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Abstract. Compiler optimizations need precise and scalable analyses to
discover program properties. We propose a partially flow-sensitive frame-
work that tries to draw on the scalability of flow-insensitive algorithms
while providing more precision at some specific program points. Provided
with a set of critical nodes — basic blocks at which more precise infor-
mation is desired — our partially flow-sensitive algorithm computes a
reduced control-flow graph by collapsing some sets of non-critical nodes.
The algorithm is more scalable than a fully flow-sensitive one as, assum-
ing that the number of critical nodes is small, the reduced flow-graph
is much smaller than the original flow-graph. At the same time, a much
more precise information is obtained at certain program points than
would had been obtained from a flow-insensitive algorithm.

Keywords: compilers, dataflow analysis, compiler optimizations, points-
to analysis.

1 Introduction

Compiler optimizations largely depend on the program properties that the com-
piler could discover. Precision and scalability are two conflicting goals that such
analyses have to meet. Control flow abstraction is an useful technique to attain
high scalability, though at the cost of precision. A flow-sensitive algorithm takes
the program control-flow into account to come up with a highly precise solution
at each program point. On the other hand, a flow-insensitive algorithm neglects
all control-flow leading to a high degree of scalability, while coming up with a
summary solution for the whole flow-graph.

It is the need for scalability that forces many of the analyses to be implemented
as flow-insensitive algorithms. However, it is possible that many opportunities
for optimization could be exploited if precise solutions are known even at a very
few program points. For instance, if a profile run for a program selects a few
“hot” methods, aggressive optimizations of these few methods would give high
runtime gains. However, one needs to analyze well, not only the specific method,
but also the caller method to discover all such opportunities.

Fig.[d presents an example. The function process_node () allocates a new ele-
ment and passes it to the populate () method. The populate () method checks
if the argument passed is not NULL and then proceeds to populate the same.
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void populate (element *q) I;I elem = ;iiocate()
{

if (q) { elem = allocate() |
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q >data2 e _ populate(elem) [,
... ‘\
}
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- free(elem)
— (p) | elem = NULL

populate(elem) |

return
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void process node() |

{
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element *elem; .’

/* allocate () always
# returns wvalid free(elem)
* elements */ q->datal

elem = NULL
elem = allocate (); g->data2

populate (elem); -
free(elem);

elem = NULL;

return()

Fig. 1. A motivating example: Fig. (a) shows the original CFG for process_node().
Fig. (b) shows the reduced CFG for process_node() obtained via the PFS algorithm.
Fig. (¢) shows the CFG for the function populate(). The gray node is the critical node
selected. The dotted line shows the parameter binding of ’elem’ to ’q’.

The important thing to note is that it is never possible that the argument q
passed to populate() is NULL (as the allocate() method is supposed to al-
ways return a valid element! ). Hence the check “if (q)” could be eliminated
from populate () if the above fact can be discovered?. A flow-insensitive analysis
would simply miss the fact. A flow-sensitive algorithm would surely indicate that
fact; however, it would be hugely expensive. This leads us to an important obser-
vation : even if process_node() was analyzed well enough to provide a better
estimate of program properties at only the program points where populate () is
called, our purpose would be served.

We propose a middle path between full flow-sensitivity and flow-insensitivity
— that of partial flow-sensitivity. If we preserve some partial flow-sensitivity at a
few points in a program, without losing much on scalability, we might be able to
discover opportunities to optimize the program that a flow-insensitive algorithm
would miss. Our partially flow-sensitive algorithm expects from the user a set
of program points (currently we accept the specification in the granularity of
basic-blocks) where we are interested to have a better estimate of the program
properties. We term such basic-blocks as critical nodes in the program’s flow-

! The code for allocate() is not shown here. However, such a method can be imple-
mented simply by spinning in a loop till the malloc() call succeeds.

2 We assume that the analyzer is made aware of the fact that allocate() will always
return valid elements using suitable annotations.
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graph. Our algorithm then goes about merging some sets of non-critical nodes
to compute a reduced flow-graph (r-CFG), on which we perform a flow-sensitive
analysis. Assuming such critical nodes to be a very small fraction of all the nodes
in the flow-graph, the algorithm achieves the desired scalability by running over
a very small flow-graph. In fact, the scalability is then a function of the fraction
of the nodes selected as critical — the algorithm reduces to a completely flow-
insensitive algorithm when none of the nodes are critical, to a completely flow-
sensitive one, when all the nodes are selected critical.

