following ILP:

Maximize

n∑

i=1

(ciyi +

li∑

j=1

(ehxhij + emxmij ))

subject to

∀i = 1, . . . , n, yi =
∑

j∈pred(bi)

wji =
∑

k∈succ(bi)

wik

∀i = 1, . . . , n, ∀j = 1, . . . , li, xhij + xmij = yi

Loop Constraints ...

Access Constraints ...

Interference Budget Constraints ...

eh andem are the execution time of an instruction, in the
event of a shared cache hit and shared cache miss respectively.
In the objective function, we have separated out the constant
portion of the execution time of a basic block (i.eciyi), that
is not affected by interferences. For each instruction accessing
the shared cache, we have associated two variables (xh

ij and
xm
ij ), which will store the hit/miss counts of the instruction in

the shared cache. These variables will depend on the number
of interferences affecting the instruction.

Then, we have the constraints on the execution count of
basic blocks and the loop constraints, which are the same as



those in the IPET formulation. Generally,em > eh, hence,
in the absence of any other constraints, to maximize the
objective function, every instruction accessing the shared cache
will be assumed to incur a miss. The Access constraints will
place an upper bound on the number of shared cache misses
(i.e. xm

ij ) experienced by an instruction, which will depend
on the number of interferences affecting the instruction. The
Interference Budget constraints will place an upper bound
on the number of interfering accesses for each cache set.
The objective function will ensure that the interferences are
distributed in such a manner that they cause the maximum
number of shared cache misses. In the next few subsections,
we give a detailed explanation of the access and interference
budget constraints. First, we will define the concept of a hitting
path of an instruction, which will allow us to link the number
of interferences with the hit/miss status of an instruction.

C. Hitting Paths

We define a program path to be a sequence of instructions
of the program, which follow the program order. Given an
instruction a which accesses the cache blockm mapped to
cache sets, a pathπ in the program is called ahitting path
of a if

1) π begins with instructiona′ which also accessesm,
2) π ends with instructiona and has no other accesses

to m besidesa anda′,
3) the number of distinct cache blocks (other thanm)

mapped tos and accessed by instructions inπ is less
than the cache associativity (A).

Note thata anda′ could be the same instruction. Intuitively,
if the actual execution of the program reaches instructiona by
flowing along a hitting path ofa, then the cache blockm
(accessed bya) is guaranteed to be in the cache, and hence
the access bya will a cache hit. This is because after the
instructiona′, the cache blockm will be present in the cache
and will be the most recently accessed block. Now, at leastA
distinct cache blocks (mapped to sets) need to be brought into
the cache to evictm. But since the number of distinct cache
blocks accessed aftera′ is strictly less thanA, m is guaranteed
to escape eviction, and hence instructiona will be a cache hit.

Conversely, if the instructiona experiences a cache hit,
then the execution must have passed through a hitting path of
a. Again, sincea is a cache hit,m must be in the cache, just
before the execution ofa. Consider the last instruction in the
execution flow, that broughtm to the cache. The path starting
from this instruction and ending ata would be a hitting path.

If the number of distinct cache blocks accessed on pathπ
(excludingm) is h, then the eviction distance of instructiona
along π is defined to beA − h. The eviction distance gives
minimum number of extra cache blocks required to be accessed
on π to cause instructiona to be a cache miss. Thus, at least
A − h interfering accesses, which are mapped to sets and
coming from other cores, must arrive during the execution of
the hitting pathπ to cause instructiona to be a cache miss.

In the example in Figure 1, the hitting path of the second
access toa is a−b−a, and its eviction distance is 1. Similarly,
the hitting path of the second access toc is c− d− c, and its
eviction distance is also 1. In general, consider an instruction

a and its hitting pathπ = a′ − a1 − . . . − ak − a, where
a and a′ access cache blockm (which is mapped to cache
sets). a1, . . . , ak are the intervening instructions on the path,
which access cache blocks mapped to sets. Since π is a
hitting path, the number of distinct cache blocks accessed
by the intervening instructions will be less than the cache
associativity. Letpπa be the eviction distance. Letxa be a
binary variable, and letza1

, . . . , zak
be integer variables storing

the number of interfering accesses (mapped tos) occuring
just before instructionsa1, . . . , ak respectively. Consider the
following equation :

pπa xa ≤ za1 + za2 + . . .+ zak + za

First, note thatza1
, . . . , zak

, za capture all the interferences
which may occur on the hitting pathπ. If an interfering access
occurs onπ, it will happen aftera′ and beforea, and thus
before any of the intervening accesses. Thus, the r.h.s. of
the above equation captures the total number of interfering
accesses that may occur onπ. If xa is 1 in the above equation,
then the total number of interfering accesses have become
greater than or equal to the eviction distance. This will result in
the accessa becoming a cache miss. Thus we have encoded an
access constraintwhich relates the integer variables storing
the number of interferences with the binary variable which
indicates a cache hit/miss due to interferences.

