
Asynchrony-Aware Static Analysis of Android
Applications

Ashish Mishra
Computer Science and Automation,
Indian Institute of Science, India.

ashishmishra@csa.iisc.ernet.in

Aditya Kanade
Computer Science and Automation,
Indian Institute of Science, India.

kanade@csa.iisc.ernet.in

Y. N. Srikant
Computer Science and Automation,
Indian Institute of Science, India.

srikant@csa.iisc.ernet.in

Abstract—Software applications developed for the Android
platform are very popular. Due to this, static analysis of these
applications has received a lot of attention recently. An Android
application is essentially an asynchronous, event-driven program.
The Android framework manages the state of the application
by invoking callbacks, called lifecycle callbacks, in pre-defined
orders. Unfortunately, the existing static analysis techniques
treat the callbacks synchronously. Additionally, they do not
model all possible orderings of lifecycle callbacks. These may
result in unsound analysis results. In this work, we present a
precise representation of control flow of Android applications
called Android inter-component control flow graph (AICCFG).
In this representation, the asynchronous nature of the callbacks
is modeled accurately. Further, all interleavings of callbacks of
different components of an Android application are modeled
in AICCFG. We use this representation to design a typestate
analysis of Android applications. Android applications use a
rich set of resources such as camera and media player whose
safe usage is governed by some state machines. Using the
typestate analysis, we can verify whether an application uses
a resource safely or not. We have implemented the construction
of AICCFG and the typestate analysis in the Soot framework.
We have also implemented a variant of typestate analysis which
uses the unsound control flow model used commonly in the
literature. To compare our AICCFG based analysis with this, we
present a benchmark of Android applications called AsyncBench.
It comprises applications that use various resources in both
safe and unsafe manner. The experiments over this benchmark
demonstrate the benefits of our more precise control flow model
and the typestate analysis.

I. INTRODUCTION

Android is the heaviest used and rapidly growing mobile
system with more than 2 million paid and free applications
on Google’s Play store currently1. Many of these applications
are rigged with benign and harmful bugs and vulnerabilities.
Unfortunately, analyzing these applications is a herculean task.
There are numerous static [1], [6], [7], [12] and dynamic
program analysis [2] works which try to find bugs in Android
applications.

Android applications are typically made up of four types
of elements called components. These are Activity, Service,
BroadcastReceiver, ContentProvider. Each of these compo-
nents have sets of methods or callbacks which are called by
the Android framework on various user or system events. This

1http://www.appbrain.com/stats/number-of-android-apps

differentiates these applications from normal Java programs
and makes the analysis of these applications challenging.
The control and data flow in Android applications is further
complicated due to extensive use of asynchronous calls. These
calls makes it convenient and efficient to model events and
the interactions between various components, and permits the
Android framework to interleave the execution of several event
handlers and other callback methods. Although, many of the
static analysis works [1], [6], [7], [12] for Android applications
model these interactions with the framework, none of these
works correctly model the asynchronous behavior of the event
handling mechanism and inter component communications
in Android. Moreover, they also lack a correct modeling of
the framework’s interaction with the application components
called component lifecycle. The limitations bring unsoundness
and imprecision in these analyses.

We in this work present the first model of asynchronous con-
trol flow semantics in Android applications and a sound and
precise model of component lifecycle of Android applications.
We explicitly model all the asynchronous calls and framework
callbacks by creating an application environment model for
the application and create a precise lifecycle state machine
for each component. We define an Android inter component
control flow graph (AICCFG) which integrates these two to
soundly model all possible control flow interactions between
various units. We present an algorithm to generate such an
AICCFG for the application. We implement and solve a client
typestate analysis to verify Android resource API usages as an
instance of the asynchronous interprocedural finite distributive
subset (AIFDS) problem [5] and compare the results of our
analysis against an asynchrony-unaware version of the analysis
on the program representation used by other state-of-the-art
analyses for Android applications. We demonstrate empirically
that these asynchrony-unaware techniques are both unsound
and imprecise with respect to our asynchrony-aware analysis.
We present a set of 19 benchmark applications in five different
resource categories, called AsyncBench. This comprises of
test applications that use various resources in both safe and
unsafe manner. A sound verification of these test applications
requires an asynchrony-aware modeling of the applications.
We were able to verify all the typestate violations in these
applications with a precision of 78% and recall of 100%. The

comparison of these results against the asynchrony-unaware
analysis over unsound program representation used by other
works clearly demonstrates the soundness and effectiveness of
our application modeling and analysis.

The major contributions of our work are as following-
• We present the first sound model of asynchronous con-

trol flow and component lifecycle semantics in Android
applications.

• We present an intermediate representation of Android
applications called AICCFG based on the above model.

• We develop a typestate analysis over AICCFG and find
resource API violations for a variety of resource types.

• We present a set of becnhmark applications called
AsyncBench, comprising of applications whose analysis
requires a sound modeling of asynchronous and lifecycle
semantics of Android applications.

• We finally compare our typestate analysis against an
asynchrony-unaware analysis and demonstrate the ben-
efits of our modeling and analysis against these.

II. MOTIVATING EXAMPLE

Consider the example application FileReader in Figure 1.
The application has two activities SelectActivity and Read-
FileActivity. The application allows the user to select a file
and open the file in ReadFileActivity. The FileReader object,
line 2, is a global static reference which is accessible through
both the components. A typestate analysis checks the possible
runtime states of a resource object against a given typestate
property finite automaton.

To verify a typestate property “The application never reads
from a closed FileReader”, the analysis needs to verify and
guarantee that the FileReader.read() is never called when the
FileReader has been closed using FileReader.close() and not
re-opened again. The analysis starts with the SelectActivity’s
onCreate() where the FileReader is instantiated and File is read
at lines 8 and 9 respectively. This read operation is safe as the
FileReader instantiation switches the object to open state. Line
12 makes an inter-component comunication (ICC) call to the
ReadFileActivity. Now the correct semantics of Android on
such an ICC call is as follows-
• The ICC call is treated as an asynchronous call. An

asynchronous call is a method call which instead of being
dispatched and executed at the call site, is stored in a task
queue (associated with the thread) and is dispatched for
execution at some later time.

