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Abstract

The Ball-Larus path-profiling algorithm is an efficient
technique to collect acyclic path frequencies of a program
However, longer paths — those extending across loop it
erations — describe the runtime behaviour of programs
better. We generalize the Ball-Larus profiling algorithm for
profiling k-iteration paths — paths that can span up to to k
iterations of a loop. We show that it is possible to number
such k-iteration paths perfectly, thus allowing for an efficient
profiling algorithm for such longer paths. We also describe 4n the trace. The only conclusion that can be drawn out of it
scheme for mixed-mode profiling: profiling different parts offor the longer set of paths is that the pahi8-5-2-4-5

a procedure with different path lengths. Experimental resultsan d 2-4-5-2-3-5 as well as the path@-3-5) 2 and

’ Acyclic ‘ freq ‘ ’ 2-Itr Path ‘ freq ‘
1-2-35| 1 1-2-3-5-2-45| 1
2-3-5 99 2-3-5-2-4-5 | 98
2-4-5 99 2-4-5-2-3-5 | 99
2-4-56 | 1 2-3-5-2-4-5-6| 1

Figure 1: Motivation for k-iteration path profiling

show that k-iteration profiling is realistic. (2-4-5) 2 are all likely to be hot. Acyclic paths — due to
) the fact that they terminate at loop backedges — do not give
1. Introduction any information about the correlation among the loop paths.
Multiple-iteration paths can uncover such information.
An efficient algorithm for acyclic path profiling — profil- Tallam et al. [3] have proposed the use of longer paths

ing paths that either terminate at backedges or at procedure- paths that cover two iteration of a loop — to enable
exits — was proposed by Ball and Larus [2]. The key ideamultiple optimizations. They estimate two-iteration paths
of the algorithm was to assign unique path-identifiers to allwithin loops from Overlapping Ball-Larus paths— paths
acyclic paths in a manner such that the paths-identifiers otat extend a fixed number of nodes beyond the backedge.
the traversed paths can be efficiently reconstructed during the |n this paper, we propose a profiling algorithm to col-
profile run of the program. More importantly, the algorithm |ect frequencies for such longer paths. In contrast to the
computes gperfectnumbering of these path-identifiers: if algorithm given by Tallam et al. [3], which gives ap-
there aren static acyclic paths in the program, the paths areproximation of the frequency counts for the longer paths,
assigned identifiers fror@ to n-1 . our algorithm provides theexact frequency counts. Our
Though acyclic path profiles are very useful at driving algorithm is a generalization of the Ball-Larus profiler: it can
many compiler optimizations, more opportunities can beprovide information about paths that span multiple iterations
exploited in the presence of information about longer pathsf a loop; for one-iteration paths, it reduces to the Ball-Larus
— paths extendingcrossloop iterations. Figure 1 shows profiler.
a control-flow graph being profiled, and the frequency However, when profiling longer paths, the number of
counts for acyclic and two-iteration paths (paths includingstatic paths increases tremendously. Interestingly, our algo-
two iterations of the loop) for a program trace readingrithm allows mixed-mode profilinguse of different path-
1-(2-3-5-2-4-5) 1096 — within the loop, the acyclic  |engths (in terms of the number of iterations considered for
paths2-3-5 and2-4-5 execute alternately. Hence, it may the various loops) for different loops in the same procedure.
be beneficial to unroll the loop and perform trace schedulingHence, the program analyst may use higher iteration paths
along the patf2-3-5-2-4-5 . Note that this information is  for “interesting” regions of the procedure while counting
lacking in the acyclic path profile; it only shows that both the acyclic paths for the remaining program; thus controlling
acyclic path2-3-5 and2-4-5 are equally likely to occur  the number of static paths.

Following are our contributions in this paper:
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Research, India. « we generalize the Ball-Larus algorithm for more gen-
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Figure 2: Acyclic and Two-Iteration Static Paths.

eral k-iteration paths — we show that it is possible to Though Ball-Larus paths are essentially one-iteration paths,
achieveperfect numberingven for these longer paths we will refer to the Ball-Larus paths as BL paths or acyclic

(section 3); paths — the ternk-iteration pathswill strictly imply that
« we provide an instrumentation algorithm for collecting k>1 . Figure 2 shows all the acyclic and k-iteration paths for
k-iteration path profiles (section 4); the graph in Figure 1.

« we propose mixed-mode profiling: profiling different  What is not a valid k-iteration path ? A path must meet

regions of the same procedure with differing paththe following requirements to be a valid k-iteration path:
lengths (section 5);

« we present experimental data indicating that k-iteration ¢ Lik€ acyclic paths, a k-iteration path may start only

profiling is realistic (section 6). at the procedure entry or a loop-head (destination
of a backedge) and end either at a loop-tail (source
2. Background of a backedge) or the procedure exit. Note that this

requirement allows a path that iterates a ldopess
Ball and Larus [2] proposed a simple and fast algorithm than k times if it does not both start at the loop-head

for counting the frequency of acyclic paths — paths that of L and end at the loop-tail df.
terminate at a backedge or reach the end of the procedure.. Any path that starts with the loop-head of lobpmust
The Ball-Larus algorithm assigns weights to the edges in iterate through_ exactlyk times.
the control-flow graph in such a manner that the sum of . Any path that terminates at the loop-tail of lobgmust
the edge-weights on each acyclic path is unique patn- also iterate through exactlyk times.
identifier The Ball-Larus algorithm reduces graphs with Example 1: Consider Figure 1: the patl®3-5-6  and

loops into DAGs while retaining all acyclic static paths usin . ) . . .
P g 4 P 9 1-2-3-5 are invalid two-iteration path as they start with the

a set of dummy edges — edges from a dummy entry htuxle i .
all targets of backedges and from each source of a backed op-hegd (nod@), and terminate at the .Ioop-tall (nods
espectively, but iterate through the loop just once. However,

to a dummy exit node. The algorithm then traverses th h 1-2-3-5-6 _ that also iterates th hthe | st
nodes in the DAG in a reverse topological order, assigning ¢ P I?d-tw " at_a SO tehra es_t droug te _f[)r?pjuts .
weights to each outgoing edge of a node as it is visited. nece is a val o-iteration path as It does not either star

