
Profiling k-Iteration Paths : A Generalization of the Ball-Larus Profiling Algorithm

Subhajit Roy
Department of Computer Science and Automation

Indian Institute of Science, Bangalore, India
subhajit@csa.iisc.ernet.in

Y. N. Srikant
Department of Computer Science and Automation

Indian Institute of Science, Bangalore, India
srikant@csa.iisc.ernet.in

Abstract

The Ball-Larus path-profiling algorithm is an efficient
technique to collect acyclic path frequencies of a program.
However, longer paths — those extending across loop it-
erations — describe the runtime behaviour of programs
better. We generalize the Ball-Larus profiling algorithm for
profiling k-iteration paths — paths that can span up to to k
iterations of a loop. We show that it is possible to number
such k-iteration paths perfectly, thus allowing for an efficient
profiling algorithm for such longer paths. We also describe a
scheme for mixed-mode profiling: profiling different parts of
a procedure with different path lengths. Experimental results
show that k-iteration profiling is realistic.

1. Introduction

An efficient algorithm for acyclic path profiling — profil-
ing paths that either terminate at backedges or at procedure
exits — was proposed by Ball and Larus [2]. The key idea
of the algorithm was to assign unique path-identifiers to all
acyclic paths in a manner such that the paths-identifiers of
the traversed paths can be efficiently reconstructed during the
profile run of the program. More importantly, the algorithm
computes aperfect numbering of these path-identifiers: if
there aren static acyclic paths in the program, the paths are
assigned identifiers from0 to n-1 .

Though acyclic path profiles are very useful at driving
many compiler optimizations, more opportunities can be
exploited in the presence of information about longer paths
— paths extendingacross loop iterations. Figure 1 shows
a control-flow graph being profiled, and the frequency
counts for acyclic and two-iteration paths (paths including
two iterations of the loop) for a program trace reading
1-(2-3-5-2-4-5) 100-6 — within the loop, the acyclic
paths2-3-5 and2-4-5 execute alternately. Hence, it may
be beneficial to unroll the loop and perform trace scheduling
along the path2-3-5-2-4-5 . Note that this information is
lacking in the acyclic path profile; it only shows that both the
acyclic paths2-3-5 and2-4-5 are equally likely to occur

Subhajit Roy is supported by doctoral fellowship provided by Philips
Research, India.

3

1

2

4

5

6

Acyclic freq

1-2-3-5 1

2-3-5 99

2-4-5 99

2-4-5-6 1

2-Itr Path freq

1-2-3-5-2-4-5 1

2-3-5-2-4-5 98

2-4-5-2-3-5 99

2-3-5-2-4-5-6 1

Figure 1: Motivation for k-iteration path profiling

in the trace. The only conclusion that can be drawn out of it
for the longer set of paths is that the paths2-3-5-2-4-5
and 2-4-5-2-3-5 as well as the paths(2-3-5) 2 and
(2-4-5) 2 are all likely to be hot. Acyclic paths — due to
the fact that they terminate at loop backedges — do not give
any information about the correlation among the loop paths.
Multiple-iteration paths can uncover such information.

Tallam et al. [3] have proposed the use of longer paths
— paths that cover two iteration of a loop — to enable
multiple optimizations. They estimate two-iteration paths
within loops from Overlapping Ball-Larus paths— paths
that extend a fixed number of nodes beyond the backedge.

In this paper, we propose a profiling algorithm to col-
lect frequencies for such longer paths. In contrast to the
algorithm given by Tallam et al. [3], which gives anap-
proximation of the frequency counts for the longer paths,
our algorithm provides theexact frequency counts. Our
algorithm is a generalization of the Ball-Larus profiler: it can
provide information about paths that span multiple iterations
of a loop; for one-iteration paths, it reduces to the Ball-Larus
profiler.

However, when profiling longer paths, the number of
static paths increases tremendously. Interestingly, our algo-
rithm allows mixed-mode profiling: use of different path-
lengths (in terms of the number of iterations considered for
the various loops) for different loops in the same procedure.
Hence, the program analyst may use higher iteration paths
for “interesting” regions of the procedure while counting
acyclic paths for the remaining program; thus controlling
the number of static paths.

Following are our contributions in this paper:

• we generalize the Ball-Larus algorithm for more gen-

Acyclic Paths

0: 1-2-3-5-6 1: 1-2-3-5 2: 1-2-4-5-6 3: 1-2-4-5 4: 1-2-4-6 5: 2-3-5-6 6: 2-3-5 7: 2-4-5-6 8: 2-4-5 9: 2-4-6

Two-Iteration Paths
0: 1-2-3-5-2-3-5-6 1: 1-2-3-5-2-3-5 2: 1-2-3-5-2-4-5-6 3: 1-2-3-5-2-4-5 4: 1-2-3-5-2-4-6 5: 1-2-3-5-6
6: 1-2-4-5-2-3-5-6 7: 1-2-4-5-2-3-5 8: 1-2-4-5-2-4-5-6 9: 1-2-4-5-2-4-5 10: 1-2-4-5-2-4-6 11: 1-2-4-5-6

12: 1-2-4-6 13: 2-3-5-2-3-5-6 14: 2-3-5-2-3-5 15: 2-3-5-2-4-5-6 16: 2-3-5-2-4-5 17: 2-3-5-2-4-6
18: 2-4-5-2-3-5-6 19: 2-4-5-2-3-5 20: 2-4-5-2-4-5-6 21: 2-4-5-2-4-5 22: 2-4-5-2-4-6

Figure 2: Acyclic and Two-Iteration Static Paths.

eral k-iteration paths — we show that it is possible to
achieveperfect numberingeven for these longer paths
(section 3);

• we provide an instrumentation algorithm for collecting
k-iteration path profiles (section 4);

• we propose mixed-mode profiling: profiling different
regions of the same procedure with differing path
lengths (section 5);

• we present experimental data indicating that k-iteration
profiling is realistic (section 6).

2. Background

Ball and Larus [2] proposed a simple and fast algorithm
for counting the frequency of acyclic paths — paths that
terminate at a backedge or reach the end of the procedure.
The Ball-Larus algorithm assigns weights to the edges in
the control-flow graph in such a manner that the sum of
the edge-weights on each acyclic path is unique — apath-
identifier. The Ball-Larus algorithm reduces graphs with
loops into DAGs while retaining all acyclic static paths using
a set of dummy edges — edges from a dummy entry node1 to
all targets of backedges and from each source of a backedge
to a dummy exit node. The algorithm then traverses the
nodes in the DAG in a reverse topological order, assigning
weights to each outgoing edge of a node as it is visited.
The instrumentation code, added on the edges of the control-
flow graph, uses a dedicated register to accumulate the edge-
weights as the edges are traversed during the execution of
the instrumented program.