• The lifecycle callback onCreate has an atomic execution
semantics, thus the control stays in onCreate and the next
instruction is scheduled for execution.

• Once the onCreate finishes execution, the Android frame-
work (the ActivityManagerService) schedules onStart, on-
Resume and onPause callbacks in that order (if present),
before the control could escape to another component.

• Once the onResume finishes execution and since the
application is not overriding onPause, the call to the
target Activity at line 12 is scheduled for dispatch , and
ReadFileActivity’s onCreate is called.

1 class SelectActivity extends ActionBarActivity{
2 public static FileReader myFileReader;
3 protected void onCreate(Bundle savedInstanceState){
4 ...
5 setContentView(R.layout.activity select);
6 try{
7 String filePath = this.getFilesDir() + ’/’ + ”exFile.txt”;
8 myFileReader = new FileReader(...);
9 int data = myFileReader.read();

10 Intent targetIntent = new Intent(this, ReadFileActivity.class);
11 // asynchronous call to the ReadFileActivity
12 startActivity(targetIntent);
13 }catch (FileNotFoundException e){
14 e.printStackTrace();
15 }
16 }
17 protected void onStart(){
18 super.onStart();
19 }
20

21 protected void onResume(){
22 super.onResume();
23 Log.d(TAG, ”onResume”);
24 try{
25 myFileReader.close();
26 }catch(IOException e){
27 e.printStackTrace();
28 }
29 }
30 }

31 class ReadFileActivity extends ActionBarActivity {
32 protected void onPause(){
33 super.onPause();
34 }
35 ...
36 protected void onStop(){
37 super.onStop();
38 try{
39 ...
40 int data = SelectActivity.myFileReader.read();
41 Log.d(”ReadFileActivity”, ”data ” +data);
42 }catch (IOException e){
43 e.printStackTrace();
44 }
45 }
46 }

Fig. 1. FileReader Application

There are three major features of Android framework which
govern the above semantics. (i)- All the component callback
methods have atomic execution, thus they finish executing
before another callback of the same or different component
could be scheduled. (ii)- Each component has a control flow
protocol (lifecycle), a set of ordering relations, which governs
the calling order and control flow between callbacks in and
across components. (iii)- The ICC calls like the one at line 12,
are asynchronous in semantics and hence the actual dispatch
of such calls is separated in time and is managed by the
framework. In a typical synchronous call the call is executed at
the call site and the caller blocks itself and waits for the callee
to return. Compared to this, since the caller is not blocked in
an asynchronous call, the state of the system can possibly
change between the time of call and the time of dispatch of

the callee for execution. Thus a sound static analysis should
correctly model this control flow semantics else the analysis
results will be unsound.

Following the above semantics, the control reaches line
40, only after executing the call to myFileReader.close() at
line 25, and there are no more open operations between 25
and 40. Hence the call to myFileReader.read(), happens on a
closed object and is a typestate property violation. Equipped
with the correct control flow semantics, let us see how the
state-of-the-art static analysis works for Android handle such
a scenario. All the static analysis works for Android [6], [12]
capable of handling ICCs, treat call at line 12 synchronously,
executing it right at the call site, thus blocking and passing
control to line 31 and then to line 40. Since the global
myFileReader object is in open state before line 12, and
there is no myFileReader.close() operation between line 31
to 40, the object is in open state at line 40. Thus the call to
myFileReader.read() is marked as a valid operation and they
miss capturing the property violation.

Existing static analysis works for Android applications
fail to correctly model the asynchronous semantics of ICCs
and callbacks handling and lack precision and soundness in
modeling the lifecycle semantics of components. In this work,
we provide a detailed model of this semantics. We model this
semantics as an Android application environment and present
an intermediate program representation called the Android
inter component control flow graph (AICCFG). The AICCFG
soundly captures the control flow in Android applications.
We show the effectiveness of our AICCFG by developing
a client typestate analysis as an AIFDS [5] instance using
this as program input. We effectively capture this and other
typestate violations and verify important typestate properties
over a variety of applications.

III. ANDROID APPLICATION ENVIRONMENT MODELING
AND AICCFG CREATION

Android applications execute inside the Android framework,
which asynchronously interacts with the application compo-
nents on various user and system events. There exists a system
dispatcher, the ActivityManagerService class of the framework
which schedules an event-handler or a component lifecycle
callback method based on the event fired and the state of the
application. To soundly model the control flow of Android
applications we model the framework, over-approximating its
asynchronous semantics and dispatch logic.

Our Android application environment model is an asyn-
chronous control flow graph for the whole application and is
called Android inter component control flow graph (AICCFG).
This modeling contains three major structures namely the
ambiance, an init codeblock for each component instance and a
set of intra and interprocedural edges. A node of the AICCFG
models a control location. The edges represent the sequence
of program statements or simply a flow of control between
nodes.

The ambiance is the core of the AICCFG, modeling the
asynchronous call semantics of applications. Figure 2 shows

v0

v1

vd

init

onCreate

onStart

onResume

onPause

onStop

onDestroy

init

onCreate

onStart

onResume

onPause

onStop

onDestroy

onRestartonRestart

SelectActivityReadFileActivity

ambiance

1

2, 3

4

b1

b2

Fig. 2. Ambiance and lifecycle state machines for FileReader Application

the ambiance (middle) and lifecycle statemachine of two
Activities (on sides) for the example FileReader application.
There are two kinds of edges- the dashed black edges repre-
senting the asynchronous call dispatch and return edges, and
solid gray edges representing other inter and intraprocedural
control flows.