The reduced flow graph for fig. [l(a) is shown in fig. [[{b) with the node con-
taining the call to populate () marked critical. One can see that a flow-sensitive
points-to analysis on this much smaller flow-graph of the method process_node ()
can deduce the fact that the parameter q in populate () can only point to valid
memory locations and hence the null-check in populate () is redundant.

2 Previous Work

[1] proposes a flow-sensitive interprocedural alias analysis that they claimed
was, at that time, the most precise and efficient interprocedural method known.
Andersen|2] described a flow-insensitive subset based algorithm based on con-
straint solving that computes a single solution for the whole program. [3] propose
an algorithm to improve the precision of flow-insensitive interprocedural alias
analysis using precomputed kill information.

[456] propose techniques towards solving a demand dataflow analysis algo-
rithm, that answers a query about a single given dataflow fact holding at a single
given program point. However, this technique differs from our work as our par-
tial flow sensitive framework computes a solution for all program points, though
of varying precision.

[7] proposed to use the SSA form to improve the precision of flow-insensitive
pointer analysis. The algorithm uses repeated iterations to improve the preci-
sion of the analysis, and the final result could even be as good as that com-
puted using a flow-sensitive analysis. However, the worst case time requirement
for translating a code in SSA form is cubic. Also, the SSA translation could
result in a program that is quadratic in the size of the original program. More-
over, as the algorithm has to be primed with points-to relations, it requires a
points-to analysis in its initial phase. Recently, [8] reported a new approach to
solving subset-based points-to analysis for Java using Binary Decision Diagrams
(BDDs).

[9] proposes a client-driven pointer analysis, where the analysis adapts to the
need of the client analyses. However, our work differs from this work in the way
flow-sensitivity is provided; while the mentioned work looks at using the SSA
from to provide flow-sensitivity to some variables at all programs points, our
work looks at providing better precision to the dataflow solutions of all variables
at some program points. Also, we do not need to use the SSA form, construction
of which itself needs a prior pointer analysis phase [7].



248 S. Roy and Y.N. Srikant

3 The Reduced Control-Flow Graph (r-CFG)

The Partially Flow-Sensitive Algorithm (PFS algorithm) allows the user to spec-
ify a set of critical nodes from the program’s flow-graph. We define Critical Nodes
as basic blocks at which the user is interested in having a more precise informa-
tion about some program properties. The selected functions could be call-sites of
“hot” methods (a better estimate of the points-to sets of the passed arguments at
their call-sites could enable us to drive better optimizations within these “hot”
methods) or basic blocks having a high execution count identified through a
profile run.

Depending on the critical nodes selected, the PFS algorithm computes a re-
duced control-flow graph by collapsing some sets of non-critical nodes. Finally a
flow-sensitive analysis algorithm is run on the reduced flow-graph.

The Partial Flow Sensitive algorithm is safe as all the control-flow edges in the
CFG are also preserved in the r-CFG; any path in the CFG being traceable in
the latter®. Thus, the PFS algorithm does not “miss” any flow-path along which
the program properties could propagate.

3.1 Yardsticks for a Reduced Control-Flow Graph (r-CFG)

Both the scalability and the precision of the Partial Flow Sensitive algorithm
depends on the r-CFG. We define the notions of Precision and Size optimality
to understand how good is a given r-CFG for a given flow-graph.

Precision Optimality: The reduced CFG is said to be precision optimal if the
following holds for each critical node c : if there does not exist a path from
any node n to ¢ in the original flow graph, such a path would not exist even
in the reduced flow-graph. 4

Size Optimality: The reduced CFG is said to be size optimal, if there do not
exist nodes n; and n; s.t. merging them still maintains precision optimality.

3.2 Algorithm for Computing the r-CFG

Our algorithm is shown Fig.[Bl Equation 1 and 2 compute the set p(n) for all the
nodes n € Gorig; p(n) represents the set of all critical nodes that are reachable
from the node n. This computation can be done efficiently by setting it up as
a simple bit-vector dataflow problem where each bit in the bit-vector stands for
a particular critical-node and an extra bit for distinguishing critical nodes from
non-critical nodes.