The key idea of the Ball-Larus algo-

PSfrag replacements

n

n1
n2 n3

Figure 3: Num-
bering Paths

rithm is as follows: in Figure 3, if all the
paths from the nodesn1, n2 andn3 were
uniquely numbered from0 to N1, 0 to N2

and0 to N3 respectively, then assigning a
weight of 0 ton → n1, N1 to n → n2 and
N1 +N2 to n → n3 will uniquely number
each path fromn.

Our algorithm extends this idea to
longer paths — paths that span a finite number of loop
iterations (sayk); we call such paths ask-iteration paths.

Definition 1: A k-iteration path is a path in the proce-
dure’s flow graph that either ends at

• a backedge after the loop-body has been executedk
times, or

• the procedure exit.

1. Dummy entry (connecting to the root node) and exit nodes (connected
from all the procedure return nodes) are added to each graph.

Though Ball-Larus paths are essentially one-iteration paths,
we will refer to the Ball-Larus paths as BL paths or acyclic
paths — the termk-iteration pathswill strictly imply that
k>1 . Figure 2 shows all the acyclic and k-iteration paths for
the graph in Figure 1.

What is not a valid k-iteration path ? A path must meet
the following requirements to be a valid k-iteration path:

• Like acyclic paths, a k-iteration path may start only
at the procedure entry or a loop-head (destination
of a backedge) and end either at a loop-tail (source
of a backedge) or the procedure exit. Note that this
requirement allows a path that iterates a loopL less
than k times if it does not both start at the loop-head
of L and end at the loop-tail ofL.

• Any path that starts with the loop-head of loopL must
iterate throughL exactlyk times.

• Any path that terminates at the loop-tail of loopL must
also iterate throughL exactlyk times.

Example 1:Consider Figure 1: the paths2-3-5-6 and
1-2-3-5 are invalid two-iteration path as they start with the
loop-head (node2), and terminate at the loop-tail (node5)
respectively, but iterate through the loop just once. However,
the path1-2-3-5-6 , that also iterates through the loop just
once is a valid two-iteration path as it does not either start
with a loop-head or terminate at a loop-tail.
If such invalid paths are not eliminated during path-
numbering, the “perfect numbering” property would be
violated. Our k-iteration path-numbering algorithm perfectly
numbers the k-iteration paths, identifying and eliminating
such invalid paths while assigning the path-identifiers (this
problem does not occur for acyclic paths).

The program instrumentation algorithm uses an array of
k counters to construct the k-iteration path-identifiers during
the profile run of the program.

Understandably, the number of static paths increases ex-
ponentially in k — for n static acyclic paths, there will
be O(nk) k-iteration static paths in the worst case. The
number of static paths in a procedure is important: for a
small number of static paths, the profiler can choose to
use an array-based implementation of the path-frequency
table; otherwise, it would need an expensive hashtable-
based implementation. To counter the same, our algorithm
allowsmixed-mode profiling:small, more interesting parts of
the procedure are profiled using k-iteration profiling, while
acyclic path profiling is used for the rest of the procedure.

3’

1

2’

4’

5’

End

Start

3’’

2’’

4’’

5’’

6

First
Copy

Second
Copy

Figure 4: Two-iteration Loop-Unrolled
DAG.

3

1

2

4

5

6

Start

End

6/2 (1)

6/2 (1)

13/0

0/1
5/0

Figure 5: Edge-
weights for tracing
two-iteration paths.

3. The Path-Numbering Algorithm

We define a few terms to ease the following discussion:
loop-headand loop-tail are the target and source nodes of
a loop backedge (respectively). Aloop-entry is a node in
a loop that is the target of an edge from a node outside
the loop; the edge is called theloop-entryedge. Similarly, a
loop-exitis a node in a loop that is the source of an edge to a
node outside the loop; the edge is called theloop-exitedge.
We call the source of the loop-entry edge as thepre-entry
node and the target of the exit edge as thepost-exitnode.
Any node that is part of a loopL is said to be aloop-nodeof
L. An edgeu → v is called a loop-edge ofL if both u and
v are loop-nodes ofL. For a reducible graph, the loop-head
and the loop-entry nodes are the same. We add a dummy
start node (denotedStart) and a dummy end node (denoted
End) to the graph.

Example 2: In Figure 1, node2 is the loop-entry node
as well as the loop-head. Node4 and 5 are the loop-exits.
Node 5 is also the loop-tail. Edge1→2 is the loop-entry
edge,5→2 is the backedge while4→6 and 5→6 are the
loop-exit edges. Nodes1 and6 are the pre-entry and post-
exit nodes respectively.
In the following sub-sections, we discuss the path-numbering
and path-identification algorithms. We assume a reducible
graph with no nested loops. Similar to the Ball-Larus algo-
rithm, we ignore self-loops — in our algorithms, we assume
the absence of self-loops.

3.1. The loop-unrolled DAG

Before discussing the algorithms, let us look at a special
graph — the loop-unrolled DAG — which will enable us to
understand the following algorithms better. For k-iteration
paths, the k-iteration loop-unrolled DAG,Glu(k), can be
formed from a graphG via the following steps (for each
loop in the graph):

• unroll the loop, creatingk copies of it: as we are
interested in tracing paths that containk iterations of
the loop, unrolling the loop reveals all such paths; a
nodeni in the DAG is called theith version of noden
in the CFG ifni corresponds to the noden in the ith

copy of the loop;
• add a dummy edge from theStart node to the first

version of the loop-head: paths originating from this
edge denote k-iteration paths inG that begin with the
loop-head;

• add a dummy edge from thekth version of the loop-
tail to theEnd node: paths terminating with this edge
denote k-iteration paths inG that end at the loop-tail;

• remove the backedges.
Similar to acyclic path-profiling, the dummy edges create
new paths inGlu(k) that either start at the loop-head or
terminate at the loop-tail. As the loop needs to be traversed
exactly k -times for such k-iteration paths, only the first
version of the loop-head inGlu(k) is a target of a dummy
edge from theStart node and only thekth version of the
tail-node is the source of a dummy edge to theEnd node —
this disallows all paths that are traversed fewer thank times.
As the loop is unrolled to contain exactlyk copies, and all
the backedges are removed, all paths inG that traverse the
loop more thank times are absent inGlu(k).

Example 3:Figure 4 shows the two-iteration loop-
unrolled DAG (Glu(2)) for the graph in Figure 1.