A. Ambiance

Consider Figure 2, the ambiance (middle) comprises of three
nodes v0, v1 and vd, and two code blocks b1 and b2, where:
• Block b1- The public and launcher components in an

Android application are instantiated by Android frame-
work when needed (e.g. launching of an application from
the home screen creates an instance of the launcher
component). The ambiance, statically instantiates each
of these components explicitly. Block b1 in the figure
represent such an instantiation code block.

• Block b2- For each inter component communication
(ICC), explicit or implicit, the Android framework creates
a new instance of the target component at runtime if this
is the first ICC call to the target. Corresponding to this,
the ambiance statically instantiates each possible targets
of all the ICCs in the application. Block b2 in the figure
denotes this instantiation code block.

• Node vd- Android framework asynchronously calls each
component instance based on various user and system
events, like launching of the application, pushing back
button on the home screen, etc. The ambiance needs to
soundly model these asynchronous calls and callbacks.
Node vd in the figure, is called the dispatch node and is
a special control location, which statically models these
asynchronous calls and returns from the framework.

The lifecycle initialization method called init() in Figure 2
models the calls to a sequence of callback methods once
the component is instantiated. For example, once an Activity
is instantiated, its onCreate, onStart, onResume and onPause
methods are invoked by the framework in that order, before
the control can switch to another component. Edges from

vd to SelectActivity’s onCreate and other callback methods
model asynchronous dispatch (and return where ever allowed
by lifecycle rules) edges to various lifecycle callback methods
from the framework. Note that, these asynchronous call and

onPause

onResume

onStop

3

2

1

4

ReadFileActivity

SelectActivity

Fig. 3. An ICC control flow interleaving for FileReader application

return edges soundly model all possible interleavings between
the callback methods of different components. Missing them
may lead to unsoundness in the AICCFG, e.g., Figure 3 shows
an execution sequence which requires such a correct modeling
of these inter component flows. The execution sequence (1-
2-3-4) in Figure 3, can be traced in Figure 2 and is shown
by numbered edges (1-2-3-4). Other works modeling lifecycle
callbacks as synchronous calls are unsound and miss such an
interleaved execution path.

B. Android Inter Component Control Flow Graph, AICCFG

AICCFG is an asynchronous control flow graph G∗ = (V∗,
E∗), for the whole Android application modeling the asyn-
chronous calls, event handling and lifecycle callbacks invoked
by the Android framework. The graph is based on the asyn-
chronous program representation described in [5] extended to
model the control flows specific to Android applications. In
this section we formally define the AICCFG, illustrating its
features using Figure 4 which shows a part of the AICCFG
generated for the example FileReader application. The figure
is a detailed version of Figure 2 and shows a more fine grained
view of the control flows.

The graph in Figure 4 has nodes, representing the control
locations, with double edged circles representing the terminal
locations for a method or callback. The graph can be divided
into three subgraphs for the ReadFileActivity, SelectActivity
and the ambiance in the middle. There are three major types
of edges in the figure-
• intraprocedural gray edges, connecting successive state-

ments (e.g. v3 → v4).
• interprocedural solid black edges, representing syn-

chronous call and return (e.g. v2 → v3 or v2 → v6).
• and interprocedural dashed black edges, representing

asynchronous dispatch edges from special dispatch node
vd to certain lifecycle callback methods and lifecycle
initialization method init() and their corresponding return
edges (e.g. vd → v2 and v2 → vd).

To define the AICCFG, we begin with defining the substruc-
tures needed to define the AICCFG. Figure 4 is used to
illustrate these definitions.

v0

v1

vd

v2

v3

v4

v5

SelectActivity

v5’

newFileReader()

read()

startActivity()

onCreate

v7

onStart

v6

close()

onResume

ambiance

v8

v9

v10

onCreate

onResume

onPause

onStart

onStop

read()

ReadFileActivity

1

2

3

4

5

6

7

8

init init

b1

b2

Fig. 4. Part of AICCFG for FileReader application

a) Lifecycle Callback Control Flow Graph: Each life-
cycle callback method like onCreate, onStart, etc. is a Java
method which is invoked by the framework on certain events
and is executed atomically. The lifecycle callback control flow
graph (LCCFG) defines the control flow graph for such a
lifecycle callback method. It is a asynchronous control flow
graph, Glc = (Vlc, Elc), where Vlc is the set of control locations
in the callback method and Elc is a set of normal control flow
edges (e.g. edges like v3 → v4 , v4 → v5) along with two
types of intraprocedural edges between nodes corresponding
to following types of program statements-

• an intraprocedural edge from a call site to the return site
corresponding to each synchronous call to a method m in
the callback method. For example, edge (v4 → v5) with
label read in the figure.

• an intraprocedural edge from a call site to the return site
corresponding to each asynchronous call to a method or
a component. For example, edge (v5 → v5’) with a label
startActivity in the figure.

Since an asynchronous call is stored in the task queue
and not dispatched directly and the control stays with the
caller the above intraprocedural edges corresponding to asyn-
chronous calls correctly model the delayed dispatch semantics
of asynchronous calls. These asynchronous pending calls will
be dispatched later from the dispatch node vd.

b) Android Component Control Flow Graph: Android
framework enforces the lifecycle rules associated with each
component of an Android application. This defines a control
flow semantics associated with a component. An Android
component control flow graph (ACCFG), models the syn-
chronous component of the control flows in a component.
It is a synchronous, interprocedural control flow graph Gc =
(Vc, Ec), which comprises of a set of LCCFG, one for each
callback defined in the component along with the init method.
The nodes Vc is a union of the nodes Vlc for each LCCFG, and

edges Ec is a union of the edges of each LCCFG, along with a
set of synchronous interprocedural edges defined as follows.-
For each intraprocedural edge in a LCCFG, corresponding to
a synchronous call, the ACCFG has -
• an interprocedural synchronous call edge from callsite

to the callee’s entry node corresponding to each syn-
chronous call in the method.

• an interprocedural synchronous return edge from the exit
of the callee to the return site.