Equation 3 represents the condition when two nodes are not mergeable —
when one of them reaches a certain critical node ¢ and the other does not.
Equation 4 represents the symmetric nature of this relation. Equation 5 finally

3 Using flow-insensitive analysis over a set of statements can be seen as a flow-sensitive
analysis over a complete flow-graph formed with these set of statements.

4 This also implies that if there exists a path, n to ¢, in the reduced graph, such a
path surely exists in the original graph.
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specifies when two nodes can actually be merged — when none of them is critical
and the predicate not _mergeable() does not forbid their merge.

The reduced CFG is created by representing all the nodes merged together by
a single aggregate node. Actually, this reduced CFG is just a conceptual graph
— it need not be created. All the nodes belonging to the same aggregate node
are simply assigned a common Aggregate Node ID (anid). The anid identifies
each of the aggregate node in the original CFG. All the later algorithms actually
work on the original CFG, identifying the aggregate nodes by the anids.

3.3 Analyzing the Algorithm

Let us define some notations: N and C' denote the set of all nodes and the set
of critical nodes respectively in the original CFG (Gorig). The r-CFG is denoted
by Greduced- The relation path(n;,n;) € G represents that there exists a path
from n; to n; in the graph G. The relation p is computed over Goi4.

Claim: The above algorithm produces a precision optimal reduced CFG.

Proof. Assume In,; € N s.t. for some ¢ € C, path(n;,c) € Greduced and
path(n;, c) ¢ Gorig. Such a path is only possible due to a merge of n; with some
n; € N where path(nj,c) € Gorig (see Fig. ). This implies that p(n;) = p(n;)
as otherwise the algorithm would not have merged the nodes. This causes a
contradiction as the critical node ¢ € p(n;) but ¢ & p(n;).

Claim: The above algorithm produces a size optimal reduced CFG.

Proof. Assume dn;,n; € N,n; # nj, not merged by the above algorithm, s.t.
merging them still maintains precision optimality for G eguceqd- Obviously, 3¢ € C'
s.t. ¢ € p(n;) and ¢ ¢ p(n;) — otherwise the nodes n; and n; would had been
merged by the algorithm. This causes a contradiction as then precision optimality
w.r.t the node ¢ € C' is compromised.

3.4 Size of the Reduced CFG

Lemma: The above algorithm partitions the non-critical nodes into 2™ equiva-
lence classes, where n is the number of critical nodes.

Proof. The above algorithm allows two non-critical nodes to be collapsed iff they
reach exactly the same set of critical nodes. It is obvious that the relation® is an
equivalence relation. As each equivalence class corresponds to a possible subset
of the set of critical nodes, there can only be 2™ such equivalence classes.

Claim: The number of nodes in the reduced CFG is bounded by 2™ + n where n
is the number of critical nodes. Also, the same is a tight bound.

5 Nodes a and b are related iff they reach exactly the same set of critical nodes.
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4 A

crit,node € Gorig critical(crit) node = crit

crit € p(node) (1)

crit, node, succ € Gorig mnode € Pred(succ) crit € p(succ)

crit € p(node) (2)

ni,n2,c € Gorig critical(c) c € p(n1) c¢ p(nz)

not_mergeable(ny,nz) (3)
f": . ni,ne € Gorig not_mergeable(nz, ny)
\‘ \\Qerge not_mergeable(nyi, na) (4)
X N
RN N\ n,ni,n2 € Gorig ni1 # na
YN ) —eritical(ny) —critical(na)  —not _mergeable(ny, na)
Y N —

@ K merge(ni,na) (S)J

Fig.2. Proving Fig.3. The optimal algorithm for computing the r-CFG. The
that the r-CFG is  solution can be found by performing a fixpoint computation over
precision optimal the above rules.

Proof. According to the above lemma, as each of the non-critical node must
belong to one of the equivalence classes and there are at most 2™ such classes
— the reduced CFG can at most have 2" aggregate nodes formed by merging
of the non-critical nodes. None of the n critical nodes is merged with any other
node. Hence, the reduced CFG can at most have 2" + n nodes.