3.2. The Path-Numbering Algorithm

The goal of the path-numbering algorithm (Algorithm 1)
is to assign unique identifiers to all the possible k-iteration
paths in a given graphG. Instead of unrolling the loops to
createGlu(k), we rather construct a new graphGδ from G,
simply by adding dummy edges from theStart node to
each loop-head (we denote all such dummy edges byδstart)
and dummy edges from the loop-tail to theEnd node (we
denote all such dummy edges byδend) to allow static paths
beginning at a loop-head and ending at a loop-tail (for a loop
L, we denote the dummy edges for it byδstart

L and δend
L ;

note that it is possible thatδstart
L1

= δstart
L2

for two different
loopsL1 andL2). Thekth iteration through a loopL in Gδ

corresponds to the traversal through thekth copy of L in
Glu(k).

The path-numbering algorithm simulates the traversal
through Glu(k) by iterating through loops inGδ k -times
while ignoring appropriate edges in each iteration; the
Ignored function indicates if an edge is ignored in a
particular iteration.

3.2.1. Numbering all the k-iteration static paths. The
algorithm computes a set of weights for all edges in a graph
G such that the sum of these weights along any path gives an
unique identifier for the respective k-iteration path. For this

purpose, the algorithm needs to computenumPaths(n),
the number of paths through each noden. For example, in
Figure 4, there exists six paths through3’ and seven paths
through4’ . Hence,numPaths(2’)=13 .

Algorithm 1 Path Numbering of k-iteration static paths;
Ignoredgives the set of all edges that need to be ignored in
a particular iteration of the loop.

Input
• g: graph with dummy edges (Gδ)
• k: the k-iteration profiling parameter

Output
• val, cval: set of edge-weights and compensation edge-weights
begin
list : reverse topological sequence of nodes in g

∀u ∈ g, set itrNum(u) :=


k if u is a loop node,
1 otherwise

while u 6= Start do
u := Get the next item fromlist
i := itrNum(u)
if u 6= End then

numPaths(u) := 0
else

numPaths(u) := 1
end if
invalidPaths(u) := 0
for all edges(e : u → v) ∈ g do

if ¬(Ignored(e, i)) then
val(e, i) := numPaths(u)
numPaths(u) += numPaths(v)
if i < k ∧ u ∈ {{loop-nodes ofL} ∪ {Start}} then

cval(e, i) := invalidPaths(u)
if edgee ∈ loop-exit-edges ofL then

invalidPaths(u) += numPaths(v)
else

invalidPaths(u) += invalidPaths(v)
end if

else
cval(e, i) := 0

end if
end if

end for
if u = head-node of some loopL ∧ i > 1 then

Set itrNum(x) := (i− 1) for all nodesx ∈ L
Set the list pointer to the tail node of the loopL

end if
end while
end

Function: Ignored(u → v: edge, i: iteration number)
if i > 1 ∧ u → v is a loop-entry edge∨ u → v ∈ δstart then

return true
end if
if i < k ∧ u → v ∈ δend then

return true
end if
if i = k ∧ u → v is the loop backedgethen

return true
end if
return false

The Path-Numberingalgorithm (Algorithm 1) traverses
the nodes inGδ in a reverse topological order, computing the
number of paths originating from each node, and assigning

edge-weights to its outgoing edges (similar to the Ball-Larus
algorithm). On entering a loopL, it starts off by computing
the val andnumPaths values for the last iteration of the
loop (iterationk) — as the graph is traversed in a backward
direction, thekth iteration is seen first. However, on reaching
the loop-head, it ignores the loop-entry edges andδStart

L (as
decided by theIgnored function); as the list pointer is
set back to the loop-tail, the algorithm is forced to follow
the backedge again, performing another backward traversal
of L, now computing theval and numPaths values for
iteration k-1 . The algorithm continues traversing the loop
for a previous iteration each time till the first iteration is
reached. On reaching the loop-head in the first iteration,
it is the backedge that is ignored, and the algorithm exits
the loop via the loop-entry edges andδStart

L . The vector
itrNum(n) keeps track of the iteration number for which
the computation ofnumPaths(n) and val(n,i) still
needs to be done. It is easy to see that the k-iteration paths in
Gδ — ignoring the edges ignored by theIgnored function
— is exactly that inGlu(k).

The computation ofval and numPaths is similar to
the Ball-Larus algorithm; however, instead of being simple
integers,val for an edgee is now a vector indexed by the
iteration number. Also,numPaths(n) gives the number
of paths from noden corresponding to the last iteration
for which this value was computed(as the order of visiting
the nodes inGδ simulates a reverse topological traversal of
Glu(k), the value ofnumPaths(n) for the last iteration
for which n was visited is sufficient to computeval for all
remaining iterations).

3.2.2. Eliminating invalid k-iteration paths. The loop-
unrolled DAG,Glu(k), contains all the static k-iteration paths
for a given graphG; however, thevalid k-iteration paths
are still lesser. The DAGGlu(k) also includesinvalid k-
iteration paths: paths inG that begin at a loop-headand
iterate through the loop fewer thank times, exiting via a
loop-exit edge in an iterationi<k . In Glu(k), these paths
originate from aδstart edge, and later follow an exit-edge
of an ith copy of the loop, where i<k.

For example, in Figure 4, for the paths from theStart
node that reach2’ , the ones beginning with the dummy
edgeStart → 2′ and passing via4′ → 6 or 5′ → 6 would
be invalid as these paths originate from a dummy edge, and
exit the loop in the first iteration itself; having three such
paths,invalidPaths(2’)=3 .

In our algorithm, these paths are compensated viacom-
pensation weights (cval):an additional set of weights as-
signed to edges such that using

∑
e∈path val(e, i)−cval(e, i)

as the edge-weight instead of
∑

e∈path val(e, i) for appro-
priate edges in an iterationi , still numbers the valid paths
uniquely. This compensation is applied for an edgee in Gδ

if:
• the edgee appears in a pathp that commences with

�
�

�

path-identifier(p) =

∑
e:u→v∈p

val(e, i)−
{

cval(e, i) if δstart
L ∈ p ∧ (e = δstart

L ∨ (u ∈ L ∧ i < k))
0 otherwise

(1)

δstart
L (which implies that inG the path starts with a

loop-head) i.e.δstart
L ∈ p; and

• either

– e is the dummy edgeδstart
L i.e. e = δstart

L , or
– e : u → v is either a loop-edge or a loop-exit edge,

and e being traversed for theith iteration of the
loop L, wherei<k i.e u ∈ L ∧ i < k .

Hence, after compensation, the path-identifier for a valid k-
iteration path is given by equation (1).

With these identifiers, not only are the paths numbered
uniquely, but alsoperfectly: if there aren valid k-iteration
paths through a node, the paths through it would be assigned
path-identifiers from0 to n-1 , with no two valid paths
having the same identifier.

