
The Hot Path SSA Form: Extending the Static

Single Assignment Form for Speculative

Optimizations

Subhajit Roy and Y. N. Srikant

Computer Science and Automation Department,
Indian Institute of Science.

{subhajit, srikant}@csa.iisc.ernet.in

Abstract. The Static Single Assignment (SSA) form has been an em-
inent contribution towards analyzing programs for compiler optimiza-
tions. It has been a�able to the design of simpler algorithms for existing
optimizations, and has facilitated the development of new ones. However,
speculative optimizations � optimizations targeted towards speeding-up
the �common cases� of a program � have not been fortunate enough to
savor an SSA-like intermediate form. We extend the SSA form for spec-
ulative analyses and optimizations by allowing only hot reaching de�ni-
tions � de�nitions along frequent acyclic paths in the program pro�le
� to reach its respective uses; we call this representation the Hot Path
SSA form. We propose an algorithm for constructing such a form, and
demonstrate its e�ectiveness by designing the analysis phase of a novel
optimization � Speculative Sparse Conditional Constant Propagation:
an almost obvious extension of Wegman and Zadeck's Sparse Conditional
Constant Propagation algorithm. Our experiments on some SPEC2000
programs proves the potency of such an optimization.

1 Introduction

Program analyses and optimizations have bene�ted immensely from the SSA
form as an intermediate representation. An extremely simple idea � allow only
a single de�nition of a variable to reach the statements using it � prunes out
false dependencies, and factors long use-def chains into a web of short, simple
ones. A multitude of optimizations were either made possible, or were heavily
empowered by the SSA form � sparse conditional constant propagation, global
value numbering, and strength reduction to name a few.

However, speculative optimizations � optimizations biased towards frequently
executed paths � have not been fortunate enough to enjoy an SSA-like inter-
mediate representation. These optimizations have recently attracted a lot of at-
tention, and are now recognised as a major vehicle towards improving program
performance.

Modern compilation systems, acknowledging the importance of such uncon-
ventional optimizations, have started providing support for speculative analy-
sis and transformation. However, in most of the intermediate representations,



2 Subhajit Roy and Y. N. Srikant

the pro�ling information is not integrated into the static program representa-
tion. This makes implementing speculative optimizations cumbersome, having
to handle too many data-structures. Additionally, the absence of an SSA-like
sparse representation has hindered the development of e�cient algorithms for
speculative optimizations.

We propose to extend the power of the SSA form to speculative optimiza-
tions by separating the hot use-def chains from the cold ones, thus allowing a
speculative optimizer to �see� only the most-likely data�ow facts. However, the
�non-speculative� SSA form is not lost: a traditional optimizer can still choose
to constrain itself to the non-speculative form by ignoring the speculative infor-
mation. The SSA form is not erased � just suitably extended with speculative
information � obviating the necessity of constructing and maintaining the non-
speculative SSA form separately; at the same time, this SSA-like intermediate
form is much more amenable to speculative analyses and optimizations.

We call this extension to the SSA form as the �Hot Path SSA (HPSSA) form�.
As the HPSSA form honours the constraint imposed by the SSA form (that of
a single reaching de�nition for every use), many of the SSA-based algorithms
for traditional optimizations developed over the last couple of decades (almost)
immediately become available to speculative optimizers.

Following are our contributions in this paper:

� We propose a novel program representation � the Hot Path SSA (HPSSA)
form � that allows a use to witness only the �more-likely� reaching de�ni-
tions (section 4);

� We present an algorithm for constructing the HPSSA form (section 5);
� We demonstrate the potency of the HPSSA form by designing the analysis
phase of a novel speculative optimization � Speculative Sparse Conditional
Constant Propagation (SSCP) � that identi�es both �safe� (expressions that
are sure to be constants) and �speculative� (expressions that are more-likely
to be constants) constants in a given program. An almost trivial extension of
Wegman and Zadeck's SCP algorithm [21], SSCP exhibits the possibilities of
developing new speculative optimizations using the HPSSA form by tailoring
of existing SSA-based traditional optimizations (section 6).

2 Background

2.1 The Static Single Assignment Form

A program is said to be in Static Single Assignment (SSA) form if each use of a
variable has exactly one reaching de�nition. A special operator, the φ-function,
merges multiple de�nitions from di�erent paths into a single de�nition, forcing
any subsequent use to see exactly one de�nition.