Interferences occuring before instructiona′ will not have
any effect on the cache hit-miss status of instructiona, and
hence they can be ignored in the above equation. Note that
interfering accesses mapped to sets will not affect the contents
of other cache sets. In the above formulation, we have assumed
that interfering accesses arrive just before instructionswhich
access the sets. This is safe because even if an interfering
access arrives earlier, its effect will only be seen on the
instructions accessing the sets.

Also, note that for shared caches, the hitting path of
any instruction should begin with an instruction which is
guaranteed to access the shared cache. In other words, the CAC
of the starting instruction of a hitting path must be Always (A).
The intervening instructions on the hitting path (including the
instructiona) can have a CAC of Always or Uncertain.

D. Access Constraints

If an instruction is classified as AH in the shared cache
(without assuming interferences), then for all paths from the
start of the program to the instruction, it will experience a
cache hit. In other words, every path from the start of the
program to the instruction should contain a hitting path of the
instruction. For the instruction to incur a cache miss due to
interferences, the number of interfering accesses should exceed
the eviction distance on atleast one hitting path.

Let instructionj of basic blocki (denoted byaij ) be a
cache hit in the shared cache, and letπ1, . . . , πm be the hitting
paths of this instruction. For the moment, assume thataij is
not inside any loop. Let the hitting pathπl = ai′j′ − ai1j1 −
. . . − aikjk − aij . Let pπl

ij be the eviction distance along this
path. Then, the access constraints for pathπl are:

pπl

ij x
πl

ij ≤ zi1j1 + . . .+ zikjk + zij (4)

xπl

ij ≤ yi′ (5)



xπl

ij stores the number of shared cache misses along the path
πl. Equation 4 gives the relation betweenxπl

ij and the total
number of interfering accesses onπl, as we saw in the last
subsection. Equation 5 ensures that the instructionai′j′ occurs
on the worst case path. Ifai′j′ is not on the worst case path,
the hitting pathπl itself is not on the worst case path, and
hence no shared cache misses can be caused along the path.
Remember that we also want to distribute the interferences
only on the worst case path, and hence, we have to ensure
that interferences not on the worst case path do not contribute
in converting a cache hit to a cache miss. Hence, we modify
the Equation 4 as follows:

p
πl

ij x
πl

ij ≤ ybi1zi1j1 + . . .+ ybikzikjk + ybi zij (6)

ybk is a binary variable which is 1 only if basic blockb is on
the worst case path. We add the constraintsybk ≤ yk, ∀k =
1, . . . , n to the main ILP. If a basic block is not on the worst
case path, then all interferences occuring in the basic block will
not have any effect on cache behaviour of instructions. So far,
all our equations were linear, but the above equation involves
multiplication of two variables. Multiplication of a binary and
integer variable can be easily handled by introducing a new
integer variable. Lety be a binary variable,z be an integer
variable, andzmin ≤ z ≤ zmax. Thenyz can be replaced by
integer variablev with the following constraint:

zmin ≤ v ≤ yzmax (7)

We perform the above transformation for all such multipli-
cations in Equation 5, withzmin = 0, zmax = A. For each
hitting pathπl, we thus obtain an upper bound onxπl

ij . The
accessaij would become a cache miss ifxπl

ij is non-zero on
atleast one hitting path. In fact,xπl

ij will be non-zero for atmost
one hitting path, since atmost one hitting path can be on the
worst case path, and we have ensured that all interferences are
to be distributed on the worst case path only. The following
constraint imposes the upper bound onxm

ij :

xmij ≤
m∑

l=1

xπl

ij (8)

The above constraints are added for instructions which are
classified as AH without considering interferences. For instruc-
tion aij which accesses the shared cache and is classified as
AM or U, we add the following constraint:

xmij = yi (9)

E. Handling Loops

If a instruction inside a loop is classified as AH, then
in every iteration of the loop, the instruction experiencesa
cache hit. By our definition of hitting path, this means that
every iteration of the loop passes through a hitting path of the
instruction. The hitting path for the first iteration of the loop
may begin outside the loop, while the hitting path for the rest
of the iterations will begin within the loop itself.