Refer to the computation ofinvalidPaths andcval
in Algorithm 1: invalidPaths(n) computes the num-
ber of invalid paths passing through the noden for the
last iteration for which this value was computedif this
node was reached viaδstart. Traversing the nodes of the
loop in reverse topological order, the algorithm computes
the number of such invalid paths through each node, and
accordingly assigns compensation weights to the outgoing
edges (the number of invalid paths through a node is equal
to the sum of the invalid paths through all its successors).
The number of invalid paths via a loop-exit edgeu → v
is accounted for by the number of possible paths through
v : for each path that originates from an edgeδstart and
reachesu, all paths that exit via the edgeu → v are invalid
— and that is exactly equal to the number of paths through
v . The values forcval(n,i) is computed using the values
for invalidPaths(n) ; the computation is similar to how
val(n) is computed usingnumPaths(n) .

Example 4:Figure 5 shows the values forval computed
by the path-numbering algorithm. The weights for the two
iterations are shown separated by ’/ ’; the compensation
weights for the iteration number 1 are indicated in the
brackets. The edges not having any weights (or having a
weight zero) are left unmarked.

Table 1 shows the execution trace of how the number of
paths(n), the number of invalid paths(in), edge-weights(v),
and compensation edge-weights(cv) get computed for this
graph.

3.3. The Path Identification Algorithm

Given a path-identifiern, thePath Identificationalgorithm
(Algorithm 2) finds a valid path from theStart node to
theEnd node such that the sum of the edge-weights is equal
to n. Beginning at theStart node, for each node identified
to be in the path, it greedily select an outgoing edge with

Table 1: An execution trace of the path-numbering algorithm.S
andE represent theStart andEnd nodes respectively.

Reverse Topological Order : [E, 6, 5, 3, 4, 2, 1, S]

u e i(u) v(e, i(u)) n(u) cv(e, i(u)) in(u)

6 6 → E 1 0 1 0 -
5 5 → 6 2 0 1 0 -
5 5 → E 2 1 2 0 -
3 3 → 5 2 0 2 0 -
4 4 → 5 2 0 2 0 -
4 4 → 6 2 2 3 0 -
2 2 → 3 2 0 2 0 -
2 2 → 4 2 2 5 0 -
5 5 → 2 1 0 5 0 0
5 5 → 6 1 5 6 0 1
3 3 → 5 1 0 6 0 1
4 4 → 5 1 0 6 0 1
4 4 → 6 1 6 7 1 2
2 2 → 3 1 0 6 0 1
2 2 → 4 1 6 13 1 3
1 1 → 2 1 0 13 0 -
S S→ 1 1 0 13 0 0
S S→ 2 1 13 26 0 3

(u: selected node; e: selected edge; i: itrNum;
v: val; n: numPaths; cv: cval; in: invalidPaths)

the highestval , but not allowing the partial path-identifier
pathWeight (adjusted with the compensated edge-weight
of the edgee) to exceedn. Once an edgee is selected
to be on the path,pathWeight is updated by adding the
compensated edge-weight ofe to it. The edge-weightval
is compensated with the compensation weightcval in the
following cases:

• the current edgeu → v ∈ δstart; or
• the δstart

L edge was included in the path to the current
edgeu → v, u ∈ L; and the algorithm has not yet
iterated through the loopL k times.

The algorithm accumulates edges till a whole path from the
Start node to theEnd node is formed. The algorithm
needs to be run on the graphGδ, i.e. before the dummy
edges are removed.

3.4. Correctness Results

Let numPaths(n) denote the number ofall paths
through a node n;invalidPaths(n) denotes the number
of invalid paths through a noden ∈ L, when n lies on a
longer path originating from the edgeδstart

L .
We prove the correctness results on the loop-unrolled

DAG Glu(k) rather than the CFGG as it is actuallyGlu(k)

that is traversed by the path-numbering algorithm (the con-
dition¬(Ignored(e, i)) controls this traversal). Each vertex-
iterationNumber pair〈v, i〉 , 1 ≤ i ≤ k forms an unique node
in Glu(k) with itrNum(〈v, i〉)=i, indicating the copy of the
loop thatv belongs to. Hence, in our proofs,val(v) and

�
�

�
�invalidPaths(u) =

X
v∈succ(u)

8<: numPaths(v) if u ∈ L, itrNum(u) < k, u→ v is loop-exit edge of L
invalidPaths(v) if u, v ∈ L or u=Start
0 otherwise

(2)

Algorithm 2 Path Identification

Input
• g: graph with dummy edges (Gδ)
• n: path-identifier whose path is to be identified
• k: the k-iteration profiling parameter
• val, cval: edge-weights and compensation edge-weights

Output
• path: set of edges identifying the path for identifier n
begin
u := Start
pathWeight := 0
path := []
∀x ∈ g, setvisitCount(x) := 0

while u 6= End do
i := visitCount(u)
if u = loop-tail of loopL then

SetvisitCount(x) := (i + 1) for all nodesx ∈ L
else

visitCount(u) += 1
end if
i := visitCount(u)
maxV al := −1
maxWeight := 0
for all edgese : u → v ∧ ¬ Ignored(e, i) do

if (e = δstart
L) ∨ (δstart

L ∩ path 6= ∅ ∧ u ∈ L ∧ i 6= k) then
cweight := val(e, i)− cval(e, i)

else
cweight := val(e, i)

end if
if val(e, i) ≥ maxV al ∧ pathWeight + cweight ≤ n then

w := v
maxV al := val(e, i)
maxWeight := cweight

end if
end for
pathWeight + = maxWeight
Add u → w to path
u := w

end while
end

cval(v) take single arguments (instead ofval(v, i)
andcval(v, i) as used in our algorithm).

In our proofs, we often consider the following disjoint set
of paths:

• N : A set of normal paths that begin with the edge
start → entry, whereentry is the actual entry-point
to the procedure.

• Di: A set of dummy paths that begin with the dummy
edgeδstart

Li
.

Lemma 1:The values numPaths(v) and
invalidPaths(v) are computed correctly for each
nodev in the k-iteration loop-unrolled DAG.

Proof: The proof is by induction on the height of a
node in the DAG i.e. the length of its longest path to the
End node.

Base Case: It is trivially satisfied for heightH = 0, i.e.

for the End node.
Induction Step: Consider a nodeu at a heightH > 0.
Computation of numPaths(v): Surely all paths from its

successors are numbered uniquely and perfectly (by induc-
tive hypothesis) as they are at a height less thanH and the
graph is a DAG. Also, the number of paths through a node is
simply the sum of paths through all of its successors; thus,
numPaths(u)=

∑
v∈Succ(u) numPaths(v).