Also, the above bound is tight. Fig. dl shows a case where the above bound is
actually reached for n=3. The critical nodes are marked gray. The table shows
the value of p(x) for each non-critical node (x). Note that none of the nodes can
be merged. A graph of similar structure can be constructed for any value of n.

Surely, the total number of nodes possible in the r-CFG is also bounded by the
total number of nodes in the graph. If all the nodes are selected critical, then
the r-CFG is same as the original CFG and the PFS algorithm reduces to a
flow-sensitive algorithm.

4 The Analysis Phase in the PFS-Algorithm

We explain the analysis phase of the PFS algorithm using a classic compiler
analysis — points-to analysis. We choose points-to analysis for the purpose as
most compilers implement a flow-insensitive version of this analysis to attain
scalability. Our experiments show that the PFS algorithm not just manages to
get much better solutions at the critical nodes (arbitrarily chosen), but also
improves the solution at most of the other nodes as a side-effect.
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duced CFG

4.1 Updating Points-To Sets for Each Statement Type

The operational semantics for updating of points-to sets is very similar to that
proposed earlier in literature [2[T0]. Some of the rules in the update semantics
for the various statements is shown in fig. [6l The complete set of rules for all the
important statement templates is given in [II]. 7¢s pp(x, y) denotes the points-to
relation that x points-to y at the program point pp under the call-string cs.

@ A

stmpp("T =y")  Tes,pp (Y, 2) stmpp (T = &y”)
ﬂ—CSxPP(Iv Z) (1) TFCS,PIJ('Tv y) (4)
stmpp("T = *y")  Tes,pp(Y, Y1) stmpp(" * T =y")  Tes,pp(T, 2)
Tes,pp(Yl, 2) Tes,pp(Y,yl) —garbage value(z)
Tes,pp (T, 2) (2) —null _value(z)
Tes,pp(2; Y1) (5)

stmpp (" = *y”)  Tes,pp (Y, 9)

garbage wvalue(g)
\ ﬂ'cs,pp(zvg) (3) J

Fig. 6. Points-to set update semantics. 7cs,pp(x,y) denotes the points-to relation that
x points-to y at the program point pp under the call-string c¢s. The stmp,(S) indicates
that the S is statement encountered at program point pp.
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For a critical node (which undergoes flow-sensitive analysis), a variable gets
its previous points-to set killed if it gets assigned a new value unambiguously
and it is not a heap variable.

4.2 Intraprocedural Analysis

We define either of two types of transfer functions for each basic-block in the r-
CFG — a weak transfer function and strong transfer function. The weak transfer
functions perform flow-insensitive updates over all the nodes belonging to a
aggregate node in the r-CFG while a strong transfer function does flow-sensitive
updates. The non-critical aggregate nodes in the r-CFG — with the control-flow
within the constituent nodes smudged — use the weak transfer function. The
critical nodes retain their identity even in the r-CFG and hence use the strong
transfer functions. Fig. [ shows the semantics of these transfer functions for
points-to analysis. Finally, we perform a flow-sensitive analysis over the whole
r-CFG to generate the required program properties.

/mw ey t1 (@, y) i —killedes, pp (2) \
ey (@.Y) = Tea pp(2,9) V
é

cs,pp
if killedes,pp(x)

cs,node

{ﬂ‘IN (x,y) if pp € node and pp is first stm in node
\%

o} otherwise

k IN
T msae (@,y) = > {memp(@ ) vV il (@0}
Vnodes g (n),ppEn,anidy(n)=anid(node)
ouT

moiond (z,y) if criticaly(node)A pp is last stm in node
Tos,node (T Y) =

weak
cs,node

(z,y) if —critical§(node)

IN ouT
Tesimode (T, Y) = Z Tesp (T;Y)

k PEpredf(node) J

Fig. 7. The semantics for the strong and weak transfer functions for points-to analysis.
m(z,y) denotes that the variable x points-to y. cs refers to the call-string, pp and node
refer to the program point or the basic-block where the relation is being computed
and f indicates that the relation is being defined for the procedure f. The relation id
returns a unique identifier for all nodes. A relation m(x,y) is killed if there exists an
unambiguous definition to x. The solution can be computed by a fixpoint computation
over the rules.