The instrumentation code, added on the edges of the contraf!ith 2 qup—hgad or terminate at a I.oo.p-ta||. .
flow graph, uses a dedicated register to accumulate the edg- such invalid paths are not eliminated during path-

weights as the edges are traversed during the execution 8f/mbering, the “perfect numbering” property would be
the instrumented program. violated. Our k-iteration path-numbering algorithm perfectly

The key idea of the Ball-Larus algo- Numbers the k-iteration paths, identifying and eliminating
rithm is as follows: in Figure 3, if all the such invalid paths while assigning the path-identifiers (this
paths from the nodes;, n, andns were problem does not occur for acyclic paths).
uniquely numbered frorf to Ny, 0 to N, The program instrumentation algorithm uses an array of
and0 to N; respectively, then assigning a k counters to construct the k-iteration path-identifiers during
weight of 0 ton — ny, N; ton — ny and  the profile run of the program.

Figure 3: Num- N1+ No ton — nz will uniquely number Understandably, the number of static paths increases ex-

bering Paths each path from. o ponentially ink — for n static acyclic paths, there will
Our algorithm extends this idea to be O(n*) k-iteration static paths in the worst case. The

longer paths — paths that span a finite number of loomumber of static paths in a procedure is important: for a

iterations (sayk); we call such paths de-iteration paths ~ small number of static paths, the profiler can choose to
Definition 1: A k-iteration path is a path in the proce- yse an array-based implementation of the path-frequency
dure’s flow graph that either ends at table; otherwise, it would need an expensive hashtable-
« a backedge after the loop-body has been execkted pased implementation. To counter the same, our algorithm
times, or allowsmixed-mode profilingsmall, more interesting parts of
« the procedure exit. the procedure are profiled using k-iteration profiling, while

1. Dummy entry (connecting to the root node) and exit nodes (connecteé1CyCIIC path pl’OfIllng is used for the rest of the procedure.
from all the procedure return nodes) are added to each graph.



Figure 4: Two-iteration Loop-Unrolled
DAG.

Figure 5: Edge-
weights for tracing
two-iteration paths.

3. The Path-Numbering Algorithm

We define a few terms to ease the following discussiongqge from theStart

« unroll the loop, creatingk copies of it: as we are
interested in tracing paths that contdiniterations of
the loop, unrolling the loop reveals all such paths; a
noden' in the DAG is called the'” version of node:
in the CFG ifn’ corresponds to the nodein the i
copy of the loop;

« add a dummy edge from th&tart node to the first
version of the loop-head: paths originating from this
edge denote k-iteration paths @ that begin with the
loop-head;

« add a dummy edge from thi¢" version of the loop-
tail to the End node: paths terminating with this edge
denote k-iteration paths i&' that end at the loop-tail;

« remove the backedges.

Similar to acyclic path-profiling, the dummy edges create
new paths inGy, ) that either start at the loop-head or
terminate at the loop-tail. As the loop needs to be traversed
exactly k-times for such k-iteration paths, only the first
version of the loop-head G, (1) is a target of a dummy
node and only thé&'" version of the

loop-headand loop-tail are the target and source nodes ofzil-node is the source of a dummy edge to Hrel node —

a loop backedge (respectively). lAop-entry is a node in

this disallows all paths that are traversed fewer thdimes.

a loop that is the target of an edge from a node outside\s the loop is unrolled to contain exactky copies, and all

the loop; the edge is called thaop-entryedge. Similarly, a

the backedges are removed, all paths-inthat traverse the

loop-exitis a node in a loop that is the source of an edge t0 3y0p more thark times are absent 67 k) -

node outside the loop; the edge is called lh@p-exitedge.
We call the source of the loop-entry edge as pine-entry
node and the target of the exit edge as plost-exitnode.
Any node that is part of a loop is said to be d&oop-nodeof
L. An edgeu — v is called a loop-edge df if both u and

Example 3:Figure 4 shows the two-iteration loop-
unrolled DAG (G (2)) for the graph in Figure 1.

3.2. The Path-Numbering Algorithm

v are loop-nodes of. For a reducible graph, the loop-head  The goal of the path-numbering algorithm (Algorithm 1)
and the loop-entry nodes are the same. We add a dummy to assign unique identifiers to all the possible k-iteration
start node (denoteBtar) and a dummy end node (denoted paths in a given graply. Instead of unrolling the loops to

End) to the graph.

Example 2:In Figure 1, node2 is the loop-entry node
as well as the loop-head. Nodeand5 are the loop-exits.
Node 5 is also the loop-tail. Edgé —2 is the loop-entry
edge,5—2 is the backedge whild—6 and5—6 are the

loop-exit edges. Nodet and6 are the pre-entry and post-

exit nodes respectively.

createGy, ), we rather construct a new gragh from G,
simply by adding dummy edges from ti&art node to
each loop-head (we denote all such dummy edge$15y!)

and dummy edges from the loop-tail to tB®d node (we
denote all such dummy edges B%'%) to allow static paths
beginning at a loop-head and ending at a loop-tail (for a loop
L, we denote the dummy edges for it By*"* and §¢"¢;

In the following sub-sections, we discuss the path-numberingote that it is possible thaks!*rt= §5tert for two different
1 2

and path-identification algorithms. We assume a reduciblqbopsL1 and L,). The k" iteration through a loof. in G
graph with no nested |00pS. Similar to the Ball-Larus algO'CorrespondS to the traversal through Mé copy of L in

rithm, we ignore self-loops — in our algorithms, we assumeq,,,

the absence of self-loops.