We have seen that interferences cause an instruction to
experience a cache miss only if the number of interferences
exceed the eviction distance of a hitting path of the instruction.
For an instruction inside a loop to experience cache miss
in all iterations, the number of interferences should exceed

the eviction distance of a hitting path in all iterations of the
loop. This is because the start instruction of a hitting pathis
guaranteed to bring the cache block to the shared cache and
to make it the most recently accessed block. Hence, in every
iteration, the age of the accessed cache block will be reset to 1
as the execution enters the hitting path, and so every iteration
requires interfering accesses to cause a cache miss. In other
words, if pπa is the eviction distance of instructiona along
pathπ, and ifπ is inside a loop withT iterations, atleastTpπa
interferences are required to arrive on the pathπ to causea to
be a cache miss on all iterations.

Equivalently, if a total ofZ interferences are supposed
to arrive on the pathπ, which is inside a loop, then these
Z interferences will be distributed across iterations such that
exactlypπa interferences will arrive each iteration, so that the
number of cache misses incurred bya due to interferences
will be ⌊Z/pπa⌋. This is the maximal number of misses thatZ
interferences onπ can cause for instructiona.

Let us now look at the access constraints defined in the
previous subsection from the perspective of instructions inside
loops. If instructionj of basic blocki is not inside a loop, then
xm
ij will be a binary variable, which will be 1 if the instruction

experiences a cache miss due to interferences on the worst case
path. This is ensured by the access constraints added for each
hitting path. On the other hand, if the instruction is inside
a loop, thenxπl

ij will give the maximual number of misses
that can be caused by the assigned interferences along the
hitting pathπl. This is because according to Equation 6,xπl

ij =

⌊(ybi1zi1j1 + . . .+ ybikzikjk + ybi zij)/p
πl

ij ⌋ = ⌊Z/pπl

ij ⌋, whereZ
would be the total number of interferences on the hitting path.
We just argued earlier that this is the maximum number of
misses thatZ interferences along a hitting path can cause for
an instruction inside a loop.

If an instruction is not inside any loop, then atmost one
hitting path of the instruction will be on the worst case
path. However, consider an instruction inside any arbitrarily
nested loop. For each parent loop of the instruction, a hitting
path originating from the parent loop could be on the worst
case path. Hence,xπl

ij may be non-zero for multiple hitting
paths πl. Equation 8 ensures that the contribution of each
hitting path will be considered while finding the total number
of misses caused due to interferences. Also, the maximum
number of misses caused by a hitting path would be upper
bounded by the number of times the first instruction of the
hitting path is executed (i.e. the number of times the hitting
path itself is executed). This is ensured by Equation 5. Note
that for a program point inside a loop,zmin = 0, zmax =
(Number of iterations)×A.

We note that this method of counting interferences occuring
inside loops introduces slight imprecision in the analysis. For
program points inside a loop, we only keep count of the total
number of interferences arriving at the program point, but
the distribution of interferences across iterations is notpart
of the ILP. We assume that if the interferences cause misses
to some instruction, then they will arrive optimally w.r.t.to
that instruction, so that the maximum number of misses are
caused. However, the optimal distribution may be differentfor
different instructions.

For example, suppose a total of 6 interferences occur at



some program point, which is on the hitting paths of two
instructionsa1 and a2. Suppose the eviction distance ofa1
is 2, while the eviction distance ofa2 is 3. Both a1 and a2
are inside the same loop. Now, the optimal distribution for
a1 would be 2 interference per iteration, which will result in
3 misses fora1. The optimal distribution fora2 would be 3
interference per iteration, which will result in 2 misses for a2.
Hence, our ILP will count a total of 5 misses fora1 anda2,
but this will never occur during actual execution. The feasible
optimal distribution is 3 interferences for 2 iterations, resulting
in a total for 4 misses (2 fora1 anda2).

F. Interference Budget Constraints

Since we know the tasks running on all the cores, we can
determine the number of interfering accesses that are generated
by each core. Each instruction in the program whose CAC is
Always or Uncertain at the shared cache level is considered
to make an interfering access to the shared cache. As argued
earlier, the interferences themselves do not have any affect on
the CAC of instructions at the shared cache level. For core
c, Let Bs be the total number of interfering accesses mapped
to cache sets. Bs would be the sum of interfering accesses
from every other core apart fromc. Let Bcb

s be the number of
distinct interfering cache blocks mapped to sets. Let CCBs

be the set of interfering cache blocks mapped to sets.