Figure 1 shows the SSA form of a program. Notice how the de�nitions of x
at b1, d1 and e1 are �merged� into a single de�nition at the statement f1, thus
making x9 the only de�nition reaching the uses g3, h3 and i1. Understandably,
the use-def structure of a program in SSA form is extremely simple � allowing
the design of cleaner and faster algorithms.



The Hot Path SSA Form 3

2.2 Acyclic Path Pro�ling

a

b c

d
e

f

g h

i

PSfrag replacements

a1 : x3 = 0
a2 : y4 = 0

b1 : x7 = 1 · · ·

d1 : x17 = 2
e1 : x18 = 3
e2 : y19 = 2

f1 : x9 = φ(x18, x17, x7)
f2 : y8 = φ(y19, y4, y4)
f3 : · · · = x9

f4 : · · · = y8

g1 : · · ·

g2 : · · ·

g3 : . . . = x9

g4 : . . . = y8

h1 : · · ·

h2 : · · ·

h3 : . . . = x9

h4 : . . . = y8

i1 : . . . = x9

i2 : . . . = y8

p1 p2 p3

n3

Fig. 1. A program in the SSA form. (Hot acyclic

paths: p1:abfgi; p2:acdfgi; p3:acefhi)

Ball and Larus [2] pro-
posed an e�cient algo-
rithm for pro�ling acyclic
paths � paths that ter-
minate either at loop-
backedges or at proce-
dure exits. Essentially,
an acyclic path pro�ler
�chops-o�� paths at a
backedge, erasing the se-
quence in which the acyclic
paths in the loop were
actually executed. The
Ball-Larus algorithm is
widely used for specula-
tive analyses and opti-
mizations. We use acyclic
path pro�les to expose
frequent use-def chains in
the HPSSA form.

2.3 A peek at the

Hot Path SSA Form

In this paper, we propose to tie the run-time behaviour of a program � as indi-
cated by the frequently executed acyclic paths � directly to its static program
representation, thus providing a convenient data-structure for the speculative
optimizers. In the proposed representation, which we call the Hot Path SSA
(HPSSA) form, an additional construct � the τ -function � is introduced to
capture information relevant for speculative analyses and optimizations. The
τ -functions act as ��lters�, separating the more-likely use-def chains from the
lesser-likely ones. The �rst argument of the τ -function is the traditional meet-
over-all-paths reaching de�nition; the rest of the arguments are the �hot� reach-
ing de�nitions: de�nitions that are more-likely to reach the respective program
point.

Figure 2 shows the HPSSA form of the program in Figure 1. Consider the
basic-block g: the τ -function at g1 indicates that x9 is the �safe� meet-of-all-paths
reaching de�nition, though the de�nitions of x7 and x17 are more likely to reach
this program point (via the φ-statement at f1). Similarly, for g4, h3 and h4, the
hot reaching de�nitions are from de�nitions of y4, x18 and x19 respectively � all
of which are de�nitions to constants. Hence, the HPSSA form exposes the fact
that the variables y12, x14 and y15 are more likely to be constants with values 0, 3
and 2 respectively � enabling a speculative optimizer to speculatively �predict�
the value of these variables.



4 Subhajit Roy and Y. N. Srikant

a

b c

d
e

f

g h

i

PSfrag replacements

a1 : x3 = 0
a2 : y4 = 0

b1 : x7 = 1 · · ·

d1 : x17 = 2
e1 : x18 = 3
e2 : y19 = 2

f1 : x9 = φ(x18, x17, x7)
f2 : y8 = φ(y19, y4, y4)
f3 : · · · = x9

f4 : · · · = y8

g1 : x11 = τ(x9, x7, x17)
g2 : y12 = τ(y8, y4)
g3 : . . . = x11

g4 : . . . = y12

h1 : x14 = τ(x9, x18)
h2 : y15 = τ(y8, y19)
h3 : . . . = x14

h4 : . . . = y15

i1 : . . . = x9

i2 : . . . = y8

p1 p2 p3

n3
Fig. 2. The program in Figure 1 translated to
the Hot Path SSA (HPSSA) form (Hot paths:
p1:abfgi; p2:acdfgi; p3:acefhi).

a

e
d

c

b

h

g

f

PSfrag replacements

a1 : i1 = 0
a2 : k1 = 0
a3 : n1 = 0

b1 : i2 = φ(i1, i3)

c1 : i3 = i2 + 1

· · ·

e1 : i4 = τ(i2, i3)

f1 : i5 = τ(i2, i1)
f2 : n2 = n1 + 1

g1 : n3 = φ(n1, n2)
g2 : n4 = τ(n3, n1)

· · ·

p1

p2

p3

n3

Fig. 3. HPSSA form for a pro-
gram with loops (Hot paths:
p1:bc; p2:bdegh; p3:abdfh).