4.3 Interprocedural Analysis

Interprocedural analysis is performed using the k-limit call-string approach [12].
For critical nodes, the actual parameters carry the program properties exist-
ing at the call-site into the callee. For non-critical nodes, if the call-site = €

5 We summarize heap locations by summarized heap variables per allocation-site.
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K - o RET MOD o \
wj;?;;g (z,y) =critical func catter(caller node) A (w50 (x,2) Vom0 (@, 2) V WZZT;;LQ(QU, y))

weak .,
Wcsynode(m,y) =-critical fynce caller(caller node)

RET MOD k
\\ AN (T openode (@ 2) VT S e ae (@, 2) Vlint (2, ) j

Fig. 8. Interprocedural PFS Points-to Analysis Semantics. The solution can be com-
puted by a fixpoint computation over the rules.

nodes(Gorig) and x € 2/, 2’ € nodes(Greq), then the analysis information from
OUT, is made to pass into the callee. For procedure return at a basic block n in
the callee, it is always the OUT(,/|nea’ 2’ €nodes(G,.q)} Value that is passed back
to the caller.

Fig. B shows the interprocedural semantics of the weak and strong transfer
functions for our PFS points-to analysis. For simplicity, we assume that a func-
tion call is the first statement in a basic block, global variables are absent and
parameters are passed by value. The ngg relation defines the semantics of a
return statement — if the callee returns with a statement “return(y)” to the
caller who had initiated the call with “x=func_callee(...)”, the equation up-
dates the points-to set of the variable x with that of the return parameter y.
The 7MOP relation updates all points-to relations generated due to indirect ref-
erences in the called procedure. The detailed description of the interprocedural
semantics is given in [TT].

We give an example to illustrate the effect of the PFS analysis. Fig. BYa)
shows the original flow-graph; fig. B{b) shows the reduced flow-graph (taking
the node 'E’ as the critical node). The results for flow-sensitive, flow-insensitive
and partially flow-sensitive analyses are shown in table [[l Note that for the PFS
case, flow-insensitive analysis is done on the aggregate nodes “ABC” and on “DFG”
while we perform flow-sensitive analysis on the critical node 'E’ to compute the
local properties. A flow-sensitive analysis is then performed on the r-CFG.

The reduced CFG is much simplified as the number of nodes drop to three
and the two loops in the original CFG get dissolved. In fact, the r-CFG in this
case gets reduced to a DAG; note that the number of iterations required for
a flow-sensitive analysis to reach a fixpoint depends on the loop-depth. Hence,
performing a flow-sensitive analysis over the r-CFG is a lot cheaper than doing
the same on the original CFG.

Let us look at the results of the analysis in table [Il For the critical node
'E’, the PFS solution is much better than that obtained by the flow-sensitive
analysis but is not as good as that obtained by the flow-insensitive analysis. The
reason for the loss in precision is the inability of the PFS algorithm to use “kill”
information within the aggregate nodes reaching the critical node. In the given
example, the dataflow fact x may-point-tob, generated at the node 'B’, is killed
at the node 'C’. However, the PFS algorithm is unable to use this information
as a flow-insensitive analysis is carried on the aggregate node “ABC”. However,
the result is better than the flow-insensitive case, as the dataflow facts from the
nodes 'D’, 'F’, and 'G’ were not allowed to pollute the information at the critical
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Table 1. The dataflow facts discovered for the CFG and r-CFG in fig. [l The program
points corresponding to a node 'X’ is the point just after ’X’. The notation Vi — V>
implies that any variable v1 € Vi may point to any of the variables va € V5.

BB Flow-Sensitive Flow-Insensitive Partial Flow-Sensitive
A ® {z,y,2} = {a,b,c} {a} — {a, b}, {y} — {b}
B {z,y} — {b} {z,y,2} = {a,b,c} {a} — {a, b}, {y} — {b}
c z — {a}, y — {b} {z,y,2} = {a,b,c} {a} — {a, b}, {y} — {b}
D {z,y, 2z} — {b} {z,y,2} = {a,b,c} {=z,y,2} = {a,b,c}

B {z,y} — {a} {=,y,2} — {a,b,c} {z,y} — {a,b}

F {z} — {a,b}, {y} — {b}, {2z} — {c} {z,y,2} = {a,b,c} {z,y,2} — {a,b,c}

G {z} — {a,b}, {y} — {0}, {z} = {c} {=z,y,2} = {a,b,c} {z,y,2} = {a,b,c}

node 'E’. As a bonus, the solutions at the nodes ’A’, 'B” and 'C’ are also improved
over the flow-insensitive one.