Let INSTs be the set of instructions in the program whose
CAC is A or U, and which access cache blocks mapped to set
s. For every cache sets, the interference budget constraint
would be: ∑

aij∈INSTs

ybi zij ≤ Bs (10)

The above constraint is added for each cache sets. Again,
the above equation involves the multiplication of a binary
and integer variable, which we handle in the same way as
demonstrated earlier. Also, ifA interfering accesses arrive at
a program point, then the entire shared cache will be emptied
(from the perspective of corec). Hence, a valid upper bound
for the number of interfering accesses at a program point isA
multiplied by the number of times the program point is reached
on the worst case path. The following constraint is added for
all i, j:

zij ≤ Ayi (11)

In general, the number of interfering accesses,Bs could be
much larger than the number of interfering cache blocks,Bcb

s .
While distributing interferences across the entire program, we
have to useBs, but while distributing accesses on a single
hitting path, we can useBcb

s . An instruction will suffer a cache
miss due to interferences on a hitting path only if both the
number of interfering accesses and the number of interfering
cache blocks exceeds the eviction distance of the hitting path.
Hence, we only add the access constraint for the hitting path
πl of an instructionaij , if Bcb

s is greater than or equal to the
eviction distancepπl

ij . If this happens for all hitting paths of the
instruction, no access constraint will be added for any hitting
path, and instead we will add the constraintxh

ij = yi.

G. Handling Code/Data sharing

So far, we have assumed that interfering cache blocks will
be different from the cache blocks accessed by corec, so that

all interfering accesses will increase the age of all cache blocks
in the shared cache. However, if programs running on different
cores use shared libraries, it is possible that same cache blocks
may be accessed by multiple cores. A similar scenerio would
occur for data caches, if programs on different cores share data
variables.

We can simply ignore the sharing of code/data during our
analysis, since this only affects the precision of the analysis. In
the presence of sharing, interfering cache blocks may already
be present in the cache, in which case they will not increase
the ages of older cache blocks. Consider instructionaij , which
accesses cache blockm mapped to cache sets, and let π
be a hitting path of the instruction. LetMπ be the set of
cache blocks mapped to sets, and accessed by the instructions
in path π. Interfering accesses which access cache blocks in
CCBs ∩Mπ will not contribute in increasing the age ofm,
since these cache blocks will also be accessed by instructions
in the hitting path. Hence, we calculate the setCCBs rMπ,
and check if the number of cache blocks in this set is greater
than or equal to the eviction distance of the hitting path. If
yes, then we add the access constraint for the hitting path.
Again, if this happens for all hitting paths of instructionaij ,
then we conclude that this access can never cause a miss due
to interferences, and hence add the constraintxh

ij = yi.

H. Proof of Safety

Given an interference Budget{Bs}s∈S for each cache set
and programP running on corec, we would like to show
that the WCET obtained using our ILP would be greater
than the execution time of any actual execution instance of
P in the presence of interferences from the budget. The
objective function of our ILP finds a program path such that
the execution time of the program along the selected path
would be maximum after assigning interferences on the path
which generate the most number of misses. The ILP tries to
maximize the execution time subject to the access constraints,
and the access constraints give an upper bound on the number
of allowed shared cache misses due to interferences. If every
feasible shared cache miss due to interferences is also allowed
by the access constraints, this would mean that the ILP will
maximize execution time taking into account every feasible
shared cache miss. Hence, we will show that if an arrival
of interferences can cause a shared cache miss during actual
execution, then the same assignment of interferences in our
ILP will also result in a shared cache miss.

An instruction can suffer a feasible shared cache miss
only if it experiences a shared cache hit without interferences.
Hence, the CHMC of the instruction without interferences
should be U or AH. First, consider an instruction whose
CHMC is U and which experiences a shared cache miss due
to interferences during actual execution. Such instructions are
already considered as shared cache misses in our ILP (Equation
9).

Now, consider an instructiona whose CHMC is AH.
Supposea experiences a shared cache miss due to interferences
along the hitting pathπ during actual execution. Assume thatπ
begins at instructiona′. Suppose the interferences arrive before
instructionsa1, . . . , ak on the path. If the CAC of instruction
a′ is Always (A), then there will be an access constraint forπ



in our ILP. The CAC of instructionsa1, . . . , ak must be either
Always or Uncertain, so the interference variablesza1

, . . . , zak

will be part of the access constraint. If the sum of interferences
exceeds the eviction distance during actual execution, then
the same assignment of interferences toza1

, . . . , zak
will also

exceed the eviction distance in the access constraint. Thus,
the shared cache miss will be allowed and will be taken into
consideration by the ILP.