3.1. The loop-unrolled DAG

Tht)a path-numbering algorithm simulates the traversal
through Gy, ) by iterating through loops irGs k-times
while ignoring appropriate edges in each iteration; the
Ignored  function indicates if an edge is ignored in a

Before discussing the algorithms, let us look at a speciaparticular iteration.

graph — the loop-unrolled DAG — which will enable us to

understand the following algorithms better. For k-iteration3.2.1. Numbering all the k-iteration static paths. The

paths, the k-iteration loop-unrolled DAGH;, ), can be

algorithm computes a set of weights for all edges in a graph

formed from a graph= via the following steps (for each G such that the sum of these weights along any path gives an

loop in the graph):

unique identifier for the respective k-iteration path. For this



purpose, the algorithm needs to compatemPaths(n),
the number of paths through each nadeFor example, in

edge-weights to its outgoing edges (similar to the Ball-Larus
algorithm). On entering a loop, it starts off by computing

Figure 4, there exists six paths through and seven paths theval andnumPaths values for the last iteration of the

through4’ . Hence,numPaths(2)=13

loop (iterationk) — as the graph is traversed in a backward
direction, thek*" iteration is seen first. However, on reaching

Algorithm 1 Path Numbering of k-iteration static paths; the loop-head, it ignores the loop-entry edges &fid"* (as
Ignoredgives the set of all edges that need to be ignored ijecided by thelgnored function); as the list pointer is

a particular iteration of the loop.

Input

g: graph with dummy edgess)

k: the k-iteration profiling parameter
Output

« val, cval: set of edge-weights and compensation edge-weights

begin
list : reverse topological sequence of nodes in g

k if w is a loop node

Yu € g, setitrNum(u) = { 1 otherwise

while u # Start do
u = Get the next item frondist
i = itrNum(u)
if w# End then
numPaths(u) := 0
else
numPaths(u) =1
end if
invalidPaths(u) := 0
for all edges(e : u — v) € g do
if —=(Ignoredg, 7)) then
val(e, 1) := numPaths(u)
numPaths(u) += numPaths(v)

if i <k Awué€ {{loop-nodes ofL} U {Start}} then

cval(e, 1) = invalid Paths(u)
if edgee € loop-exit-edges of then
invalidPaths(u) += numPaths(v)
else
invalidPaths(u) += invalidPaths(v)
end if
else
cval(e,i) =0
end if
end if
end for
if w = head-node of some loop A i > 1 then
Setitr Num(z) = (i — 1) for all nodesz € L
Set the list pointer to the tail node of the lodp
end if
end while
end

Function: Ignored(u — v: edge, i: iteration number)

if i >1Au— vis a loop-entry edge/ u — v € §5t%7t then

returntrue

end if

if i<kAu—ve s then
returntrue

end if

if © =k Au — v is the loop backedgthen
returntrue

end if

returnfalse

set back to the loop-tail, the algorithm is forced to follow
the backedge again, performing another backward traversal
of L, now computing theval and numPaths values for
iterationk-1 . The algorithm continues traversing the loop
for a previous iteration each time till the first iteration is
reached. On reaching the loop-head in the first iteration,
it is the backedge that is ignored, and the algorithm exits
the loop via the loop-entry edges adg'®"t. The vector
itrNum(n)  keeps track of the iteration number for which
the computation ofnumPaths(n) and val(n,i) still
needs to be done. It is easy to see that the k-iteration paths in
Gs — ignoring the edges ignored by tihgnored function

— is exactly that inG,x)-

The computation ofval and numPaths is similar to
the Ball-Larus algorithm; however, instead of being simple
integers,val for an edgee is now a vector indexed by the
iteration number. AlsonumPaths(n) gives the number
of paths from noden corresponding to the last iteration
for which this value was computdds the order of visiting
the nodes inGs simulates a reverse topological traversal of
Gru(ry, the value ofnumPaths(n) for the last iteration
for which n was visited is sufficient to computeaal for all
remaining iterations).

3.2.2. Eliminating invalid k-iteration paths. The loop-
unrolled DAG,G (1), contains all the static k-iteration paths
for a given graphG; however, thevalid k-iteration paths
are still lesser. The DAGH;, () also includesinvalid k-
iteration paths: paths id7 that begin at a loop-headand
iterate through the loop fewer thak times exiting via a
loop-exit edge in an iteratiork . In Gy,(x), these paths
originate from aj***"* edge, and later follow an exit-edge
of ani*"* copy of the loop, where i<k.

For example, in Figure 4, for the paths from tBeart
node that reacl?’ , the ones beginning with the dummy
edgeStart — 2’ and passing vid’ — 6 or 5’ — 6 would
be invalid as these paths originate from a dummy edge, and
exit the loop in the first iteration itself; having three such
paths,invalidPaths(2")=3

In our algorithm, these paths are compensatedcuia-
pensation weights (cval)an additional set of weights as-
signed to edges such that using. ., val(e, i) —cval(e, i)
as the edge-weight instead d . ., val(e, i) for appro-
priate edges in an iteration, still numbers the valid paths

The Path-Numberingalgorithm (Algorithm 1) traverses uniquely. This compensation is applied for an eegien G
the nodes irGs in a reverse topological order, computing the if:
number of paths originating from each node, and assigning « the edgee appears in a patp that commences with



0 otherwise

; i start __ Sstart ;
[ path-identi fier(p) Z val(e, i) — { cval(e,i)  If o epA(e=05""""V(u e LA <E)) (]ﬁ

eu—vEP

gstert (which implies that inG the path starts with a Table 1: An execution trace of the path-numbering algorith@n.
loop-head) i_egztart € p; and andE represent thé&tart andEnd nodes respectively.

o either
— e is the dummy edgé;'*"* i.e. e = §5t*"t, or

Reverse Topological Order : [E, 6, 5, 3, 4, 2, 1, S]