Computation of invalidPaths(v): The number of
invalid paths through a node is equal to the sum
of the invalid paths via all its outgoing edges:
invalidPaths(u)=

∑
v∈Succ(u) invalidPathsV ia(u → v).

Case I: If u=Start and u → v ∈ δstart, then
invalidPathsV ia(u → v) = invalidPaths(v).

Case II: If u 6= Start and u does not belong to a loop,
invalidPathsV ia(u → v) = 0 as there cannot be such
invalid paths outside loops.

Case III: Let u ∈ L, whereL is a natural loop:
• If v /∈ L and itrNum(u) = k; thenu → v is a loop-

exit edge forL. Also, as itrNum(u) = k, all paths
originating fromδStart

L that reachu have already seenk
iterations ofL; hence,invalidPathsV ia(u → v) = 0.

• If v /∈ L and itrNum(u) < k; thenu → v is a loop-
exit edge forL. Also, as itrNum(u) < k, all paths
originating fromδStart

L that reachu have not yet seen
k iterations ofL. Hence,invalidPathsV ia(u → v) =
|δStart

L | ∗ numPaths(v) (where |δStart
L | denotes the

number ofδStart
L edges in the graph): a path originating

from δStart
L that passes through the loop-exit edgeu →

v is an invalid k-iteration path (as the path began with
the loop-head forL, but exited the loop viau → v
before iterating through the loopk -times). Also, for a
loop X, there can be only oneδStart

X edge, so|δStart
L | =

1.
• If v ∈ L, then u → v is a loop edge forL:

invalidPathsV ia(u → v) = invalidPaths(v).
To summarize, the invalid paths for a nodeu is given by
equation (2).

Lemma 2:For all pathsp ∈ Di, thevalid sub-paths from
a nodeu are assignedconsecutivepath-identifiers (from0
to numPaths(u)-invalidPaths(u) -1) by the path-
numbering algorithm (while the lastinvalidPaths(u)
path-identifiers remain unassigned).

Proof: We will prove the lemma by induction on the
height of the DAG.

Base Case: The theorem is trivially satisfied for height
H=0.

Inductive Step: Consider a nodeu at a heightH > 0.
Now, if u /∈ {Start}∪Li, or u ∈ Li∧itrNum(u) < k; then

invalidPaths(u)=0 — as there are no invalid paths, in
these cases the lemma is trivially satisfied.

Otherwise, the edgeu → vi may be:

• a loop-exit edge for the loopLi with itrNum(u) <
k: in this case, invalidPathsV ia(u → vi) =
numPaths(vi), i.e. all the paths through this edge
are invalid. So, all thenumPaths(vi) path-identifiers
throughu → vi can be considered unassigned;

• either δstart
Li

, or an edge inLi with itrNum(u) < k:
in this case, invalidPathsV ia(u → vi) =
invalidPaths(vi), and all the valid paths
through vi are consecutively numbered from0
to numPaths(vi) − invalidPaths(vi) − 1 by the
induction hypothesis.

Thus, the valid paths throughu → v1 (wherev1 is the first
successor ofu) are numbered from0 to (numPaths(v1)−
invalidPathsV ia(u → v1))− 1. In general, the algorithm
numbers all the valid paths till the edgeu → vi from 0 to∑

j≤i(numPaths(vj) − invalidPathsV ia(u → vj)) − 1.
As the valid paths throughu → vi+1 are also consec-
utively numbered, the paths tillu → vi+1 get consec-
utively numbered from0 to

∑
j≤i+1(numPaths(vj) −

invalidPathsV ia(u → vj))− 1.
Hence, all valid sub-paths for the pathsp ∈ Di

through the node u get consecutively numbered from
0 to

∑
j≤n(numPaths(vj) − invalidPathsV ia(u →

vj)) − 1 which is exactly same asnumPaths(u) −
invalidPaths(u) − 1. The last invalidPaths(u) path-
identifiers, thus, remain unassigned.

Theorem 1:The path numbering algorithm uniquely and
perfectly numbers all the valid paths.

Proof: We again prove the same by induction on
the height H of the DAG. Let the successors ofu be
v1, v2, . . . , vn. The edge weights are set as,val(u →
vi) =

∑
i<n numPaths(vi) and cval(u → vi) =∑

i<n invalidPaths(vi).
We first prove the theorem for the sub-paths of each of

the following disjoint set of paths separately:

1) If p ∈ N , all the paths are valid and hence no
compensation weights are used.
Base Case: The theorem holds trivially for heightH
= 0.
Induction Step: Consider a nodeu at a height
H > 0. By induction hypothesis, the sub-paths of
p from each of its successor nodevi are num-
bered uniquely from0 to numPaths(vi). As, the
number of the sub-paths from u to all its suc-
cessor fromv1 to vi−1 is

∑
j<i numPaths(u →

vj), the algorithm numbers the sub-paths through
u → vi from

∑
j<i numPaths(u → vj) to

(
∑

j<i numPaths(u → vj)) + numPaths(vi) − 1
— these are clearly unique and perfect.

2) If p ∈ Di, all paths through the loop-exit paths of the
loop Li are invalid for all copies of the loop tillk-1 .
Base Case: The theorem holds trivially for heightH=0.
Induction Step: Consider a nodeu at a heightH > 0.
By induction hypothesis, the valid sub-paths ofp from
each of its successor nodevi are numbered uniquely
from 0 to numPaths(vi) − invalidPaths(vi) −
1, while the last invalidPaths(vi) identifiers are
unassigned by Lemma 2. We may assign these
unassigned path identifiers to other valid sub-paths,
i.e. ones that pass through the next successor
node. So, ignoring all the invalid sub-paths, the
valid sub-paths throughu → vi are numbered
from

∑
j<i(numPaths(vj) − invalidPaths(vj))

to
∑

j<i(numPaths(vj) − invalidPaths(vj)) +
numPaths(vi) − invalidPaths(vi) − 1. Note that
numbering of sub-paths through each edgeu →
vi leaves

∑
j≤i invalidPaths(vj) path-identifiers of

the
∑

j≤i numPaths(vj) paths unassigned. Concep-
tually, to ignore the invalid paths through each of
the edgesu → vi, the path-identifiers for edges
u → vj , j > i are “shifted” by invalidPaths(vi).
The total compensation (or the shift) that needs to be
assigned to any edgeu → vi is cval(u → vi) =∑

j<i invalidPathsV ia(vj). These path identifiers
for all the valid paths are:

• uniqueas subtractingcval(vi) only allows assign-
ment of the unassigned path-identifiers to other
valid sub-paths but never overlaps it with already
assigned path-identifiers of valid paths;

• perfect as path-identifiers of all the invalid sub-
paths are now assigned to valid sub-paths (or
remain unassigned with values greater than the
path-identifier of the last valid sub-path).