5 Experimental Results and Conclusion

We have implemented a framework for partial flow-sensitive points-to analysis
using the Lance compiler framework [I3] and the bddbddb [I4] tool. The details
of the implementation can be found in [IT]. The results are shown in Fig. @ [Tl
and [I0l We selected the critical nodes arbitrarily for computing the solutions us-
ing the PFS algorithm. We used Andersen’s algorithm [2] for the flow-insensitive
analysis within the aggregate nodes. The results were obtained by performing
an intraprocedural analysis on the respective functions by setting all the pointer
arguments and the global pointer variables used in the procedure to be point-
ing to undefined (implying that they could potentially point to any location).
The analysis was performed on the intermediate code generated by the Lance
Compiler Framework [I3].

Fig.[@shows the effect of partial flow-sensitivity on the function “SwapNode ()”
from the “ks” benchmark (from [I5]) with nodes 5 and 8 arbitrarily selected as
the critical nodes. The results for a fully flow-sensitive and a flow-insensitive
analysis are also shown. The partial flow-sensitive analysis yields a very precise
solution for the critical nodes. In fact, they are as good as the flow-sensitive
solution in this case. Also, as a side-effect, the solution at many of the other
nodes are much better than that obtained using a flow-insensitive algorithm.
However, though close, the F'S and PFS solutions may not coincide in all cases
as the PFS algorithm is unable to use kill information within the aggregate
nodes.

Fig. [0 compares the number of nodes in the original and the reduced graphs.
For instance, note that for the function PrintChannel (), the PFS solution is
almost the same as the flow-sensitive one, even though the analysis was done on
a reduced CFG with 5 nodes while the original CFG had 88 nodes. However,
how close is the PFS solution to the flow-sensitive solution is hugely dictated by
the choice of the critical nodes.
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Function Benchmark Ncpir  #No #N,

Functon; Swapode SwapNode ks {5,8} 11 5

Z: b ‘ ‘ ‘ ‘ ‘ P: - | DensityChannel  yacr2 {7,28} 32 5
¢l f o] PrintChannel  yacr2  {6,22,80} 88 5
o1 ! ] HasVCV yacr2 {6,11} 13 5
By ] gen_ bitlen gzip {415} 32 5
': r X = ‘ ‘ ] build _tree gzip {4,8} 16 5

‘ ’ e " ” init _block gzip {47y 10 5

Fig. 9. The effect of Partial Flow Sen- Fig.10. Details on the benchmarks used.
sitivity (on function “SwapNode” from The column "Nerit” denotes the nodes se-
the “ks” benchmark suite) : The plot lected as critical in the original flow-graph.
shows the number of may-point-to re-  7# No and # N, denotes the number of
lations that hold at each basic-block in ~ nodes in the original and the reduced flow-
the program for the flow-sensitive (FS), graphs.

flow-insensitive (FI) and the partially

flow-sensitive (PFS) algorithms.

Function: DensityChannel Function: PrintChannel
140 90 T T T T T T T T

PP
Fl e 80| Fl o |
120 |- Fs x Fs x
-

# of points-to sets
g8 3
#of pinisto seis
3

0 L L L L L L ° L L L
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Basic Block Basic Block

Function: HasVCV Function: gen_bitlen
40 T T T T T

160 * * * * * r

p—

FS e

pE

#of points-to sets
n
*
*
*
*
#of points-o sets

0 L L L L L L ° L L L L L L
0 2 4 6 8 10 12 14 0 5 10 15 20 25 30 35

Basic Block Basic Block

Function: build_tree Function: init_block
40 T T T T T T ; 55 T T T T T T ; T

T
S FS —x FS -ox

#of points-to sets
#of points-to sets

Basic Block Basic Block

Fig.11. Precision of the flow-sensitive (FS), flow-insensitive (FI) and the partially
flow-sensitive (PFS) algorithms for various benchmarks. The plot shows the number of
may-point-to relations that hold at each basic-block in the program.
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