Note that the ACCFG misses the asynchronous dispatch and
return edges which will be modeled by the AICCFG defined
next.

c) Android Inter Component Control Flow Graph: An
AICCFG is an asynchronous control flow graph G∗ = (V∗, E∗),
for an Android application modeling the asynchronous calls,
event handling and lifecycle callback invoked by the Android
framework. Intuitively, it models the asynchronous dispatches
corresponding to the asynchronous calls occurring in the
application. An asynchronous dispatch is an interprocedural
edge from the node vd (in the ambiance) to a method or a
callback, for which there is a pending asynchronous call. For
example, the edge (v5 → v5’), labeled startActivity(), adds a
pending call to the ReadFileActivity’s init method. This call
will be dispatched later from the vd, represented by edge
(vd → v8). Thus, the AICCFG integrates the ACCFGs and
the ambiance together and models the correct asynchronous
dispatches performed by the framework. The nodes V∗ is a
union of nodes for each of these elements and edges E∗ is
a union of edges for each ACCFG plus a set of following
asynchronous dispatch edges corresponding to each pending
asynchronous call in the application.
• An asynchronous dispatch edge to each init ∈ Vc of the

ACCFG set. For example edge (vd → v2) in Figure 4
represents such an edge from vd to SelectActivity’s init
method.

• An asynchronous return edge from the exit of init to vd,
for example, the return edge from v2 and v8 to vd in the
figure.

• Android framework can make asynchronous calls to
certain lifecycle callback methods of a component. The
AICCFG models these calls as asynchronous dispatch
edges from vd to the entry of these lifecycle callback
methods of each ACCFG instance. For example, edge
(vd → v6) in Figure 4.

• Corresponding to each vd to entry of a method like (vd
→ v6), there is an interprocedural return edge from exit
of callback, like (v7 → vd).

Notice that not all the paths in the AICCFG are valid
execution paths of the application. For example, there is no
possible execution sequence for the path (1-2-3-4-5-6-1-2-3-
6), which calls the init for SelectActivity twice. This is due to
the fact that, each asynchronous ICC (like startActivity in edge
v5→ v5’) corresponds to a single asynchronous call to target.
Thus informally, the set of valid paths in AICCFG, include
only those paths for which every asynchronous dispatch has

a matching asynchronous call defined earlier in the path.
We refer the reader to [5] for a more formal semantics of
asynchronous procedure calls.

C. Ambiance and AICCFG Construction

Algorithm 1 presents an algorithm for constructing the
AICCFG for a given application. An Android applications is
compiled into Dalvik executables and packaged into an .apk
file. The application also has a manifest file which provides
essential information about the application to the Android
system. Our algorithm takes the application’s apk A, and the
manifest M as input and emits the AICCFG, G∗ = (V∗, E∗)
as output. The algorithm’s Main routine extracts the launchers
and public components of the application from M, using
auxiliary methods getLaunchers() and getPublicComps() at
lines 3 and 4 respectively. The call to method getICCCalls(),
at line 5 analyzes the application and the manifest and returns
the set of inter component communication calls, iCCSet in
the applications. The method call to getComponentCfgs() at
line 6 generates an ACCFG for each public and launcher
component extracted earlier. Line 7 makes a call to subroutine
createAmbiance.

The createAmbiance function (lines 11-19) takes lists of
public and launcher components as input and instantiates each
of these components creating blocks b1 and b2 (similar to
the blocks in Figure 4) at lines 14 and 15. It also takes the
iCCSet as input and instantiates the target of each of these
ICC calls and concatenates these to b2 at line 16. It creates
a new dispatch node vd at line 17 and finally concatenates
each of these to the empty ambiance at line 18, and returns
the generated ambiance.

The createAICCFG subroutine takes the generated ambiance
and a list of ACCFGs accfgs as input and returns the final
G∗ = (V∗, E∗) as output. It initializes the node and edge
sets with empty sets (line 23) and extracts the vd from the
ambiance (line 24). The outer while loop (lines 25-36) visits
each ACCFG Gc = (Vc, Ec), and adds the nodes and edges
to V∗ and E∗ respectively (lines 26-28). The inner while loop
(lines 30-34), looks at each node Nc ∈ Vc, and creates an
asynchronous dispatch edge (vd, Nc), iff Nc is an entry node
of a callback (e.g. node v3 in Figure 4) and adds this edge
to the edge set E∗ (line 33). Else, it creates an asynchronous
return edge (Nc, vd), iff Nc is an exit node of a callback (e.g.
nodes v7 or v10 in Figure 4) and then adds this edge to the
edge set E∗ (line 37). The method returns the G∗, to the caller
Main which finally return the generated AICCFG G∗.

To understand the soundness of our AICCFG against the
Android environment models used by other static analysis
works, consider Figure 5 which presents a simplified partial
environment model generated by IccTA [6] for the same exam-
ple FileReader application. AmanDroid [12] has a similar ICC
and asynchrony-unaware semantics as modeled in this graph.
The figure has nodes and edges defined similar to Figure 4, but
lacks any asynchronous features (dispatch node and dispatch
edges). Consider a path in Figure 4 with numbered edges
(1-2-...-8). This is a possible valid execution path for some

Algorithm 1: Algorithm AICCFG construction
input : Application Manifest M and apk A.
output: AICCFG G∗ = (V∗, E∗) for the application.