— e:u— vis either a loop-edge or a loop-exit edge, —ol© 11w [v(eiw) n(w) [ evleilw) (v ]
) . . . "[6]6—-E]| 1 0 1 0 -
ande being traversed for thé” iteration of the 5| 5.,6]| 2 0 1 0 }
loop L, wherei<k i.euel A i<k. 5|5—-E| 2 1 2 0 -
Hence, after compensation, the path-identifier for a valid k- i ii 2 3 8 2 8 ]
iteration path is given by equation (1). 4|1 4-6| 2 2 3 0 -
With these identifiers, not only are the paths numbered 2 gﬂi ; (2) g 8 ]
uniquely, but alsoperfectly. if there aren \(alid k—iteration_ 5552 1 0 5 0 0
paths through a node, the paths through it would be assigned 5 | 5—-6 | 1 5 6 0 1
path-identifiers from0 to n-1 , with no two valid paths 2 2—’2 i 8 g 8 i
having the same identifigr. o 446l 1 6 7 1 >
Refer to the computation ofvalidPaths andcval 2|2-3] 1 0 6 0 1
in Algorithm 1: invalidPaths(n) computes the num- i iﬁ‘z‘ i g ig é 8
ber of invalid paths passing through the nodefor the s|ls—1| 1 0 13 0 0
last iteration for which this value was computéf this S|s—2]| 1 13 26 0 3

node was reached vi&'*t. Traversing the nodes of the  (u: selected node; e: selected edge; i: itrNum;

loop in reverse topological order, the algorithm computes V: vali n: numPaths; cv: cval; in: invalidPaths)

the number of such invalid paths through each node, and

accordingly assigns compensation weights to the outgoinghe higheswal , but not allowing the partial path-identifier
edges (the number of invalid paths through a node is equalathWeight (adjusted with the compensated edge-weight
to the sum of the invalid paths through all its successors)of the edgee) to exceedn. Once an edge is selected
The number of invalid paths via a loop-exit edge— v  to be on the pathpathWeight is updated by adding the
is accounted for by the number of possible paths througi¢ompensated edge-weight efto it. The edge-weighval

v: for each path that originates from an ed§@** and is compensated with the compensation weigidl in the
reaches, all paths that exit via the edge— v are invalid ~ following cases:

— and that is exactly equal to the number of paths through « the current edges — v € §%t9"; or

v. The values focval(n,i) is computed using the values o the §5'“"* edge was included in the path to the current
for invalidPaths(n) ; the computation is similar to how edgeu — v, u € L; and the algorithm has not yet
val(n) is computed usingiumPaths(n) . iterated through the loo@ k times.

Example 4:Figure 5 shows the values foal computed  The algorithm accumulates edges till a whole path from the
by the path-numbering algorithm. The weights for the twostart node to theEnd node is formed. The algorithm
iterations are shown separated by;’the compensation needs to be run on the graghy, i.e. before the dummy
weights for the iteration number 1 are indicated in theedges are removed.
brackets. The edges not having any weights (or having a

weight zero) are left unmarked. 3.4. Correctness Results
Table 1 shows the execution trace of how the number of

paths(n), the number of invalid paths(in), edge-weights(v), | et numPaths(n) denote the number ofill paths

and compensation edge-weights(cv) get computed for thighrough a node rinvalidPaths(n) denotes the number

graph. of invalid paths through a node € L, whenn lies on a
longer path originating from the edgg’*"*.

3.3. The Path Identification Algorithm We prove the correctness results on the loop-unrolled

DAG Gy k) rather than the CFG: as it is actuallyGy,, i)
Given a path-identifien, thePath Identificatioralgorithm  that is traversed by the path-numbering algorithm (the con-
(Algorithm 2) finds a valid path from th&tart node to dition —(Ignored(e,)) controls this traversal). Each vertex-
the End node such that the sum of the edge-weights is equaterationNumber paifv, i) ,1 < i < k forms an unique node
to n. Beginning at theStart  node, for each node identified in Gy, ) with itrNum((v, i))=i, indicating the copy of the
to be in the path, it greedily select an outgoing edge withoop thatv belongs to. Hence, in our proofgal(v) and



numPaths(v)
invalidPaths(u) = Z tnvalidPaths(v)
vEsuce(u) 0

if we L, itrNum(u) <k, u— v is loop-exit edge of L
if u,v € L or u=Start (2)
otherwise

Algorithm 2 Path Identification

Input
e g: graph with dummy edge<:()
« n: path-identifier whose path is to be identified
o k: the k-iteration profiling parameter
« val, cval: edge-weights and compensation edge-weights

Output
« path: set of edges identifying the path for identifier n
begin
u = Start
pathWeight := 0
path :=[]

Vz € g, setvisitCount(z) := 0

while v # End do
1 := visitCount(u)
if w = loop-tail of loop L then
SetwvisitCount(x) = (i + 1) for all nodesz € L
else
visitCount(u) += 1
end if
i := visitCount(u)
maxVal == —1
mazWeight :== 0
for all edgese : u — v A — Ignoredg, 7) do
if (e=d§t"t) v (6519 Npath #0 Au € LA i# k) then

cweight = wal(e, 1) — cval(e, 1)

else
cweight = wval(e,1)

end if

if val(e,i) > mazVal A pathWeight + cweight < n then
w = v

mazxVal := val(e, 1)
maxWeight := cweight
end if
end for
pathWeight + = maxWeight
Add v — w to path

U =w
end while
end
cval(v) take single arguments (instead (v, i)
andcval(v, i) as used in our algorithm).

for the End node.

Induction Step: Consider a nodeat a heightH > 0.

Computation of numPaths(v)Surely all paths from its
successors are numbered uniquely and perfectly (by induc-
tive hypothesis) as they are at a height less tHaand the
graph is a DAG. Also, the number of paths through a node is
simply the sum of paths through all of its successors; thus,
numPaths{)=>, ¢ g,c(u) numPaths(v).

Computation of invalidPathés): The number of
invalid paths through a node is equal to the sum
of the invalid paths via all its outgoing edges:
invalidPaths(U)3_, ¢ g,,cc(y) invalidPathsVia(u — v).