If the CAC of a′ is Uncertain, then there will be hitting
pathπ′ such thatπ is a sub-path ofπ′. This is becausea is
classified as AH, and hence there must be some instructiona′′

beforea which accesses the cache block accessed bya and has
a CAC of Always. The hitting path starting froma′′ (call it π′)
will contain the accessesa1, . . . , ak. Hence,za1

, . . . , zak
will

be part of the access constraint forπ′, which will allow the
shared cache miss for the same assignment of interferences.

VI. EXPERIMENTAL RESULTS

We have implemented our technique of optimal interfer-
ence placement on top of the Chronos [17] WCET analyzer.
Chronos is an open-source WCET analyzer which supports
precise instruction and data cache analysis for a 2-level cache
hierarchy using the standard Abstract Interpretation-based ap-
proach. We extended Chronos by adding support for multi-
core shared instruction cache analysis. We implemented two
techniques for performing shared cache analysis : (1) Hardyet
al.’s [1] approach, which assumes that all interfering accesses
to the shared cache occur at all program points and (2) Our
approach, which solves an ILP to obtain the optimal placement
of interferences, causing maximum increase in execution time.
As stated earlier, most of the current approaches for shared
cache analysis assume all interferences at all program points.
Hence, we compare the precision of WCET obtained using our
approach and Hardy et al.’s approach.

To generate the ILP, we have to determine the access
constraints for each instruction which is classified as AH. This
requires finding all the hitting paths of such an instruction. To
determine the hitting paths, we use a simple breadth first search
(BFS) of the program CFG in the reverse direction starting
from the instruction. We continue the search until we find
another instruction which accesses the same cache block and
has a CAC of Always. We keep track of the instructions which
access the same cache set on each such path returned by the
BFS. If an instruction is inside a loop, then during the BFS,
we only allow one traversal of the back edge of the loop and
its parent loops.

For the experiment, we assume a 2-core architecture with
a shared L2 instruction cache. Our cache architecture is: 1-
KB 4-way L1 cache with block size 32 bytes, and a 4-KB
8-way L2 cache with block size 32 bytes. We assume that L1
hit takes 1 cycle, L2 Hit takes 6 cycles, and memory access
takes 30 cycles. We use 27 benchmarks from the Mälardalen
WCET benchmark suite [18]. The L2 cache performance of
the benchmarks is crucial in determining the impact of shared
cache analysis on WCET. Clearly, more L2 accesses and L2
hits would mean more reliance on the precision of shared cache
classification. Table II gives the percentage of L2 accesses(L2
accesses/Total accesses) and percentage of L2 Hits (L2 hits/L2
accesses) for all benchmarks for the above cache architecture,

TABLE II. L2 PERFORMANCE OFBENCHMARKS WITH NO

INTERFERENCE

Benchmark % of L2 accesses % of L2 hits Benchmark % of L2 accesses % of L2 hits

adpcm 10.02 99.78 insertsort 0.00 8.33

bs 8.91 0.00 jfdctint 14.74 99.94

bsort100 0.01 98.94 lms 1.47 74.78

cnt 0.01 7.14 matmult 0.01 0.00

cover 5.72 87.77 minver 28.25 0.13

crc 0.34 2.96 ndes 8.89 18.36

duff 2.41 4.55 ns 0.25 6.67

edn 0.00 0.00 nsichneu 26.13 0.04

expint 16.10 97.89 prime 6.37 98.17

fdct 2.65 1.30 qsort-exam 40.20 0.00

fft 2.87 2.12 qurt 29.75 14.99

fir 0.07 6.67 sqrt 6.57 58.33

st 0.06 21.92 statemate 34.05 0.66

ud 6.31 1.29

TABLE III. C OMPARISON OFWCET OBTAINED USING OUR APPROACH
AND HARDY ET AL .’ S APPROACH

Benchmark WCET WCET WCET % Abs. % Rel.
(No-Interf) (All-Interf) (Opt-Interf) improv. improv.

adpcm 255153 599097 257082 57.08 99.44

expint 6543 20847 10093 52.49 75.18

lms 647803 795115 650659 18.16 98.06

cover 3172 6100 3724 38.95 81.15

prime 31160 65912 31904 51.06 97.81

bsort100 7360848 7385448 7361136 0.38 98.82

fft 62827 63331 63235 0.15 19.04

ndes 138677 159965 147197 8 60

qurt 13677 15501 14445 6.8 57.9

sqrt 1037 1541 1229 20.24 61.90

jfdctint 1721591 5221751 4467863 14.44 21.53
(25%)

assuming no interferences to the shared cache. These results
are obtained using the normal abstract interpretation based
cache analysis of the benchmarks. Hence, L2 hit percentage
considers only guaranteed L2 hits, while L2 access percentage
considers all possible L2 acesses.