Now, consider theStart node: the paths through its
outgoing edges are numbered uniquely and perfectly as
proved above. The algorithm also numbers the paths
through an edgestart → vi in exactly the same
manner: from

∑
j<i(numPaths(vj) − invalidPaths(vj))

to
∑

j<i(numPaths(vj) − invalidPaths(vj)) +
numPaths(vi) − invalidPaths(vi) − 1. By exactly
the same argument as above, the path-identifiers for all the
paths from theStart node are also unique and perfect.

4. Program Instrumentation

4.1. Removal of the dummy edges

As the dummy edges do not represent actual control-flow,
for instrumentation, their effect needs to be “simulated” by
adjusting their weights on the weights of the actual control-
flow edges appropriately. The dummy edges can be removed

in a manner exactly similar to that described by Ball and
Larus[2]: to remove a dummy edgeStart → v, the weight
on the edge is subtracted from all incident edges ofv and
added to all outgoing edges ofv .

For k-iteration profiling, we also need to be careful about
updating the correctiteration edge-weights for a loopL:

• on removingδstart
L , the edge weights of only the first

iteration of the loopL are affected;
• on removingδend

L , the edge weights of only thekth

iteration of the loopL are affected.

However, for the exit-edge of a loopL, the edge-weights
for all the iterations of L may be affected on removal of a
dummy edge of another loopL’ .

For example, consider figure 8: the loop-unrolled DAG
shows that on removingδstart

L3
, the edge-weight on it needs

to be added to the edge-weights of both its incoming edges
3′ → 4′ and 3′′ → 4′; this indicates that the edge-weights
for both the iterations of the edge3 → 4 in the original
graph needs adjustment. Similarly, on removingδend

L3
, the

edge-weights of both the iterations of5 → 6 get affected.
Example 5:The adjusted graph weights on removing the

dummy edges can be seen in Figure 6.

4.2. The Instrumentation Algorithm

The instrumentation algorithm (Algorithm 3) needsk
accumulators (c[0], c[1], . . . , c[k − 1]), where c[i] accu-
mulates the partial(i+1)-iteration path-identifier of a loop
in execution; as k-iteration paths can at most bek iterations
long, k such counters are sufficient. For example, say a
program is executing the20th iteration of a loop — for
two-iteration profiling, the counterc[0] will accumulate
the partial path-identifier for the acyclic path executed in the
20th iteration whilec[1] will accumulate the two-iteration
path-identifier spanning the19th and the20th iteration. The
algorithm also needs a flag (fδ) to remember if or not the
k-iteration path starts with the loop-head (i.e. the path in
the loop-unrolled DAG starts withδstart). As, at leastk
iterations through a loop is needed to form a k-iteration path,
fδ also indicates if the loop has already seen k iterations.
The saturating counter (itr) identifies the initiatingk-1
iterations of the loop. It is important to identify the iterations
i < k, as till then the path-countersc[j], j ≥ i contain
garbage values. Afterk iterations of the loop, all the path
counters contain valid values.

The path-frequency table is maintained either as an array
or a hashtable; the functionSelectImplementation
selects of one of them depending on the number of
static paths in the current procedure. The function
IncrPathFreq(p) increments the frequency count of the
path with identifierp while profiling. Pointers to the path-
frequency tables for each procedure are maintained in a
program-wide global table. The initialization code, inserted

Algorithm 3 The Instrumentation Algorithm: the notation
x< <Y implies that the entityx , which can either be a node
or an edge, is instrumented with profiling codeY.

Input
• g: control-flow graph
• k: the k-iteration profiling parameter
• val, cval: edge-weights and compensation edge-weights after remov-

ing dummy edges
Output

• the instrumented program
begin

Start «

c[0] := c[1] := ...:= c[k-1] := 0
fδ := false
itr := 0
SelectImplementation(numPaths(g))

for all edges e∈ cfg do
for all i ∈ 0, 1, . . . , k-1do

if cval(e,i) 6= 0 ∧ i 6= k-1 then

e « c[i-1] +=


val(e, i)− cval(e, i) if fδ=true
val(e, i) otherwise

else
if val(e,i) 6= 0 then

e « c[i-1] += val(e,i)

end if
end if

end for
end for
for all k-iteration profiled loop-backedges e∈ cfg do

e «

if (fδ) then IncrPathFreq(c[itr])
for i := k-1, k-2, ..., 1: c[i] := c[i-1]
c[0] := 0
if (itr < k-1) then {

itr += 1
if (itr = k-1) then fδ := true

}

end for
for all k-iteration profiled loop-exit edges e∈ cfg do

e «

c[0] := c[itr]
for i := 1, 2, ..., k-1: c[i] := 0
fδ :=false
itr := 0

end for
for all acyclically profiled loop-backedges e∈ cfg do

e «
IncrPathFreq(c[0])
c[0] := 0

end for
for all edges e:[u → End] ∈ cfg do

e « IncrPathFreq(c[0])

end for
end

in the respective procedure’sStart node, initializes the
local variables and selects an appropriate implementation of
the path-frequency table.

To accumulate the path-identifiers, as in the Ball-Larus
scheme, our algorithm splits appropriate edges and adds
instrumentation code. For an edgee in the CFG, the
ith counter in the counter array,c[i-1] , is incremented
with the edge weightval(e,i) , adjusted with the

3

1

2

4

5

6

19/2 (1)13/0

6/2 (1)

-13/0

0/1 0/1

5/-1

Figure 6: Remov-
ing dummy edges.

3

1

2

4

5

6

c+=[5, -1]
c[0]:=c[itr]; c[1]:=0
f:=false; itr:=0
incrPathFreq(c[0])

c+=[(18:19), 2]c[0]+=13

c+=[(5:6), 2]
c[0]:=c[itr]; c[1]:=0
f:=false; itr:=0
incrPathFreq(c[0])

c[0]+=-13

c[1]+=1 c[1]+=1

if (f) then
 incrPathFreq(c[itr])
c[1]:=c[0]; c[0]:=0
(f,itr):=setf(itr)

Figure 7: The graph shows the instru-
mented CFG for two-iteration profiling.

compensation-weightcval(e,i) , if any.
For the backedge of loops profiled using k-iteration pro-

filing, the path-frequency table can be updated only afterk
iterations as a k-iteration path is not created until the end
of the kth iteration. Each path-accumulatorc[i] loads the
partial path-identifier currently held inc[i-1] and c[0]
is cleared. The iteration counteritr is incremented (if not
saturated); ifk iterations of the loop have been seen, the
flag fδ is set.