Case | If usStat andu — v € %9 then
invalidPathsVia(u — v) = invalidPaths(v).

Case It If u # Start andu does not belong to a loop,
invalidPathsVia(u — v) = 0 as there cannot be such
invalid paths outside loops.

Case Il Let uw € L, whereL is a natural loop:

o If v ¢ L anditrNum(u) = k; thenu — v is a loop-
exit edge forL. Also, asitrNum(u) = k, all paths
originating fromdé?*e"* that reachu have already sedn
iterations ofL; henceinvalidPathsVia(u — v) = 0.

o If v ¢ L anditrNum(u) < k; thenu — v is a loop-
exit edge forL. Also, asitrNum(u) < k, all paths
originating fromé7te"* that reachu have not yet seen
k iterations ofL. Hence,invalid PathsVia(u — v) =
|67t | % numPaths(v) (where |§7¢"t| denotes the
number of§?*2"t edges in the graph): a path originating
from §7te"t that passes through the loop-exit edge-

v is an invalid k-iteration path (as the path began with
the loop-head fol, but exited the loop viau — v
before iterating through the lodp-times). Also, for a
loop X, there can be only on&*"* edge, sqé7te"| =

1.

e If v € L, thenu — v is a loop edge forL:
invalidPathsVia(u — v) = invalid Paths(v).

In our proofs, we often consider the following disjoint set summarize, the invalid paths for a nodeis given by

of paths:

o« N: A set of normal paths that begin with the edge
start — entry, whereentry is the actual entry-point

to the procedure.

. Dz A set Ofdummy pathS that begin with the dummy to numPaths(u)_inva“dpaths(u) -1

edged;'ert,
Lemma 1:The

invalidPaths(v)
nodev in the k-iteration loop-unrolled DAG.

values

Proof: The proof is by induction on the height of a

numPaths(v) and
are computed correctly for each

equation (2).
O

Lemma 2:For all pathgp € D;, thevalid sub-paths from
a nodeu are assignedonsecutivepath-identifiers (fron0
) by the path-
numbering algorithm (while the lastvalidPaths(u)
path-identifiers remain unassigned).

Proof: We will prove the lemma by induction on the

height of the DAG.

Base Case: The theorem is trivially satisfied for height

node in the DAG i.e. the length of its longest path to theH=0.

End node.

Base Case: It is trivially satisfied for height = O, i.e.

Inductive Step: Consider a node at a heightH > O.
Now, if u ¢ {Start}UL;, oru € L;Aitr Num(u) < k; then



invalidPaths(u)=0 — as there are no invalid paths, in
these cases the lemma is trivially satisfied.
Otherwise, the edge — v; may be:

« a loop-exit edge for the loofd; with itr Num(u) <
k: in this case,invalidPathsVia(u — wv;) =
numPaths(v;), i.e. all the paths through this edge
are invalid. So, all theaum Paths(v;) path-identifiers
throughu — v; can be considered unassigned,;

o either3'*™, or an edge inL; with itr Num(u) < k:

in this case, invalidPathsVia(u — wv;) =
invalidPaths(v;), and all the wvalid paths
through v; are consecutively numbered frond

to numPaths(v;) — invalidPaths(v;) — 1 by the
induction hypothesis.

Thus, the valid paths through — v; (wherew; is the first
successor ofi) are numbered frord to (numPaths(vy) —
tnvalidPathsVia(u — v1)) — 1. In general, the algorithm
numbers all the valid paths till the edge— v; from 0 to
> j<i(numPaths(v;) — invalidPathsVia(u — vj)) — 1.
As the valid paths throughv — v;; are also consec-
utively numbered, the paths tillk — v;.; get consec-
utively numbered from0 to ..., (numPaths(v;) —
invalidPathsVia(u — v;)) — 1.

Hence, all valid sub-paths for the paths € D;
through the node u get consecutively numbered from
0 to 3., (numPaths(vj) — invalidPathsVia(u —
v;)) — 1 which is exactly same aswumPaths(u) —
tnvalidPaths(u) — 1. The last invalidPaths(u) path-
identifiers, thus, remain unassigned.

[

Theorem 1:The path numbering algorithm uniquely and
perfectly numbers all the valid paths.

Proof: We again prove the same by induction on
the heightH of the DAG. Let the successors of be
v1,vs,...,U,. The edge weights are set asql(u —
vi) = Y icn,numPaths(v;) and cval(u — v;) =
> ien invalid Paths(v;).

We first prove the theorem for the sub-paths of each o
the following disjoint set of paths separately:

. to
1) If p € N, all the paths are valid and hence no numPaths(v;) — invalidPaths(v;) — 1.

compensation weights are used.

Base Case: The theorem holds trivially for height

= 0.

Induction Step: Consider a noda at a height

H > 0. By induction hypothesis, the sub-paths o
p from each of its successor nodg are num-

bered uniquely from0 to numPaths(v;). As, the

2) If p € D,, all paths through the loop-exit paths of the
loop L; are invalid for all copies of the loop tik-1 .
Base Case: The theorem holds trivially for heigtO.
Induction Step: Consider a nodeat a heightH > 0.