1 Function Main()
2 begin
3 launchers← getLaunchers(M);
4 publicComps← getPublicComps(M);
5 iCCSet← getICCCalls(M, A);
6 accfgs← getComponentCfgs(launchers,

publicComps);
7 ambiance← createAmbiance(launchers,

publicComps, iCCSet);
8 aiccfg← createAICCFG(ambiance, accfgs);
9 return aiccfg;

10 end
11 Function createAmbiance(launchers, publicComps, iCCSet)
12 begin
13 ambiance← ∅;
14 b1← instantiate(launchers);
15 b2← instantiate(publicComps);
16 b2← v1.concat(instantiate(iCCSet));
17 vd← newNode(); /*Creates a new empty node */
18 ambiance← ambiance.concat(b1, b2, vd);
19 return ambiance;
20 end
21 Function createAICCFG(ambiance, accfgs)
22 begin
23 V∗ ← ∅; E∗ ← ∅;
24 vd← (ambiance.vd);
25 while accfgs has Gc = (Vc, Ec) do
26 Gc ← remove(accfgs);
27 V∗ ← V∗ ∪ Vc;
28 E∗ ← E∗ ∪ Ec;
29 while Vc has Nc do
30 Nc ← remove(Vc);
31 if Nc is a callback method’s entry then
32 (vd, Nc) ← createEdge(vd, Nc);
33 E∗ ← E∗∪ {(vd, Nc)};
34 end
35 else if Nc is a callback method’s exit then
36 (Nc, vd) ← createEdge(Nc, vd);
37 E∗ ← E∗∪ {(Nc, vd)};
38 end
39 end
40 end
41 return G∗;
42 end

run of the application. The set of possible paths in Figure 5
lacks such a path due to unsound modeling of asynchronous
calls as synchronous. Their graph dispatches the ICC call
startActivity() (edge v4 → v5) synchronously and blocks till
the callee returns. Thus the call to read in ReadFileActivity’s
onResume() (v8→ v9) is reached before the object is closed in
SelectActivity’s onResume is called (v5 → v11). As evident
from this example, this makes the analyses built over their
model inherently unsound. In this case, the analysis will be
missing a possible typestate violation at (v8 → v9).

Another source of unsoundness comes from modeling com-
ponent lifecycle as a synchronous control flow block (e.g. the
ReadFileActivity’s lifecycle block), which lacks the ability to
model the interleaved control flows between component call-
backs. For example, consider the execution sequence shown
earlier in Figure 3. There is no possible path in Figure 5 to
model such a sequence, while our AICCFG can easily capture

v3

v4

v5

v0

v1

v2

read()

startActivity()

v8

v9

ReadFileActivity lifecycle

onCreate

v6

v7

onCreate

v10

v11

read()

Main

close()

SelectActivity ReadFileActivity

Fig. 5. Partial Android environment model generated by IccTA for the
FileReader application

such a path (4-5-6-7-8) in Figure 4.

IV. TYPESTATE ANALYSIS

Typestate [10] is a refinement over the type. Whereas, the
type of a data object defines the set of operations that are
ever permitted on the object, typestate defines the subset
of these operations that are valid in a given context. For
example, Java Collections class allows to get the next element
from the collection (call to Collections.next()) only if the
collection has another element in the collection, else throws an
IllegalStateException. Static typestate analysis could be highly
useful in catching programs which might be syntactically legal
but meaningless or semantically invalid [3]. In the absence of
typestate analysis, the programmer needs to perform runtime
checks and adhere to the the API usage rules which is not
desirable and error prone.

Android framework provides a large set of resources like
Camera, MediaPlayer, Databases, etc. to be used by the
applications through APIs. Some of these resource APIs, e.g.,
Android MediaPlayer has a fairly complex protocol2, making
it highly burdensome and error prone to be enforced by the
programmer. The violations of these protocols could have
effects ranging from benign application crash to providing
attack surfaces to attackers breaching application and user
security.

Apart from the resource APIs, many other important safety
properties in Android applications (like, granting and revoking
of UriPermissions) could be modeled and verified using a
typestate analysis. The control flow soundness and precision
requirements of typestate analysis make it challenging for
Android applications.

A. Android Typestate Analysis

This section defines a typestate analysis for Android over
the control flow semantics and the AICCFG defined earlier.

2https://developer.android.com/reference/android/media/MediaPlayer.html

The analysis is the first typestate analysis for Android appli-
cations. We model our typestate problem as an asynchronous
interprocedural finite distributive subset (AIFDS) problem [5].
Although our asynchronous analysis derives from that work
in theory, there are the following challenges which are spe-
cific to asynchronous inter component analysis on Android
applications-
• Android ICC calls have much complex runtime semantics

and lack explicit asynchronous calls and returns. The
asynchronous calls are either due to ICC or callbacks
from the framework to the application. Moreover, these
are asynchronous calls to a collection of callback methods
rather than a single target method, which needs to be
resolved either explicitly or using manifest. Once the
target is resolved, all valid paths should be invoked based
on the called component type and its lifecycle.

• Contrary to the definition of valid paths in [5], valid paths
for the AICCFG discussed in section III, are a function
of both pending asynchronous calls and application’s
component lifecycle rules. Thus we need a modified
version of the original asynchronous data flow analysis
(ADFA) algorithm to soundly calculate the meet-over-
valid-path (MVP) solution over these valid paths of the
application.

Formally an AIFDS formulation of the Android typestate
analysis problem is defined as follows-

Definition IV.1 (Typestate Property, FA). A typestate prop-
erty to be verified, is represented as a finite automaton FA =
〈Σ,Q, δ, S,Q\{err}〉 where Σ is the set of operations possible
on objects, Q is the set of typestates a resource object might
exist in, δ is the transition function, mapping a typestate and
a σ ∈ Σ to a target typestate, err is a single error state, S is a
unique start state and finally all the states other than the error
state are final states.

Definition IV.2 (Typestate Mapping Function, α). We define
α : Ref 7→ 2Q, a typestate mapping function from the object
reference set Ref , to the powerset of Q. α(ri) represents the
possible typestates a given reference ri ∈ Ref could have at
a given program point.

B. Typestate as an AIFDS Problem

We describe the Android typestate verification problem
as an AIFDS [5] instance. An AIFDS problem is an asyn-
chronous version of an interprocedural finite distributive subset
(IFDS) problem [9] for calculating MVP solutions over asyn-
chronous programs. An AIFDS instance is a six tuple, A =
(G∗, Dg, Dl, CMap, F,t), which we solve using a modified
ADFA algorithm to track typestate violations for a given
application and a typestate property. We define each of these
tuple of A now in detail.