For exit-edges of all k-iteration profiled loops, the partial
path-identifier of the last valid path accumulator is trans-
ferred to c[0] — if the loop has been iteratedi times,
where i<k , thenc[i-1] is loaded intoc[0] ; otherwise,
c[k-1] is loaded intoc[0] (this is because when the
program is not executing in a loop, onlyc[0] is needed
to accumulate the path identifier). The path accumulators
c[1..k-1] , the iteration counter and the flag are cleared
to make them ready the the next iteration.

The paths leading to theEnd node of the procedure is
updated along the edges leading to theEnd node. For mixed-
mode profiling, all acyclically profiled loop backedges have
instrumentation code exactly as for the Ball-Larus scheme.

Example 6:Figure 7 shows the instrumented CFG for
Figure 1 for two-iteration profiling. Table 2 shows how
some of the two-iteration paths are identified for the trace
1-(2-3-5-2-4-5) 100-6 .

The notation used in the figure is explained below:
• the flagfδ is shown simply asf ;
• c+=[a,b] implies {c[0]+=a; c[1]+=b;} ;
• (a:b) refers to the selection:(fδ?a:b) ;
• the function setf() updates the values of bothfδ

and itr according to the following code segment:if
(itr < k-1) then { itr += 1; if (itr
= k-1) then f := true; } .

For example, when the edge5 → 2 is seen for the first time,
no edge is recorded as the value off was false (see the

Table 2: Execution trace of the instrumented code.
Edge c f itr Incr Path

1 → 2 [-13, 0] false 0

2 → 3 [0, 0] false 0

3 → 5 [0, 1] false 0

5 → 2 [0, 0] true 1

2 → 4 [18, 2] true 1

4 → 5 [18, 3] true 1

5 → 2 [0, 18] true 1 3 1-2-3-5-2-4-5

2 → 3 [13, 18] true 1

3 → 5 [13, 19] true 1

5 → 2 [0, 13] true 1 19 2-4-5-2-3-5

2 → 4 [18, 15] true 1

4 → 5 [18, 16] true 1

5 → 2 [0, 18] true 1 16 2-3-5-2-4-5

· · · · · · · · · · · · · · · · · ·

4 → 5 [18, 16] true 1

5 → 6 [15, 0] false 0 15 2-3-5-2-4-5-6

previous row of the table entry). Hence, the algorithm was
able to identify that the path seen till then,1-2-3-5-2 is
not a two-iteration path. The next time the edge is seen, the
two-iteration path identifier3 is identified and its frequency
incremented, which corresponds to the two-iteration path
1-2-3-5-2-4-5 .

5. Mixed-Mode Profiling: Profiling different
regions with varied length paths

The k-iteration profiling algorithm can be used in mixed-
mode: different regions of the same procedure can be pro-
filed with different values of k, thereby keeping the number
of static paths in check — the “interesting” regions may be
profiled using larger values of k while using acyclic profiling
for the remaining procedure.

Mixed-mode profiling is also useful for nested loops: k-
iteration profiling of nested loops needs multiple sets of edge
weights for the inner loop — one of each iteration of the
outer loop. Instead, one may use k-iteration profiling for the
innermost loop and acyclic profiling for the outer loops. If
the profiling information for an outer loop is desired, all
the contained inner loops can be collapsed into single node,
effectively reducing the outer loop into an innermost loop.
Such schemes for profiling programs at various granularity
is suggested in [5], [6].

Figure 8 illustrates mixed-mode profiling: it shows an
example graph, its mixed-mode loop-unrolled DAG and the
static paths recognised by the mixed-mode profiler.

It is easy to see why the path-numbering and path-
identification algorithms work for mixed-mode profiling; in
the interest of space, we provide an informal argument using
Figure 8(a):

L1

L2

L3

2

6

5

4

3
2’

6

5’

4’

3’

2’’

3’’

5’’

4’’

Start

End

1

7

1

7

(a) (b)

1-2-3-2-3-4-5-4-5-6-7 1-2-3-4-5-6-7
1-2-3-2-3-4-5-4-5-6 1-2-3-4-5-6
1-2-3-2-3-4-5-4-5 2-3-2-3-4-5-4-5-6-7
1-2-3-2-3-4-5-6-7 2-3-2-3-4-5-4-5-6
1-2-3-2-3-4-5-6 2-3-2-3-4-5-4-5
1-2-3-2-3 2-3-2-3-4-5-6-7
1-2-3-4-5-4-5-6-7 4-5-4-5-6-7
1-2-3-4-5-4-5-6 4-5-4-5-6
1-2-3-4-5-4-5 4-5-4-5

Figure 8: Mixed-mode profiling: The
loop L3 is profiled with k=1 (acycli-
cally), while loopsL1 andL2 with k=2
(the backedge6→ 4 occurs at most once
in the paths while the backedges3 → 2
and 5 → 4 occur twice in some of the
paths).

• Consider disjoint loops that use different values of the
parameterk : Assume the absence of the edge6 → 4.
Let L1 use k=k1 while L2 use k=k2. As the path-
numbering algorithm numbers the paths in a bottom-
up fashion, the paths from node4 are still numbered
correctly as the valuek1 does not influence it in any
way. Similarly, numbering paths for the nodes ofL1

is only dependent on the number of paths through the
node4 (which is computed correctly by the argument
above). Hence, all the nodes inL1 are also numbered
correctly.

• Consider nested-loops where the outer loop is acycli-
cally profiled: LetL2 be k-iteration profiled whileL3

is acyclically profiled. Figure 8(a) shows the loop-
unrolled DAG for this case; the dummy edgesStart →
4′ and6 → End are added to take care of acyclic paths
due to backedge6 → 4. It is easy to see that the path-
numbering algorithm would still be able to number all
the paths in this DAG uniquely and perfectly.

The key idea in mixed-mode path-numbering is: while
numbering a noden, we just need to knowthe number of
paths through its successor nodes and nothow the paths in
the successor nodes were numbered.

6. Experimental Results

We have implemented acyclic and k-iteration profiling for
C source code using Lance[7]. It profiles each function in
a given program, using separate tables for keeping the path
frequency counts for each procedure. The profiler attempts
to use an array-based implementation for a path-frequency
table if the number of static paths is low, but switches
to a hashtable-based implementation if a procedure has
more than 6000 static paths. It completely aborts profiling
a procedure if the number of static paths in it exceeds
60,000. For nested loops it uses mixed-mode profiling: only
the innermost loop is k-iteration profiled while the outer
loops are acyclically profiled. Our implementation, both of

the acyclic and k-iteration path-profiler, currently lacks the
optimizations described by Ball-Larus, like optimizing the
number of edges to be instrumented [1] and replacing the
first increment of a counter by a load instruction (which also
removes the initialization of counters).