To compute WCET of a benchmark on a 2-core architec-
ture, we assume that the benchmark runs on one core and
the worst-case adversary (i.e. the benchmark which causes
maximum number of shared cache misses due to interferences)
runs on the other core. Table III shows the WCET assuming
no interference (Column 1), WCET assuming all interfer-
ences at all program points (Column 2), WCET assuming
optimal interference placement (Column 3). Column 4 shows
the absolute precision improvement of OPT-INTERF over
ALL-INTERF (computed asWCETALL−WCETOPT

WCETALL
). Column 5

shows the relative precision improvement, which is defined
as WCETALL−WCETOPT

WCETALL−WCETNO
. It represents the precision improvement

of OPT-INTERF over ALL-INTERF as a percentage of the
maximum possible improvement. In other words, it quantifies
how closer OPT-INTERF is to the interference-free WCET.
The relative precision improvement is useful for benchmarks
whose absolute precision improvement is low because of
smaller number of L2 accesses.



TABLE IV. R ESULTS OBTAINED BY HALVING THE L2 CACHE

Benchmark % of L2 hits % Abs. improv. % Rel. improv.

adpcm 49.89 24.34 98.92

expint 13.92 10.01 87.88

prime 48.75 25.74 98.33

ndes 15.32 1.45 13.10

jfdctint (25%) 85.96 13.54 22.76

The results in Table III are shown for the 10 benchmarks
for which we found substantial precision improvement because
of optimal interference placement. For the rest of the bench-
marks, the WCET obtained using OPT-INTERF and ALL-
INTERF were almost the same. We note that in those cases,
WCET obtained assuming no interference was also the same
as WCET obtained using ALL-INTERF. Hence, the reason for
no precision improvement was because of the L2 performance
of those benchmarks.

The benchmarks in Table III are exactly those benchmarks
which exhibit substantial number of L2 accesses and L2
hits (as shown in Table II). The massive absolute precision
improvement in benchmarks such asadpcm, expint, prime
corresponds to the almost perfect L2 behaviour of these
benchmarks. Similarly,bsort100 and fft show very low
absolute improvement, but these benchmarks hardly access
the shared L2 cache. Moreover, all benchmarks (exceptfft)
show very high relative precision improvement, which means
OPT-INTERF is able to achieve a high percentage of the
total improvement possible. For almost all the benchmarks,
the worst case adversary was eithernsichneu or statemate,
as these benchmarks perform a large number of L2 accesses,
and also access a large number of distinct cache blocks in L2
(becuase of which their own L2 hit percentage is very low).

The average absolute precision improvement over the 11
benchmarks is 24.32 %, while the average relative precision
improvement in 70.07%. Exceptjfdctint, the analysis time
(including time for solving the ILP) for all the benchmarks
was reasonably small (~few seconds). However, the ILP solver
was not able to solve the ILP forjfdctint in any reasonable
duration of time.jfdctint makes approximately 150K L2
accesses, most of which are inside loops. To reduce the
analysis time, we picked 4 cache sets (out of 16) to perform
optimal interference placement, and assumed all interferences
at all program points for rest of the cache sets. With such a
selective strategy for approximately 25% of the L2 accesses,
the ILP solver was able to solve the ILP in a reasonable amount
of time (~30 minutes). The absolute precision improvement of
the WCET so obtained was 14.44 %. However, the relative
precision improvement is low, which suggests that there is
room for more precision by performing optimal interference
placement for more accesses.

Changing L1, L2 cache sizes: It can be seen that
the precision improvement obtained using our approach is
dependent on the L2 performance of the program. Since some
of the benchmarks showed almost perfect L2 behaviour, we
decided to decrease the L2 cache size and then measure the
precision improvement. Keeping the same L1 cache size, we
changed L2 to be a 2-KB 8-way cache with block size 32 bytes
(half of the original L2 size). As a result, the L2 hit percentage

TABLE V. RESULTS OBTAINED BY HALVING THE L1 CACHE

Benchmark % of L2 accesses % of L2 hits % Abs. % Rel.
improv. improv.

fdct (50%) 22.27 88.34 17.39 27.43

fft 3.24 13.23 4.37 82.43

fir 2.27 97.33 30.25 93.53

ud 10.55 17.88 1.44 12.90

insertsort 0.06 99.64 1.37 99.28

of 6 of the 11 benchmarks in Table III became 0. Hence,
these benchmarks did not show any precision improvement
using our approach. The L2 hit percentage of the rest of the
benchmarks, along with the precision improvement in their
WCET, are shown in Table IV.