1) The Program Representation, G∗: The AICCFG
G∗=(V∗, E∗), defined in section III, acts as the input program
for our AIFDS analysis instance. This graph soundly models
the asynchronous call and lifecycle semantics and thus over
approximates all the valid paths in the application.

The typestate analysis also requires a typestate property
automaton FA for the resource object as an input. In our current
prototype implementation the user needs to provide this prop-
erty automaton for the resource following the resource APIs
documentation. We have provided such automata for important
resource types for Android like Camera, MediaPlayer, File,
SqliteDatabase, etc. in our implementation.

2) Data Flow Facts: Since the AICCFG is an asynchronous
program representation, we need to split each typestate data
flow fact into global and local component rather than having
a single global data flow fact. Such a division is necessary be-
cause at the point of the asynchronous call, we need to capture
incoming data flow facts, passed to the called procedure. We
then store this asynchronous call as a pending call with these
facts to be dispatched later. We cannot use a single global set
of facts to represent the input fact for the pending call because
operations that get executed between the asynchronous call and
actual dispatch may change the global fact, leaving the local
fact unchanged at the callsite.

The data flow facts D = (Dl ×Dg × CMap), where:
• Dg and Dl are global and local typestate data flow facts.

Each data flow fact dg ∈ Dg or dl ∈ Dl is a pair of the
form (soi, {si, sj ..., sm}) where soi ∈ SO. The SO ⊂
Ref and is the set of symbolic object references for the
resource objects, while Ref is the set of object references
in the application. Each si ∈ Q, represents the possible
set of typestates a given resource object soi could be in,
at a given program point.

• CMap : (Ref×Methods×Dl) 7→ N , where Ref is the
set of object references as described earlier, Methods is
the set of methods (callbacks, event handlers and normal
methods), and N is the set of natural numbers. Intuitively
the map CMap, captures the number of pending asyn-
chronous calls not yet dispatched for a given method m
∈ Methods, of an object reference ri ∈ Ref with a
given local data flow fact dl. If there are no pending calls
for the triple consisting of a given reference, method and
local data flow facts, CMap maps the triple to 0.

3) Transfer Functions F for Typestate Analysis: Table I
defines the set of transfer functions F for the problem. The
columns give the rule number, the statement type, the transfer
function and the side condition in which this function is
applied. Each row for a given statement type is subdivided into
subrows, defining the functions for a given side condition. Rule
1 applies to an object instantiation statement. The rule checks
if the class being instantiated is a resource class (e.g. Android’s
Camera class), then it creates a new symbolic object soi for
the resource, initializes its typestate to the FA’s start state S and
updates the local or the global data flow facts depending upon
the fact whether the statement defines a method local reference
or an application level global reference. The call to Android
resource initialization APIs are handled in a similar way.
Rule 4 defines the transfer functions which applies the FA’s
typestate transition δ based on the incoming typestates and
the operation performed on the symbolic object. The auxiliary
function transferTS(), takes a statement (an operation), a data

TABLE I
TYPESTATE TRANSFER FUNCTIONS

Transfer Functions F
S.No. Statement, st (dg , dl, CMap) → Out Side Conditions
1 new C() (dg , dl, CMap) →

(dg ,dl ∪ {(soi, {FA.start})}, CMap)
(C ∈ resourceclasses ∧ Statement st defines
a method local reference. ∧ soi /∈ SO)

(dg , dl, CMap) →
(dg ∪ {(soi, {FA.start})}, dl, CMap)

(C ∈ resourceclasses ∧ Statement st defines
an application level referenc. ∧ soi /∈ SO)

(dg , dl, CMap) →
(dg , dl, CMap)

otherwise

2 startActivity(target)
| startXYZ(target)

(dg , dl, CMap) →
(dg , dl, CMap[(rt, init(), dl) ← (CMap(rt, init(), dl)++),
(rt, onX(), dl) ← (CMap(rt, onX(), dl)++)]

rt ← getTartget(st)

3 dispatch(m(), dl) (dg , dl, CMap) →
(dg , dl, CMap[(rt, init(), dl) ← (CMap(rt, init(), ld)−−),
(rt, onCreate(), dl) ← (CMap(rt, onCreate(), ld)−−)]

(m = rt.init() ∧ CMap(rt, init(), dl) > 0)

(dg , dl, CMap) →
(dg , dl, CMap)

(m = rt.onX() ∧ CMap(rt, onX(), dl) > 0
∧ onX() 6= onDestroy())

(dg , dl, CMap) →
(dg , dl, CMap[(rt, onX(), dl)← (CMap(rt, onX(), ld)−−)]

(m = rt.onDestroy() ∧ CMap(rt, onDe-
stroy(), dl) > 0)

4 Normal statement (dg , dl, CMap)) →
d′g , d′l, CMap)

d′g ← transferTS(st, dg , FA)
d′l ← transferTS(st, dl, FA)

flow fact dg/dl (containing the current state) and the typestate
property automata FA and returns an output data flow fact
d′g/d

′
l (containing the target state). These operations do not

alter the pending calls and hence the output CMap is same as
the incoming CMap.