Though the HPSSA form uses acyclic path pro�les, it is still adept at prop-
agating hot reaching de�nitions across loop-boundaries. Figure 3 shows the
HPSSA form of a program with a loop. Notice how the variable i3 becomes
the hot reaching de�nition at the basic block e, even though i3 reaches the node
e along a path that contains a backedge (as c-b is a backedge, c-b-d-e is not a
segment of any acyclic path).

In this paper, we only assume reducible �ow-graphs; we also assume the
existence of a loop-preheader node (leading to the loop-header) for each loop in
the program.

3 Thermal Properties of a Program

In this section, we establish a few terms and notations that we use in the rest of
the paper.

3.1 Thermal States of Program Entities

De�nition 1. Hot/Cold Paths: A program path p : n1  n2 is said to be hot
(cold) if the sequence of edges from node n1 to n2 appears (does not appear) in
any pro�led path that occurs frequently in the program pro�le.



The Hot Path SSA Form 5

The above de�nition has been intentionally left slightly ambiguous to make it
general enough to encompass various pro�ling and hot path selection schemes.
The phrase �pro�led path� implies any sequence of basic-blocks that is collected
by a control-�ow pro�ler; for instance, the �pro�led path� is an edge for an edge
pro�ler, an acyclic path for a Ball-Larus path pro�ler, and a path spanning
multiple loop iterations for a k-iteration pro�ler [17, 20]. In this paper (and our
implementation), a �pro�led path� refers to intraprocedural acyclic paths, pro-
�led using a Ball-Larus pro�ler. The quali�er �frequently� in the above de�nition
depends on the hot path selection scheme: we may select hot paths by a thresh-
old frequency, or pick a �nite number of the most commonly executed paths
from each procedure.

De�nition 2. Temperature (θ) of a node (edge) is de�ned as:

� hot: if the node (edge) is present on a hot path;
� cold: if the node (edge) is not present on any hot path.

A backedge b in a �ow-graph is marked hot if, either of the dummy edges,
δstart to a loop-header h or δend from a loop-tail t, is hot1; this is understandable,
as any control-�ow through a dummy edge reported by the Ball-Larus pro�ler
indicates a control-�ow through the corresponding backedge in the program �ow-
graph.

We will use the notation θ(n) to denote the temperature (hot/cold) of a
program entity (nodes, edges or paths). The predicates θh(n) /θc(n) denote that
the entity n is hot/cold.

For example, in Figure 1, all the nodes and edges are hot; the path c→ d→
f → g is hot (through the path p2) while the path e→ f → g is cold.

De�nition 3. Hot/Cold Reaching De�nitions and De�nition Chains
A de�nition δ at a basic-block n1 is said to reach a respective use at a basic-

block n2 hot if there exists a hot path from n1 to n2, and δ is not killed along
that path. A de�nition δ at a basic-block n1 is said to reach a respective use at a
basic-block n2 cold if there does not exist a hot path from n1 to n2, and δ is not
killed at least along one cold path from n1 to n2.

Consider Figure 1: treating a φ-function not as a de�nition, but as a label to the
set of de�nitions in its argument set, we can see that though the meet-over-all-
paths reaching de�nition set at g3 is {x18, x17, x7}, the de�nition x18 does not
reach it via any hot path. So, x18 is a cold reaching de�nition at g3, while x7

and x17 are the hot reaching de�nitions (reaching the node g via the paths p1

and p2). In the SSA form, the φ-functions can be seen as creating a de�nition
chain, that is broken only by a non-φ de�nition: x7 → x9 and x17 → x9 are the
hot reaching de�nition chains at g3 , while x18 → x9 is a cold reaching de�nition
chain. In the HPSSA form, the τ -functions �kill� the cold de�nition chains: for
example, in Figure 2, x18 → x9 no longer reaches g3 as it is killed by g1.