The results indicate that as the L2 hit percentage de-
creases, the absolute improvement in precision of WCET also
decreases, which is as expected. The relative improvement
still remains quite high, which indicates that the increasein
WCET obtained using our approach, due to the smaller L2
cache, is proportional to the increase in WCET assuming no
interferences. In other words, our approach is still able to
achieve a high percentage of the total precision improvement
possible. The average absolute precision improvement overthe
5 benchmarks is 15.02 %. Again, for thejfdctint benchmark,
we had to limit optimal interference placement for 2 of the 8
cache sets.

A number of benchmarks in Table II have low L2 access
percentage for the original cache configuration, so we decided
to decrease the L1 cache size, and see whether our approach
is able to provide better precision for more benchmarks. We
changed L1 to be a 0.5-KB 4-way cache with block size 32
bytes (half of the original L1 size), and restored L2 to its
original size. As a result, we found precision improvement
in the WCET of 5 more benchmarks (apart from those in
Table III). The precision improvement along with the L2
performance of these benchmarks is listed in Table V.

Again, the precision improvement is correlated with the
increased L2 access (and hit) percentage of the benchmarks,
while the benchmarks which do not show any precision im-
provement (not shown in the table) continued to have very
low L2 access percentage for the new cache configuration
as well. Note that the benchmarks which showed precision
improvement with the original cache configuration continued
to do so with new cache configuration. For the benchmark
fdct, we had to limit optimal interference placement for 8 of
the 16 cache sets.

Scalability: The scalability of our approach depends on the
hardness of the generated ILP, which in turn depends on the
number of L2 hits to be analyzed, the number of hitting paths,
the number of interfering accesses to be distributed, etc. In
particular, we found during our experiments that the number
of distinct L2 hits in the program to be analyzed significantly
effected the complexity of the ILP (bothjfdctint and fdct
had large number of distinct L2 cache hits). There is a tradeoff
between scalability and precision of the WCET, and to achieve
scalability we propose the following strategies to simplify the
ILP problem :



• Cache Set Selection : This is a selective optimization
strategy, where we perform optimal interference place-
ment for interferences belonging to few selected cache
sets. The interferences belonging to the remaining
cache sets will be assumed to occur at all program
points. This strategy not only reduces the number of
interferences to be distributed, but also reduces the
number of L2 hits to be analyzed, as L2 hits access-
ing the un-optimized cache sets will be classified as
hit/miss before the ILP formulation. We have used
this strategy in our experiments for bothjfdctint and
fdct, resulting in improved precision of the WCET
which is obtained in a reasonable duration of time.

• Interference Selection : If an interfering cache block
is accessed large number of times (by the other cores),
then it can be assumed that the interfering access
to the cache block occurs at all program point. This
will reduce the number of interfering accesses to be
distributed.

• Program Area Selection : In this approach, optimal
interference placement is carried out over a selected
program segment. It is assumed that all interferences
occur at all program points for the rest of the pro-
gram. For example, loops running for large number
of iterations and containing L2 hits would be an ideal
candidate for optimal interference placement, as the
number of distinct L2 hits would be small, and the
interference budget may limit the L2 misses to a
portion of the iterations. This strategy could be useful
for large programs containing many loops.

Different approaches may work for different types of
programs, and the selection also depends of the type of the
adversary programs (i.e. the programs running on other cores).
For each approach, there are choices which may provide better
precision in smaller amount of analysis time. For example,
in the cache set selection approach, there is a choice of
which cache sets should be selected for optimal interference
placement. Heuristics such as higher number of L2 hits,
smaller number of distinct L2 hits, etc. can be used to select
appropriate cache sets.

We note that in our experiments, while using the cache set
selection strategy, we arranged the cache sets in the decreasing
order of L2 hits mapped to the cache set, and then picked the
first 4 (or 8) cache sets for optimal interference placement.
We found that this approach provided better precision than
an ad-hoc selection, but there is scope for future work in
experimenting with different heuristics to obtain the best
possible precision in a reasonable amount of time. Similarly,
in the program area selection approach, heuristics can be used
to identify program segments which will benefit from optimal
interference placement.