Rule 2 defines the transfer functions for asynchronous calls
like startActivity, startService or startXYZ in general repre-
senting an ICC call. Android framework invokes a sequence
of calls (modeled by init() in our AICCFG) on component
creation, to model this semantics, this rule increments the
pending calls for (rt, init(), dl). Once a component is created,
the framework may invoke any lifecycle callback of the com-
ponent, hence we also increment the pending calls for other
callback methods (rt, onX(), dl). We have used ‘onX()’ for
a generic callback method name (e.g. onStart(), onResume(),
etc.). Rule 3 defines the transfer functions for the asynchronous
dispatch of method m with data flow fact dl from the special
dispatch node of the AICCFG. It checks if the dispatched
method m is an initialization method init() and has a pending
call with the given dl, then it dispatches the call and decre-
ments the corresponding CMap cells for (rt, init(), dl) and
(rt, onCreate(), dl). The onCreate() is called only once during
the lifetime of a component instance, hence we decrement
its counter here at the initialization. If the call is neither to
init() nor to a component destruction method like onDestroy(),
the function just dispatches the call without modifying the
CMap. Android Activity component callback methods other
than onCreate() and onDestroy() (similarly, for creation and
destruction callback methods of other component types) can
be invoked any number of times during the life time of the
component due to some user or system event. Hence we do
not decrement the pending calls to these methods here. Finally,
the call to component destruction method like onDestroy(),
decrements the pending calls for all the asynchronously called
callbacks and the init() method for the given object in the
CMap as the object is now dead and none of its callbacks

could be invoked by the framework.
The transfer functions for asynchronous calls and dispatches

for other component types are similarly defined and based on
similar logic and are not presented here in view of limited
space.

4) The meet operation t: The meet operation defines the
meet of data flow facts along two or more different paths in
the AICCFG. Our typestate analysis is conservative in nature
and thus performs a weak update to typestate associated with
any abstract object soi. At junction nodes with two or more
different incoming paths we perform a set union operation over
the α(soi) for each soi ∈ SO. Formally, for any merge node p
in the AICCFG of the application and for each abstract object
soi, the meet ∪ is defined as a union over the α(soi) over all
the valid interprocedural paths pi starting from the start of the
ambiance and merging at p.

For our analysis, we modified the ADFA algorithm [5], to
handle asynchronous calls and dispatch semantics of Android
applications. We then ran the modified ADFA to calculate
MVP(I1) and MVP(I1∞), refer [5]. We did not need to run
for higher values of k=2,3... as the MVP(I1) and MVP(I1∞)
converge for our typestate analysis problem over the bench-
mark applications we ran on.

V. IMPLEMENTATION

We have implemented our sound control flow semantics for
Android applications into AICCFG which is the first asyn-
chrony aware, sound model of Android applications control
flow. The overall implementation of our approach has two
major components- (1) AICCFG generator and (2) A typestate
analysis for Android applications.

A. AICCFG Generator

The AICCFG generator generates a sound and precise
AICCFG for the application using the AICCFG algorithm 1.
The algorithm requires certain input information which is col-
lected via a pre-processing phase performing a string analysis,

TABLE II
BENCHMARK APPLICATIONS

App-
type

Salient Features

Type0 No typestate violation.
Type1 Single typestate violation, requires sound asynchronous se-

mantics modeling.
Type2
and
Type3

Single typestate violation, requires sound asynchronous se-
mantics modeling and sound lifecycle interleaving across
components. These two types model two different interleav-
ings between callbacks.

manifest mining and preliminary context and flow insensitive
pointer analysis. We have implemented the AICCFG genera-
tion algorithm using Soot static program analysis framework
for Java [11].

B. Typestate Analysis

The typestate analysis is modeled as an instance of AIFDS
problem [5] and is solved using a modified ADFA [5] built
using Soot’s heros IFDS implementation [11]. The typestate
analysis, uses the AICCFG generated by the AICCFG gen-
eration algorithm as the program input and implements the
transfer functions presented in table I.

VI. EVALUATION

A. AsyncBench Benchmarks

We present a set of benchmark applications, AsyncBench,
containing tests for typestate violations whose verification
requires a sound modeling and tracking of control and data
dependencies in Android applications including the asyn-
chronous semantics and sound lifecycle modeling. Table II
concisely presents the salient features of each type of applica-
tion for each resource category. The four types of applications
in each resource category test the correct modeling of asyn-
chronous calls and lifecycle interleavings as discussed earlier
in Section III, and the precision of these models (via benign
applications with no typestate violations).

The aim of these benchmarks is two-fold. First, they check
the coverage and soundness of the analysis for asynchronous
calls and lifecycle properties of applications. Second, we
add applications in various categories using different Android
resources, namely Camera, SQLiteDatabase, MediaPlayer,
Files, etc. This checks the usability angle of our analysis and
shows that the analysis is generic enough to capture typestate
violations against a rich set of Android resource usage pro-
tocols. Towards the similar goal, we also have applications,
modeling the safe granting and revocation of Android UriPer-
missions. Android framework provides UriPermissions, which
allows an application to grant temporary read/write access
permissions (for its resource) to other applications. These
UriPermissions are useful for ContentProviders to grant per-
missions to other applications to temporarily access some or
whole of their data. This is done either by setting an Intent flag
like, Intent.FLAG GRANT READ URI PERMISSION or
by invoking the grantUriPermission() method of the Android
ContextWrapper class. One possible bug in usage of these

TABLE III
TYPESTATE ANALYSIS ON ASYNCBENCH APPLICATIONS.

~ = correct warning, � = missed violation, ? = false warning
Application Name Async-

Aware
Sync-
only
(IccTA)

Camera Applications
Cameraapp 0 - ?
Cameraapp 1 ~ �
Cameraapp 2 ~ �
Cameraapp 3 ~, ? �,?

MediaPlayer Applications
MediaPlayer 0 - ?
MediaPlayer 1 ~ �
MediaPlayer 2 ~ �
MediaPlayer 3 ~, ? �,?

SQLiteDatabase Applications
SQLiteDatabaseapp 0 - ?
SQLiteDatabaseapp 1 ~ �
SQLiteDatabaseapp 2 ~ �
SQLiteDatabaseapp 3 ~, ? �,?

File Applications
Fileapp 0 - ?
Fileapp 1 ~ �
Fileapp 2 ~ �
Fileapp 3 ~, ? �,?

UriPermission Applications
Permissionapp 0 - ?
Permissionapp 1 ~ �
Permissionapp 2 ~ �

Total, Precision and Recall
~, higher is better 14 0
?, lower is better 4 8
�, lower is better 0 14
Precision = ~ / (~ + ?) 78 % 0 %
Recall = ~ / (~ + �) 100 % 0 %

temporary UriPermissions is the leak of these permissions
when the granter forgets to revoke the permissions through
corresponding revokeUriPermission() call. Typestate can eas-
ily model and check such permission leaks by checking any
UriPermission granted temporarily is always revoked before
the granting component is terminated and an already revoked
permission is never revoked again.