1 The Ball-Larus pro�ler converts a �ow-graph with cycles into a directed acyclic graph
(DAG) by adding dummy edges, δstart/δend, to and from the backedge source/target
(respectively) for each loop in the program [2].



6 Subhajit Roy and Y. N. Srikant

3.2 The structure of pro�led acyclic paths

The set of acyclic paths can be grouped by the node they initiate from � the
program entry or a loop header; we refer to this node as the incubation node for
the acyclic paths originating from it. In Figure 3, node a is the incubation node
for p3, while b is the incubation node for p1 and p2.

A set of pro�led acyclic paths {p1, p2, . . . pn} entering a node u are said to
be buddies at u if the paths p1, p2, . . . , pn have seen exactly the same sequence of
edges from their incubation node; the group of all buddies are said to form the
BuddySet at a node. Consider Figure 1 with the following set of hot paths:
p1 : a-b-f -g-i; p2: a-c-d-f -g-i; p3: a-c-e-f -h-i; p4: a-c-e-f -g-i; p5: a-b-f -h-i.
BuddySeta(f) = {{p1, p5}, {p2}, {p3, p4}}; i.e. p1 and p5 are buddies, so are

p3 and p4, while p2 has no buddy at f .

Notations Let us de�ne a few notations to ease the following discussion:

� Paths(u): The set of all pro�led �hot� acyclic paths reaching the node u.
� Pathss(u): The set of all pro�led �hot� acyclic paths reaching the node u
that initiate from the incubation node s.

� Pathss(u→ v): The set of all pro�led �hot� acyclic paths reaching the node
u that initiate from the incubation node s and progress along the edge u→ v
from u; without the subscript s, it denotes paths from all incubation nodes
that progress along u→ v.

� S(u): Set of all incubation nodes in the set of all pro�led �hot� acyclic paths
reaching node u.

� N(α)/E(α): Set of all nodes/edges in the path α.

4 The Hot Path SSA (HPSSA) form

A speculative optimizer needs to identify �highly likely facts� � facts propagated
along frequently executed paths � to perform optimizations that, though not
legal on all static paths, �mostly� bene�ts the program. The HPSSA form uses a
novel construct � the τ -function � to ��lter� de�nitions along cold paths, thus
allowing only hot de�nitions to propagate further. The form of a τ -statement is
shown below:

xout = τ(x0, x1, . . . , xn)

The τ -function argument list contains two types of arguments:

� Safe (or non-speculative) argument: The �rst argument, x0, is the safe ar-
gument. It carries the variable version that needs to be assigned to xout to
perform safe analyses and optimizations over the program.

� Speculative arguments: The rest of the arguments, x1 . . . xn, are the specu-
lative arguments, carrying the variable versions that reach the current node
along the frequently executed paths; a speculative optimizer can treat the
de�nition of xout as the union of these speculative arguments to perform
speculative analyses and optimizations over the heavily executed paths.



The Hot Path SSA Form 7

The τ -function can be seen as a conditional φ-function:

τ(x0, x1, . . . , xn) =
{
φ(x0) safe interpretation
φ(x1, . . . , xn) speculative interpretation

If a program is in the Hot Path SSA form, then,

� each use of a variable is reachable by a single de�nition;
� if the safe interpretation of the τ -function is used, each use of a variable is
reachable by the meet-over-all-paths reaching de�nition chains;

� if the speculative interpretation of the τ -function is used, each use of a vari-
able in a hot basic-block is reachable only by the meet-over-hot-paths

reaching de�nition chains (or the meet-over-all-paths reaching de�nition
chains, if the use is not reachable from any meet-over-hot-paths reaching
de�nition chain).

With the speculative interpretation, the set of reaching de�nition chains at
even a cold basic-block might be smaller than that corresponding to the meet-
over-all-paths, as some of the de�nition chains may be �killed� by τ -functions on
their way to the cold node.

Each speculative argument xi in a τ -function is mapped to the set of hot
pro�le paths along which the de�nition corresponding to xi is reached. In Figure 2,
for the variable x in g1, the τ -function allocates the parameter x7 corresponding
to the path p1, and the parameter x17 for the path p2. However, for the variable
y at g2, it allocates only one parameter, y4, corresponding to both p1 and p2 as
the same de�nition (from statement a2) reaches it along both the paths.