By induction hypothesis, the valid sub-pathgdfrom
each of its successor node are numbered uniquely
from O to numPaths(v;) — invalidPaths(v;) —

1, while the lastinvalidPaths(v;) identifiers are
unassigned by Lemma 2. We may assign these
unassigned path identifiers to other valid sub-paths,
i.e. ones that pass through the next successor
node. So, ignoring all the invalid sub-paths, the
valid sub-paths throughu — wv; are numbered
from > . (numPaths(v;) — invalidPaths(v;))

to >, ,(numPaths(vj) — invalidPaths(vj)) +
numPaths(v;) — invalidPaths(v;) — 1. Note that
numbering of sub-paths through each edge—

v; leaves)_,_; invalidPaths(v;) path-identifiers of
the } ., numPaths(v;) paths unassigned. Concep-
tually, to ignore the invalid paths through each of
the edgesu — wv;, the path-identifiers for edges
u — wvj,j > ¢ are “shifted” byinvalidPaths(v;).
The total compensation (or the shift) that needs to be
assigned to any edge — wv; is cval(u — v;) =

> i<iinvalidPathsVia(v;). These path identifiers
for all the valid paths are:

« unique as subtractingval(v;) only allows assign-
ment of the unassigned path-identifiers to other
valid sub-paths but never overlaps it with already
assigned path-identifiers of valid paths;

« perfectas path-identifiers of all the invalid sub-
paths are now assigned to valid sub-paths (or
remain unassigned with values greater than the
path-identifier of the last valid sub-path).

Now, consider theStart node: the paths through its
outgoing edges are numbered uniquely and perfectly as
proved above. The algorithm also numbers the paths
fhrough an edgestart — wv; in exactly the same
manner: fromy_ . _;(numPaths(v;) — invalidPaths(v;))

> j<i(numPaths(v;)  — invalidPaths(vy)) +

By exactly

the same argument as above, the path-identifiers for all the
paths from theStart

node are also unique and perfect.
O

f .
4. Program Instrumentation

number of the sub-paths from u to all its suc-4.1. Removal of the dummy edges

cessor fromwv; to v,_; is Zj@ numPaths(u —
vj), the algorithm numbers the sub-paths through
u — v from 3. numPaths(u — wv;) to
(X_j<inumPaths(u — v;)) + numPaths(v;) — 1

— these are clearly unique and perfect.

As the dummy edges do not represent actual control-flow,

for instrumentation, their effect needs to be “simulated” by
adjusting their weights on the weights of the actual control-
flow edges appropriately. The dummy edges can be removed



in a manner exactly similar to that described by Ball andA'QOI’ithm 3 The Instrumentation Algorithm: the notation
Larus[2]: to remove a dummy eddg®art — v, the weight ~X<<Y implies that the entity, which can either be a node
on the edge is subtracted from all incident edgew @ind ~ OF an edge, is instrumented with profiling codle

added to all outgoing edges wof Input
For k-iteration profiling, we also need to be careful about « g: control-flow graph
updating the corredteration edge-weights for a loop: » k: the k-iteration profiling parameter .
« val, cval: edge-weights and compensation edge-weights after remov-
« on removingd;'“, the edge weights of only the first ing dummy edges
iteration of the loopL are affected; Output
« on removings$"?, the edge weights of only thgt" o the instrumented program
iteration of the loopL are affected. begin
However, for the exit-edge of a loop, the edge-weights ;E;O]:z'_f;g = = efel] =0
for all the iterations of L may be affected on removal of a Start« .= o
dummy edge of another lodp . Selectimplementation(numPaths(g))
For example, consider figure 8: the loop-unrolled DAG forf(i"aﬁdigzsoeelcfg dok_ldo
shows that on removing;'*"*, the edge-weight on it needs if cval(e,)£ 0 A i # k-1 then

to be added to the edge-weights of both its incoming edges ! _ val(e,i) — cval(e,q) if fs=true
3’ — 4’ and3” — 4'; this indicates that the edge-weights &« il += { val(e, ) otherwise
for both the iterations of the edge — 4 in the original else '
graph needs adjustment. Similarly, on removiffg?, the if val(e,i) # 0 then :
edge-weights of both the iterations ®f— 6 get affected. e« c[-1] += val(e))

Example 5:The adjusted graph weights on removing the enzni? "
dummy edges can be seen in Figure 6. end for
end for
. . for all k-iteration profiled loop-backedgesce cfg do
4.2. The Instrumentation Algorithm if (f,) then IncrPathFreq(clitr])
for i = k-1, k-2, ..., 1: c[i] := c[i-1]
The instrumentation algorithm (Algorithm 3) needs e« i‘;[o(]itr:iok_l) then {
accumulators (0], ¢[1], ..., c[k — 1]), wherec[i]  accu- itr += 1
mulates the partiafi+1)-iteration path-identifier of a loop if (itr = k-1) then fs = true
in execution; as k-iteration paths can at moskbigerations d !
.. end for
long, k SF‘Ch Coun.ters aré sufﬁme_nt. For example, say a for all k-iteration profiled loop-exit edges € cfg do
program is executing theo'" iteration of a loop — for c[0] = c[itr]
two-iteration profiling, the countec[0] will accumulate e fOri=1,2 .. klicf]:=0
the partial path-identifier for the acyclic path executed in the IJ:? 5?}""89
20" iteration whilec[1] will accumulate the two-iteration —

. i . . . end for
path-identifier spanning thed” and the20™ iteration. The  or ail acyclically profiled loop-backedgese cig do

algorithm also needs a flagy) to remember if or not the IncrPathFreq(c[0])
k-iteration path starts with the loop-head (i.e. the path in €| c[0] := 0
the loop-unrolled DAG starts witlds'%"t). As, at leastk end for

for all edges du — End] € cfg do
e «| IncrPathFreq(c[0])

end for
end

iterations through a loop is needed to form a k-iteration path,
fs also indicates if the loop has already seen k iterations.
The saturating counteiit{ ) identifies the initiatingk-1
iterations of the loop. It is important to identify the iterations
i < k, as till then the path-counterdj],j > ¢ contain
garbage values. Aftek iterations of the loop, all the path
counters contain valid values.