B. Results

Table III presents the static typestate analysis results
for our asynchrony-aware approach on AICCFG against a
synchronous-only typestate analysis built as an IFDS over
the program representation used by other static analysis for
Android (IccTA) applied to AsyncBench test applications.
On these applications our asynchrony-aware typestate analysis
captures all typestate violations and raises false warning in
only one case in each resource category. Thus we achieves
a precision rate of 78% and a recall rate of 100% over the
AsyncBench benchmarks.

Compared to this the synchronous-only approach misses
all the typestate violations in different categories due to the
inherent unsoundness of its underlying program representation
and its synchronous analysis. The high false negatives of

synchronous only analysis shows the unsoundness in the state-
of-the-art modeling of the Android environment which makes
them miss many typestate violations. Moreover, a sound asyn-
chronous and lifecycle modeling and an asynchrony-aware
analysis also increases the precision of our analysis, allowing
us to give a 50% lower false warnings and higher precision
compared to the synchronous-only analysis. Our asynchrony-
aware typestate analysis runs smoothly on a normal desktop
machine with a dual core Intel processor and a moderate
memory size of 16 GB. The average time for analyzing an
application in AsyncBench came out to be approximately 2-3
minutes. This shows the practical feasibility of our analysis
on these applications.

VII. RELATED WORK

A. Modeling and Static Analysis of Android Applications

Ours is the first work modeling the asynchronous semantics
of Android application’s control flow. Other works modeling
the Android application environment and performing static
analyses over applications are FlowDroid [1], IccTA [6] and
AmanDroid [12]. FlowDroid and IccTA perform an infor-
mation flow analysis over applications, Amandroid calculates
points-to information for all objects in an Android application
in a flow and context sensitive way across Android compo-
nents. While IccTA and AmanDroid are capable of handling
inter-component communications in applications, FlowFroid
over-approximates these communications by tainting all flows
across components. Although we leverage some design fea-
tures from FlowDroid and IccTA (like environment modeling
and lifecycle generation for components). These works are
treat Android applications as synchronous programs and our
work differs from them significantly as discussed throughout
the paper. look at.

Epicc [8] computes Android ICC call parameters using
an IDE framework, by modeling the intent data structure
explicitly in the flow functions. We compute the targets for
the ICC, using an intraprocedural string analysis and manifest
mining. Their work is orthogonal to ours. In our future imple-
mentations we plan to use the targets resolved by Epicc for
our AICCFG construction, as this work extensively captures
various ICC mechanisms possible in Android applications.

B. Analysis of Asynchronous Programs

Our analysis over Android applications leverages various
concepts from the Jhala et. al. work [5]. Their work formal-
izes the problem for interprocedural data flow analysis for
asynchronous programs as an AIFDS problem. We extend
their work to formalize and model Android applications as
asynchronous programs and then build a typestate analysis as
an instance of the AIFDS problem discusses by them. Our
work differs from theirs on several counts as discussed in
section IV-A.

C. Typestate Analysis

Typestate analysis work from Fink et. al. [4] presents a
sound typestate verification for real world Java programs.

Since Android applications are inherently Java programs this
work relates to our client typestate analysis. Despite this
overlap, we differ greatly from their work which is at its core
an IFDS instance of the typestate problem. They do not target
asynchronous programs like us, nor do they handle Android
applications.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a model of asynchronous control flow seman-
tics and a sound and precise model of component lifecycle for
Android applications. We presented an intermediate Android
inter component control flow graph (AICCFG) for Android
applications which soundly models these semantic features.
We built a client typestate analysis for Android resource APIs
protocol verification on our AICCFG. We presented a set of
benchmark applications called AsyncBench and evaluated our
work on these applications against the state-of-the-art static
analysis for Android and showed empirically that other works
are unsound, missing many important typestate violations and
also lack precision as compared to our analysis. One interest-
ing future direction for our work could be the application of
our modeling and analysis to other important static analyses
(e.g. information flow analysis) over Android applications.

REFERENCES

[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In PLDI ’14, pages 259–
269, 2014. ACM.

[2] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taintdroid:
An information-flow tracking system for realtime privacy monitoring on
smartphones. In OSDI’10, pages 393–407, 2010. USENIX Association.

[3] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel
Geay. Effective typestate verification in the presence of aliasing. In
TOSEM, 17(2):9:1–9:34, May 2008. ACM.

[4] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel
Geay. Effective typestate verification in the presence of aliasing. In
TOSEM, 17(2):9:1–9:34, May 2008. ACM.

[5] Ranjit Jhala and Rupak Majumdar. Interprocedural analysis of asyn-
chronous programs. In POPL ’07, pages 339–350. ACM, 2007.

[6] L. Li, A. Bartel, T. F. Bissyand, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel. Iccta: Detecting
inter-component privacy leaks in android apps. In ICSE, pages 280–291,
2015. IEEE Press.

[7] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex:
Statically vetting android apps for component hijacking vulnerabilities.
In CCS ’12, pages 229–240,2012, ACM.

[8] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric
Bodden, Jacques Klein, and Yves Le Traon. Effective inter-component
communication mapping in android with epicc: An essential step towards
holistic security analysis. In SEC’13, pages 543–558, 2013. USENIX
Association.

[9] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL ’95, pages 49–61.
ACM, 1995.

[10] R E Strom and S Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Trans. Softw. Eng., 12(1):157–
171, January 1986.

[11] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. Soot - a java bytecode optimization
framework. In CASCON ’99, pages 13–. IBM Press, 1999.

[12] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A
precise and general inter-component data flow analysis framework for
security vetting of android apps. In CCS ’14, pages 1329–1341. ACM,
2014.