The HPSSA form honours the constraint imposed by the SSA form: each use
is reachable by a single de�nition � encouraging the development of speculative
extensions of existing SSA-based algorithms on the HPSSA form.

Exiting the HPSSA form

Exiting the HPSSA form is extremely simple � a τ -statement is replaced by a
copy statement from the safe-argument to the de�ned variable:

xout = τ(x0, x1, . . . , xn) � xout = x0

This puts the program in the SSA form; one can then use a standard out-of-
SSA algorithm to exit the SSA form.

5 Constructing the HPSSA Form

In this this section, we discuss the construction of the HPSSA form. The original
program (not in SSA form) is transformed into HPSSA form in four steps:

� Insert φ-statements: The classic algorithm for construction of the minimal
SSA form [8] places φ-statements at the iterated dominance frontier of each
de�nition in the program. A node v is said to be in the dominance frontier
of another node u i� u does not dominate v while a predecessor of v is
dominated by u.



8 Subhajit Roy and Y. N. Srikant

� Insert τ -statements: For each variable x, we identify program points that
necessitate a τ -function, and, at all such points, insert a de�nition of the
form x = τ(x) (discussed in detail in section 5.1).

� Variable renaming: The de�nitive variable renaming algorithm [8] uses a vari-
able stack to propagate reaching de�nitions by traversing the basic-blocks
over the dominator tree. The correctness of our algorithm requires a depth-
�rst traversal over the dominator tree. Note that this phase also renames
the sole argument in the inserted τ -functions to the variable version corre-
sponding to the meet-over-all-paths �safe� reaching de�nition.

� Allocation of the τ -function arguments: Finally, we allocate the speculative
arguments to the τ -functions in correspondence to the hot reaching de�nition
chains (discussed in detail in section 5.2).

Note that after step 3, the program is in SSA form, and after step 4, it is
in HPSSA form. We have intentionally kept the phases for building the SSA
form (steps 1 and 3) clearly distinct from the steps required for constructing the
HPSSA form (steps 2 and 4) to apprise the essentials of the HPSSA construction
algorithm. It will be apparent that the phases need not be separate � some of
them can be combined in an e�cient implementation.

5.1 Thermal Frontiers: Placing τ -functions

We call de�nitions due to φ and τ - functions as pseudo de�nitions, di�erentiating
them from other concrete de�nitions; the corresponding statements are called
pseudo/concrete statements. We de�ne the set of visible de�nitions in the basic-
block u as the last de�nition of each variable in the block: these de�nitions
are the only ones that are �seen� by the basic-blocks reachable from u. In the
following discussion, a reaching de�nition would refer to only concrete de�nitions;
pseudo reaching de�nitions can be seen as the set of concrete de�nitions that
were �merged� due to a φ- or a τ -function.

Each de�nition x := . . . in the program can potentially lead to the insertion
of a τ -statement for variable x. In a basic-block, a τ -statement is inserted after
all the φ-statements (if any), before any of the concrete statements.

The φ-functions act as de�nition mergers � �merging� multiple de�nitions
into a single one. Comparably, the τ -functions act as de�nition �lters � sepa-
rating hot de�nitions from cold ones, which were merged by previously occurring
φ-functions. Hence, a node n will need a τ -function for a variable v if, and only
if, both a hot and a cold reaching de�nition for the variable v arrive at n.

The minimal SSA construction algorithm uses an exquisite structure � the
Dominance Frontier � to insert the φ-statements. To build the HPSSA form, we
identi�ed a similar structure to place the τ -statements: the Thermal Frontier.

De�nition 4. Thermal Frontier: A node v is said to be in the Thermal Frontier
(TF) of a reaching de�nition d, where d is de�ned at a node u, (v ∈ TF (u, d)),
i� the node v is also exposed to a reaching de�nition d′, de�ned at a node w (w
not dominated by u), such that θ(u  v) 6= θ(w  v). Also, v must be the �rst
node in the paths u v and w  v that satis�es the above properties.



The Hot Path SSA Form 9

Stated informally, a node v is in the thermal frontier of a hot/cold reaching de�-
nition d (de�ned at u), if v is also reachable by a di�erent cold/hot (respectively)
de�nition d′ (de�ned at w), while being the �rst node along u  v and w  v
to satisfy the conditions.