The path-frequency table is maintained either as an arra}V the respective procedureStart node, initializes the
or a hashtable; the functioBelectimplementation ocal variables and selects an appropriate implementation of
selects of one of them depending on the number ofhe path-frequency table.
static paths in the current procedure. The function To accumulate the path-identifiers, as in the Ball-Larus
IncrPathFreq(p) increments the frequency count of the scheme, our algorithm splits appropriate edges and adds
path with identifierp while profiling. Pointers to the path- instrumentation code. For an edge in the CFG, the
frequency tables for each procedure are maintained in &” counter in the counter arragfi-1] , is incremented
program-wide global table. The initialization code, insertedwith the edge weightval(e,i) , adjusted with the




i (f) then Table 2: Execution trace of the instrumented code.
incrPathFreq(c[itr cl0]+=-13 ’ Edge ‘ ¢ ‘ f ‘ i ‘ Iner ‘ Path
c[1]:=c][0]; c[0]:=0 1—2 | [-13,0] | false 0
(f,itr):=setf(itr) c+=[(18:19), 2] 2.3 [0, 0] false
3—5 [0, 1] false
5—2 [0, O] true
2—4 [18, 2] true

c+=[(5:6), 2] 4—5 | [18,3] | true
c[0]:=c[itr]; c[1]:=0 5—2 [0, 18] true

f.=false; itr:=0 23 | [13,18] | true
incrPathFreq(c[0]) 35 | (1319 | true

c+=[5, -1]

c[0]:=c]itr]; c[1]:=0

f:=false; itr:=0 14
incrPathFreq(c[0])

Y 5—2 | [0,13] | true

6 2 — 4 | [18,15] | true

4 — 5 | [18,16] | true

1-2-3-5-2-4-5

19 2-4-5-2-3-5

PrlRr|lr|P|RP|[RP|[P|RP|rR|r|O|O
w

Figure 6: Remov-Figure 7: The graph shows the instru-

ing dummy edges. mented CFG for two-iteration profiling. 5—2 | [018 | tue 16 | 235245

4 —5 | [18,16] | true 1
compensation-weightval(e,i) , if any. 56 | [150] | false | 0 15 | 2-3-5-2-4-56
For the backedge of loops profiled using k-iteration pro-
filing, the path-frequency table can be updated only dfter
iterations as a k-iteration path is not created until the engbrevious row of the table entry). Hence, the algorithm was
of the k" iteration. Each path-accumulatofi] loads the able to identify that the path seen till theh2-3-5-2 is
partial path-identifier currently held ig[i-1] and c[0] not a two-iteration path. The next time the edge is seen, the
is cleared. The iteration countér is incremented (if not two-iteration path identifieB is identified and its frequency
saturated); ifk iterations of the loop have been seen, theincremented, which corresponds to the two-iteration path
flag fs is set. 1-2-3-5-2-4-5
For exit-edges of all k-iteration profiled loops, the partial
path-identifier of the last valid path accumulator is trans-5. Mixed-Mode Profiling: Profiling different

ferred toc[0] — if the loop has been iterateid times, regions with varied length paths
wherei<k , thenc[i-1]  is loaded intoc[0] ; otherwise,

clk-1]  is loaded intoc[0] (this is because when the  tne | jteration profiling algorithm can be used in mixed-
program is not executing in a _Ioop, onbf0] is needed mgge: different regions of the same procedure can be pro-
to accumulate the path identifier). The path accumulator§eq with different values of k, thereby keeping the number
c[1..k-1] , the iteration counter and the flag are cleareds ciatic paths in check — the “interesting” regions may be

to make them ready the the next iteration.  profiled using larger values of k while using acyclic profiling
The paths leading to thEBnd node of the procedure is g, the remaining procedure.

updated along the edges leading to &l node. For mixed-
mode profiling, all acyclically profiled loop backedges have
instrumentation code exactly as for the Ball-Larus scheme

Example 6:Figure 7 shows the instrumented CFG for
Figure 1 for two-iteration profiling. Table 2 shows how
some of the two-iteration paths are identified for the trac
1-(2-3-5-2-4-5) 1006 |

The notation used in the figure is explained below:

Mixed-mode profiling is also useful for nested loops: k-
iteration profiling of nested loops needs multiple sets of edge
weights for the inner loop — one of each iteration of the
outer loop. Instead, one may use k-iteration profiling for the
innermost loop and acyclic profiling for the outer loops. If
&he profiling information for an outer loop is desired, all
the contained inner loops can be collapsed into single node,
effectively reducing the outer loop into an innermost loop.

« the flag /5 is shown simply a ; Such schemes for profiling programs at various granularity
o c+=[a,b] implies{c[0]+=a; c[1]+=b;} : is suggested in [5], [6].
« (a:b) refers to the selectior(: fs?a:b) ; Figure 8 illustrates mixed-mode profiling: it shows an

« the functionsetf()  updates the values of botfs  example graph, its mixed-mode loop-unrolled DAG and the
anditr  according to the following code segmeift:  static paths recognised by the mixed-mode profiler.
(itr < k-1) then { itr += 1; if (itr It is easy to see why the path-numbering and path-
= k-1) then f := true; } : identification algorithms work for mixed-mode profiling; in
For example, when the edge— 2 is seen for the first time, the interest of space, we provide an informal argument using
no edge is recorded as the valuefofvasfalse (see the Figure 8(a):



1-2-3-2-3-4-5-4-5-6-7  1-2-3-4-5-6-7 the acyclic and k-iteration path-profiler, currently lacks the
1-2-3-2-3-4-5-4-5-6  1-2-3-4-5-6 optimizations described by Ball-Larus, like optimizing the