VII. C ONCLUSION AND FUTURE WORK

Estimating the WCET of programs running on multi-core
architectures is an important step towards using multi-cores in
real-time systems. Current approaches for WCET estimation
are highly imprecise, and most of the imprecision stems from
the shared cache analysis, which assumes that all interferences
from other cores can arrive at all program points. In our

work, we propose a new approach for shared cache analysis,
where we assume that interferences from other cores will
arrive at the worst possible program points, causing maximum
number of shared cache misses. We build an ILP to locate
the worst possible program points and to optimally distribute
the interferences across them. To build the ILP, we find the
hitting paths for each shared cache hit, which are paths in the
program where the arriving interferences can cause damage.
We specify the minimum number of interferences required for
a shared cache miss, and then leave the optimal distributionof
interferences to the ILP.

We have implemented our approach in Chronos, an open-
source WCET analyzer, and compared the WCETs obtained
using our approach and earlier approaches for a large number
of benchmarks. For all benchmarks which make sufficient
number of shared cache accesses, our approach is significantly
more precise than earlier approaches. We also test our approach
for different cache configurations, and show that it continues
to give better precision. We also discuss the scalability issues
related to our approach, and give a number of techniques to
decrease the analysis time at the cost of lower precision.

The nature of the problem of optimal interference place-
ment suggests that there could be algorithmic approaches to
solve the problem. Such approaches may scale better over
larger programs. Also, our approach has the property that
smaller number of interferences will lead to lower WCET esti-
mates. Hence, there is scope for new scheduling algorithms for
real-time systems which could minimize the cache interference
between tasks scheduled on different cores. This could also
lead to a relaxed schedulability test, allowing more task-sets
to be scheduled.

REFERENCES

[1] Damien Hardy, Thomas Piquet, and Isabelle Puaut. Using bypass
to tighten WCET estimates for multi-core processors with shared
instruction caches. InRTSS, 2009.

[2] Yan-Tsun Steven Lee and Sharad Malik. Performance analysis of
embedded software using implicit path enumeration. InDAC, 1995.

[3] Jun Yan and Wei Zhang. WCET analysis for multi-core processors with
shared l2 instruction caches. InRTAS, 2008.

[4] Jun Yan and Wei Zhang. Accurately estimating worst-caseexecution
time for multi-core processors with shared direct-mapped instruction
caches. InRTCSA, 2009.

[5] Yan Li, Vivy Suhendra, Yun Liang, Tulika Mitra, and AbhikRoychoud-
hury. Timing analysis of concurrent programs running on shared cache
multi-cores. InRTSS, 2009.

[6] Sudipta Chattopadhyay, Abhik Roychoudhury, and TulikaMitra. Mod-
eling shared cache and bus in multi-cores for timing analysis. In
SCOPES, 2010.

[7] Sudipta Chattopadhyay, Chong Lee Kee, Abhik Roychoudhury, Timon
Kelter, Marwedel Peter, and Falk Heiko. A unified WCET analysis
framework for multi-core platforms. InRTAS, 2012.

[8] Sudipta Chattopadhyay and Abhik Roychoudhury. Scalable and precise
refinement of cache timing analysis via model checking. InRTSS, 2011.

[9] Vivy Suhendra and Tulika Mitra. Exploring locking and partitioning
for predictable shared caches on multi-cores. InDAC, 2008.

[10] Marco Paolieri, Eduardo Quiñones, Franciso J. Cazorla, Guillem Bernat,
and Mateo Valero. Hardware support for WCET analysis of hardreal-
time multicore systems. InISCA, 2009.

[11] Man-ki Yoon, Jung-Eun Kim, and Sha Lui. Optimizing tunable
WCET with shared resource allocation and arbitration in hard real-time
multicore systems. InRTSS, 2011.



[12] Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James
H. Anderson. Making shared caches more predictable on multicore
platforms. InECRTS, 2013.

[13] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-awarescheduling
and analysis for multicores. InEMSOFT, 2012.

[14] Damien Hardy and Isabelle Puaut. WCET analysis of multi-level non-
inclusive set-associative instruction caches. InRTSS, 2008.

[15] Yan-Tsun Steven Lee, Sharad Malik, and Andrew Wolfe. Efficient
microarchitecture modeling and path analysis for real-time software.
In RTSS, 1995.

[16] Yan-Tsun Steven Lee, Sharad Malik, and Andrew Wolfe. Cache
modeling for real-time software: Beyond direct mapped instruction
caches. InRTSS, 1996.

[17] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudury.
Chronos: A timing analyzer for embedded software.Science of
Computer Programming, 69(1-3):56–67, 2007. http://www.comp.nus.
edu.sg/∼rpembed/chronos.

[18] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The
Mälardalen WCET benchmarks – past, present and future. pages 137–
147, Brussels, Belgium, July 2010. OCG.