Unlike Dominance Frontiers, Thermal Frontiers need not be join nodes. For
example, in Figure 2, node g ∈ TF (b, x7) as x7 is a hot reaching de�nition (along
p1) and g is also reachable by the cold reaching de�nition x18.

It is apparent that τ -functions for a de�nition d at a node u will be needed
at the iterated TF(u,d). We de�ne the Iterated Thermal Frontier in exactly
the same way as iterated join and iterated dominance frontier were de�ned by
Cytron et al.[8].

De�nition 5. Let γx(u) return the visible de�nition of the variable x in the
basic-block u; then, for a set of nodes κ, the Iterated Thermal Frontier (ITF) is
the limit of the increasing sequence of sets of basic-blocks:

TF x(κ) =
⋃

u∈κ TF (u, γx(u))
TF x

1 = TF x(κ)
TF x

i+1 = TF x(κ ∪ TF x
i )

ITF x = TF x
∞, where TF x

∞ refers to the �xpoint, i.e. when TF x
i = TF x

i+1

However, as the φ-statements are inserted by a prior phase, placing the τ -
functions does not require �xpoint computation: a simple topological traver-
sal over the CFG nodes su�ces. Fixpoint computation is generally required if
data�ow information can change after propagating through a backedge. While
placing the τ -functions, if a τ -statement for a variable x is inserted in the header
h of a loop due to a de�nition in the loop body (the only case that requires �x-
point computation), then, the loop-header h is sure to contain a φ-statement
(as no node in the loop-body can dominate h). Hence, if the CFG nodes are
processed in the topologial order, insertion of τ -functions at the required nodes
due to the de�nition of the variable x at h would have already happened.

Theorem 1. For a set of visible de�nitions of a variable x at a set of nodes
κ, τ -statements would be required at the Iterated Thermal Frontier ITF x for
variable x.

The following lemma states the necessary condition for computing the set of
Thermal Frontiers.

Lemma 1. A node n ∈ TF (u, dx) for a de�nition dx (of a variable x) if

� Condition I: n is the junction of a hot and a cold path, i.e., paths at di�erent
temperatures meet at this node;

� Condition II: n is reachable by at least two di�erent de�nitions of the vari-
able x.

Proof. If condition I fails, a τ -function is unnecessary as n can then be reachable
by only hot or only cold de�nitions of x. If condition II fails, a τ -function is again
unnecessary as the node is then dominated by a de�nition of x.



10 Subhajit Roy and Y. N. Srikant

However, note that the above lemma is not a su�cient condition: a node v /∈
TF (u, dx) if the same de�nition dx reaches v via both a hot and cold path (satis-
fying condition I), while v is also reachable by a di�erent hot de�nition (of x), d′,
along a separate hot path (satisfying condition II). Hence, the above lemma may
identify spurious Thermal Frontiers: our HPSSA algorithm inserts τ -function
templates at all points identi�ed by the lemma, leaving the task of weeding out
unnecessary τ -statements to the τ -argument allocation phase (section 5.2). In
the rest of the discussion, we denote the set of Thermal Frontiers computed ac-
cording to Lemma 1 as TF (u, d), and denote the ideal set of Thermal Frontiers
(as de�ned in De�nition 4) as TFideal(u, d).

Let us now sketch an algorithm for computing the Thermal Frontier of a node:
we �rst identify certain nodes that are �junctions� of hot and cold paths (we call
them Caloric Connectors), and thus, satisfy the �rst condition of Lemma 1; we
then identify a scheme for satisfying the second condition.

Caloric Connector

De�nition 6. Caloric Connector (CC): A node ncc ∈ CC if, for distinct nodes
n and n′ (n 6= n′), there exist paths n  ncc, n

′  ncc such that θ(n  ncc) 6=
θ(n′  ncc), and for all nodes n′′ ∈ (N(n  ncc) ∩ N(n′  ncc)) − {ncc},
n′′ /∈ CC.

In other words, a node ncc is a Caloric Connector in a given graph (for a given set
of hot paths) if there exist distinct nodes n and n′, such that n and n′ can reach
ncc through paths having di�erent temperatures, and ncc is the �rst common
node in n ncc and n′  ncc satisfying these properties.

Consider Figure 1: the node g is a Caloric Connector as the path d→ f → g
is hot while e → f → g is cold, while both the �predecessor� paths (d → f and
e→ f) are hot.