1-2-3-2-3-4-5-4-5 2-3-2-3-4-5-4-5-6-7 ber of ed be | d 11 and lacing th
1-2-3-2-3-4-5-6-7 2.3.2.3-4-5-4-5-6 number of edges to be instrumented [1] and replacing the
1-2-3-2-3-4-5-6 2-3-2-3-4-5-4-5 first increment of a counter by a load instruction (which also
1-2-3-2-3 2-3-2-3-4-5-6-7 removes the initialization of counters).
1-2-3-4-5-4-5-6-7 4-5-4-5-6-7
1-2-3-4-5-4-5-6 4-5-4-5-6 Tr:‘e f(':l(')St of
1-2-3-4-5-45 4545 Eat lpro .'f.mg gatn Table 3: Slowdown factor
e classiie '.n O of keiteration profiing  w.r.t
‘ two categories: acyclic path (BL) profiling
/| Figure 8: Mixed-mode profiling: The computational cost (FzcTimeg_iwr /Exclimesr).
i 1 loop Ls is profiled with k=1 (acycli- (the overhead of the o ter| 31t
i i cally), while loopsL; and L with k=2 instrumentation  code Program | 2-Tir| 3_1ir
; / (the backedgé — 4 occurs at most once that comoutes the compress| 1.14 | 3.92
in the paths while the backedg8s— 2 . . .p P - i
and5 — 4 occur twice in some of the  path-identifiers for cre 112 | 120
paths). each k-iteration path edn 156 | 1.87
] o ) traversed) and th&able- fdct 1.06 | 1.10
« Consider disjoint loops that use different values of theypgate cost (the cost fbcal | 109 | 119
parametek: Assume the absence of the edge- 4.  f updating the path- i 157 | 175
Let L, _use kzkl_ while Ly use k=ky. As '_[he path- frequency table using ffdctint 100 | 110
numbering algorithm numbers the paths in a bottom+pe path-identifiers). udemp | 121 | 4.47
up fashion, the paths from nodeare still numbered  paih profilers generally s o2 | —

correctly as the valué; does not influence it in any e an array-based
way. Similarly, numbering paths for the nodes Bf  jmplementation of the

is only dependent on the number of paths through thg,ath-frequency table if the number of static paths is small;
node4 (which is computed correctly by the argument they switch to an expensive hashtable-based implementation
above). Hence, all the nodes In are also numbered f the number of static paths crosses a certain threshold. We
correptly. ) _use small programs[8] as benchmarks so that the frequency
« Consider nested-loops where the outer loop is acyclizounts for both acyclic, two- and three-iteration profiles
cally profiled: LetL, be k-iteration profiled whilels  can pe kept in an array (for most cases) to give an exact
is acyclically profiled. Figure 8(a) shows the 100p- comparison of the computational overhead of k-iteration
unrolied DAG for this case; the dummy edgesirt —  profiling. We also show how fast the number of static paths
4" and6 — End are added to take care of acyclic paths grow in these programs, and instances where the use of
due to backedgé — 4. It is easy to see that the path- paghtaple slows down the programs significantly, to indicate
numbering algorithm would still be able to number all ¢ table-update cost of k-iteration profiling.
the paths in this DAG uniquely and perfectly. Table 3 shows the program slowdown factors (ratio of
The key idea in mixed-mode path-numbering is: whilethe instrumented program’s running times for collecting
numbering a node, we just need to knowhe number of k-iteration profiles over that for collecting acyclic path
paths through its successor nedand nothow the paths in  profiles): for most of the benchmarks, the ratio is small

the successor nodes were numbered — indicating that the computational cost does not increase
significantly from acyclic to k-iteration profiling.
6. Experimental Results A few programs, however, show comparatively large

slowdowns ¢ompress and ludcmp for three-iteration

We have implemented acyclic and k-iteration profiling for profiling, and ndes for two-iteration profiling). Table 4
C source code using Lance[7]. It profiles each function ingives a comparison of how the number of static paths
a given program, using separate tables for keeping the paihcrease for two of these programs. The progrades
frequency counts for each procedure. The profiler attemptslows down significantly because the profiler switches to a
to use an array-based implementation for a path-frequendyashtable-based implementation of the path-frequency table
table if the number of static paths is low, but switchesfor the functioncyfun (14294 two-iteration static paths).
to a hashtable-based implementation if a procedure ha&s this function has more tha80,000 three-iteration
more than 6000 static paths. It completely aborts profilingstatic paths, the three-iteration profiler aborts profiling this
a procedure if the number of static paths in it exceeddunction; hence, we do not provide any data for this case. For
60,000. For nested loops it uses mixed-mode profiling: onlycompress , the slowdown is very small for two-iteration
the innermost loop is k-iteration profiled while the outer profiling but increases significantly for three-iteration profil-
loops are acyclically profiled. Our implementation, both ofing due to the same reason — the number of static paths in



Table 4: The table shows the number of static BL paths, and & Conclusions
Iteration paths for varying values df. (x indicates that path-
numbering for the procedure was aborted as the number of stati

paths in the procedure exceeded 60,000) Ball and Larus proposed an algorithm to profile acyclic

paths in a program efficiently; k-iteration path profiling is

| Program | Function [ BL | k=2 | k=3 | k=4 | k=5 | a generalization of the Ball-Larus algorithm, allowing paths
compress | 713 | 5887 | 44063 | X x spanning multiple loop iterations. Such longer paths would
compress| cl_hash | 10 | 16 24 34 46 be useful in program understanding and profile-directed
writebytes | 27 | 84 | 255 | 768 | 2307 | ompjler optimizations. The k-iteration profiling algorithm
output | 416 | 1328 | 4064 | 12272 | 36896 |  4)i0ws mixed-mode profiling: profiling different parts of the
des | 568 | 5318 | 35800 | X x same procedure with different path lengths, allowing the
ndes ks 276 | 466 | 710 | 1008 | 1360 user to focus on the interesting regions, while keeping the
cyfun | 429 | 14294 ] X X X profiling cost low. A base profiler can be used to indicate

hot regions of a procedure; k-iteration profiling can then be

the functioncompress increases fronb887 two-iteration . . .
. . ) o used on these hot regions to generate better information.
paths to44063 three-iteration paths; thus requiring the : : S o i
Use of k-iteration profiling in combination with some other

hashtable-based implementation for three-iteration profiles; . L9
The reason for the slowdown @idcmp is also same: the recent efforts in profiling like SPP [6] and PPP [4] seems

function ludecmp in this program hafl144 two-iteration SJZTL:E?S we are interested in exploring such schemes in
paths an®110 three-iteration paths. '
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