Table 3: Slowdown factor
of k-iteration profiling w.r.t
acyclic path (BL) profiling
(ExcT imek−itr/ExcT imeBL).

Program 2−Itr
BL

3−Itr
BL

compress 1.14 3.92

crc 1.12 1.20

edn 1.56 1.87

fdct 1.06 1.10

fibcall 1.09 1.19

fir 1.57 1.75

jfdctint 1.00 1.10

ludcmp 1.21 4.47

ndes 6.12 —

The cost of
path profiling can
be classified into
two categories:
computational cost
(the overhead of the
instrumentation code
that computes the
path-identifiers for
each k-iteration path
traversed) and thetable-
update cost (the cost
of updating the path-
frequency table using
the path-identifiers).
Path profilers generally
use an array-based
implementation of the
path-frequency table if the number of static paths is small;
they switch to an expensive hashtable-based implementation
if the number of static paths crosses a certain threshold. We
use small programs[8] as benchmarks so that the frequency
counts for both acyclic, two- and three-iteration profiles
can be kept in an array (for most cases) to give an exact
comparison of the computational overhead of k-iteration
profiling. We also show how fast the number of static paths
grow in these programs, and instances where the use of
hashtable slows down the programs significantly, to indicate
the table-update cost of k-iteration profiling.

Table 3 shows the program slowdown factors (ratio of
the instrumented program’s running times for collecting
k-iteration profiles over that for collecting acyclic path
profiles): for most of the benchmarks, the ratio is small
— indicating that the computational cost does not increase
significantly from acyclic to k-iteration profiling.

A few programs, however, show comparatively large
slowdowns (compress and ludcmp for three-iteration
profiling, and ndes for two-iteration profiling). Table 4
gives a comparison of how the number of static paths
increase for two of these programs. The programndes
slows down significantly because the profiler switches to a
hashtable-based implementation of the path-frequency table
for the functioncyfun (14294 two-iteration static paths).
As this function has more than60,000 three-iteration
static paths, the three-iteration profiler aborts profiling this
function; hence, we do not provide any data for this case. For
compress , the slowdown is very small for two-iteration
profiling but increases significantly for three-iteration profil-
ing due to the same reason — the number of static paths in

Table 4: The table shows the number of static BL paths, and k-
Iteration paths for varying values ofk . (× indicates that path-
numbering for the procedure was aborted as the number of static
paths in the procedure exceeded 60,000).

Program Function BL k=2 k=3 k=4 k=5

compress 713 5887 44063 × ×
compress cl_hash 10 16 24 34 46

writebytes 27 84 255 768 2307

output 416 1328 4064 12272 36896

des 568 5318 35800 × ×
ndes ks 276 466 710 1008 1360

cyfun 429 14294 × × ×

the functioncompress increases from5887 two-iteration
paths to 44063 three-iteration paths; thus requiring the
hashtable-based implementation for three-iteration profiles.
The reason for the slowdown ofludcmp is also same: the
function ludcmp in this program has4144 two-iteration
paths and9110 three-iteration paths.

7. Related Work

Tallam et al. [3] used Ball-Larus paths to record slightly
longer overlapping paths, and proposed an instrumentation
algorithm to collect their frequencies; these overlapping
paths were then used to estimate the frequencies of much
longer paths. The cost of collecting the path frequencies was
found to be around 4.2 times that of Ball-Larus paths. The
average imprecision in estimating the flows derived from
overlapping path frequencies was found be to low — from -
4% to +8%. The k-iteration profiling algorithm, on the other
hand, is designed to collect the exact path frequencies for
longer paths.

Structural Path Profiling (SPP) [6] is an interesting idea
of partitioning a procedure into a hierarchy of nested graphs
based on the loop structure, and then to profile each graph
independently. The method has been proposed as an efficient
online path profiling technique for JIT compilers. k-iteration
mixed-mode path profiling can be combined with SPP —
the different partitions may be profiled with different path
lengths (by varyingk) depending on the hotness of the
respective code section.

Hierarchical Path Profiling [5] represents inner program
regions as single nodes in the outer regions. Path profiles
are collected separately for the different regions, which can
be used by region-based compilers to drive local optimiza-
tions. As these regions would typically be small in size,
hierarchical k-iteration profiling seems to be an interesting
possibility.

Preferential Path Profiling (PPP) [4] is a recent attempt at
profiling selective paths in a procedure, thereby reducing
the profiling overheads. Preferential k-iteration profiling,
profiling some of the selected paths with longer path lengths,
seems to be an useful option.

8. Conclusions

Ball and Larus proposed an algorithm to profile acyclic
paths in a program efficiently; k-iteration path profiling is
a generalization of the Ball-Larus algorithm, allowing paths
spanning multiple loop iterations. Such longer paths would
be useful in program understanding and profile-directed
compiler optimizations. The k-iteration profiling algorithm
allows mixed-mode profiling: profiling different parts of the
same procedure with different path lengths, allowing the
user to focus on the interesting regions, while keeping the
profiling cost low. A base profiler can be used to indicate
hot regions of a procedure; k-iteration profiling can then be
used on these hot regions to generate better information.
Use of k-iteration profiling in combination with some other
recent efforts in profiling like SPP [6] and PPP [4] seems
promising; we are interested in exploring such schemes in
the future.

References

[1] T. Ball. Efficiently counting program events with support for
on-line queries.ACM Trans. Program. Lang. Syst., 16(5):1399–
1410, 1994.

[2] T. Ball and J. R. Larus. Efficient path profiling. InMICRO 29:
Proceedings of the 29th annual ACM/IEEE international sym-
posium on Microarchitecture, pages 46–57. IEEE Computer
Society, 1996.

[3] S. Tallam, X. Zhang, and R. Gupta. Extending path profiling
across loop backedges and procedure boundaries. InIn In-
ternational Symposium on Code Generation and Optimization
(CGO), pages 251–264, 2004.

[4] K. Vaswani, A. V. Nori, and T. M. Chilimbi. Preferential path
profiling: compactly numbering interesting paths.SIGPLAN
Not., 42(1):351–362, 2007.

[5] Y. Wu, A. Adl-Tabatabai, D. Berson, J.Z. Fang, and R. Gupta.
US Patent 6,848,100 : Hierarchical Software Path Profiling,
2005.

[6] T. Yasue, T. Suganuma, H. Komatsu, and T. Nakatani. An
efficient online path profiling framework for java just-in-time
compilers. InPACT ’03: Proceedings of the 12th Interna-
tional Conference on Parallel Architectures and Compilation
Techniques, page 148. IEEE Computer Society, 2003.

[7] Lance C Compiler.http://www.lancecompiler.com.

[8] WCET Project/Benchmarks.
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