Lemma 2. A hot acyclic path t u extended by a forward edge u→ v forms a
cold path t  u → v if, for some incubation node s, there exists a set of buddy
paths B ∈ BuddySets(u) among the paths at u, such that none of the buddies
σ ∈ B traverse the edge u→ v.

Lemma 3. If an acyclic path t u→ v is cold, then, either

� t u is cold, or
� s  t  u is hot, and ∃B ∈ BuddySets(u), such that none of the buddies
σ ∈ B traverses u→ v (where s is the incubation node for s t u).

The intuition for the above lemmas is as follows: Each set of buddies at u,
Bi ∈ BuddySets(u), correspond to a unique sequence of edges (s  u)i from s
to u, distinct from that of any other buddy set Bj ∈ BuddySets(u), Bi 6= Bj .
If no hot path p ∈ Bi selects the edge u → v, that particular sequence of edges
(s  u)i → v is surely missing among the hot paths reaching v. This implies
that the path (s u)i → v is cold. We omit the formal proofs for want of space.



The Hot Path SSA Form 11

Algorithm 1 Computing the set of Caloric Connectors
Traverse each node v in the graph (in the topological order) in the following manner:

1. Initialize hasAColdPath and hasAHotPath to false.
2. For all edges e : u → v,

� if θc(u → v), set hasAColdPath = true;
� if θh(u → v),

(a) Set hasAHotPath = true;
(b) If e is not a backedge, and if, ∃B ∈ BuddySets(u) (for some incu-

bation node s) such that B does not intersect Paths(u → v), set
hasAColdPath = true.

3. If both hasAColdPath and hasAHotPath are true, add v to the set of Caloric
Connectors.

The algorithm for computing the set of Caloric Connectors (Algorithm 1) is
targeted at identifying if both a hot and a cold path can reach a node. Iterating
through all nodes in the CFG in topological order, for each node u, the algo-
rithm examines the temperature of each outgoing edge u→ v. It decides on the
existence of a hot and/or a cold path at v in accordance to Lemma 2 and 3, and
sets the �ags hasHotPath and hasColdPath accordingly. A node v is marked
as a Caloric Connector if it has both a hot and a cold path reaching it.

Computing Thermal Frontiers For a concrete de�nition d and a basic-block
v ∈ TF (u, d), the second condition of Lemma 1 is satis�ed if v is in the dominance
frontier of u (the node v is then also exposed to a di�erent de�nition d′ at a node
w that is not dominated by u).

u

v

w

PSfrag replacements

d1 : x = φ(. . . )

d2 : x = 1

Fig. 4. Violation
of condition II of
Lemma 1.

The case for pseudo de�nitions is slightly di�erent: We
ideate a φ-statement x3 = φ(x1, x2) not as a single de�nition,
but as a set of concrete de�nitions {x3 = x1, x3 = x2} being
propagated to all the outgoing paths from the de�nition-site;
we also envision the τ -statements similarly, but with only the
speculative arguments2. As all paths from a pseudo de�ni-
tion d, de�ned at a node u, are now ideated as carrying this
set of de�nitions (instead of just d), the �rst Caloric Con-
nector (ncc) on each outgoing path from u, called the Clos-
est Caloric Connectors of u (CCC(u)), satis�es Lemma 1 �
provided the pseudo-de�nition d actually reaches ncc. Fig-
ure 4 illustrates this case when d does not reach ncc: Let

w ∈ CCC(u); however, w /∈ TF (u, d1) as the pseudo-de�nition d1 is �killed� by
the concrete de�nition d2 at v, making d2 the dominating de�nition for w �
violating condition II of Lemma 1.

Algorithm 2 outlines our algorithm for inserting τ -nodes.
2 In the HPSSA construction algorithm, the hot de�nitions are �percolated� through
the φ and τ statements as the percolated de�nitions may appear as arguments to
future τ -statements.



12 Subhajit Roy and Y. N. Srikant

Algorithm 2 Inserting τ -statements
Process each control-�ow graph node v in the topological order as follows:

1. For all visible de�nitions �d : x = . . .� in the basic-block v,
� if d is a pseudo de�nition: if the pseudo de�nition d is a reaching de�nition at

v (d is not killed by concrete de�nitions along some path to v), add the set of
the Closest Caloric Connectors for v to TF (v, d);

� if d is a concrete de�nition: TF (v, d) = DF (v) ∩ CC.
2. For all u ∈ TF (v, d), for all visible de�nitions �d : x = . . .� in the basic-block v:

if u does not already have a τ -function for x, insert a τ -statement: x = τ(x) just
after all φ-statements (if any) at u, before any concrete statement.

5.2 Allocating τ -function arguments

Before delving into the details of the algorithm, we take a slight digression into a
deeper understanding of the φ and τ statements. We view a pseudo de�nition �
not as a new de�nition � but as a label to an existing set of de�nitions, namely,
the de�nitions corresponding to its argument set. So, when we talk of reaching
de�nitions in this section, we would refer to all de�nitions (pseudo and concrete)
that are not killed by a concrete de�nition; we do not allow pseudo de�nitions to
kill an existing set of de�nitions. For example, in Figure 2, we would say that the
de�nitions for x9, x17, and x7 are the set of hot de�nitions that reach g; we call
this set as the set of active de�nitions at g. In the SSA form, as each de�nition
corresponds to a unique version of the variable, we use the terms de�nition and
variable version interchangeably.

The algorithm, in essence, computes the path-sensitive active reaching def-
initions at each node u containing a τ -function. The hot reaching de�nitions
(variable versions) stand as arguments in the τ -functions at u, each de�nition
mapped to the set of hot paths along which it reaches u. A de�nition xi that
reaches u along the set of hot-paths ξi can be used as a parameter for a τ -function
only if the following conditions are satis�ed:

� if xi is a concrete reaching de�nition: xi can only be used as a parameter if
ξi 6= ∅, i.e., it does reach u along a hot path;

� if xi is a pseudo reaching de�nition: As discussed above, pseudo de�nitions
are just labels to a set of concrete de�nitions. Even if ξi 6= ∅, not all concrete
de�nitions contained3 in xi may be reaching u: In Figure 2, the pseudo-
de�nition x9 reaches g1 along the hot paths ξi = {p1, p2}, i.e. ξi 6= ∅. How-
ever, if x9 is used as parameter for the τ -function at g1, it would invariably
mean the inclusion of the de�nition x18, which is not a hot reaching de�ni-
tion at g. Hence, a pseudo-de�nition can be used as an argument for some
set of hot paths ξ if, and only if, all the concrete reaching de�nitions that it
merges reaches u along ξ. This condition can be ensured by checking if all

3 A de�nition for xi is contained in a φ-de�nition if the φ-function argument-list
either includes xi, or includes a variable-version xj such that xi is contained in the
de�nition for xj ; for the τ -functions, we only consider the speculative argument-list.



The Hot Path SSA Form 13

the contained concrete de�nitions for xi are available as active de�nitions at
u for the set of paths ξ.

Allowing de�nitions corresponding to pseudo-de�nitions in the τ -function argu-
ment list requires tracking of both pseudo and concrete de�nitions (which might
appear along intersecting set of paths), while ensuring that a pseudo de�nition
never kills a concrete de�nition, even along the same path. For the sake of sim-
plicity, we abandon any further discussion on the same: in the following discus-
sion, we ignore all pseudo de�nitions and maintain only the concrete de�nitions
as active de�nitions (except if a pseudo-de�nition occurs as the only available
reaching de�nition, or if a pseudo-de�nition is propagated along a backedge). As
pseudo-de�nition �labels� to a set of merged de�nitions can no longer appear in
the τ -function argument lists, the implication of ignoring the pseudo de�nitions
is a larger argument list for the τ -functions.

Instead of performing an expensive classical path-sensitive data�ow analysis,
we designed an algorithm very similar to the variable renaming phase of SSA
construction [8] � using a variable stack to maintain the active de�nitions (or
renamed variables) reaching each node. Our algorithm is de�ned as a recursive
procedure running over the dominator tree of the control-�ow graph. The vari-
able stack maintains the set of active reaching de�nitions (xi), along with the
set of hot paths (ξi) that carry the de�nitions to the current node 4. Our al-
gorithm is more e�cient than context-tupled classical path-sensitive data�ow
analysis as it does not require storing of path-sensitive data�ow information at
each basic-block.

Let P be the set of pro�led acyclic path identi�ers, and DefPaths be the
set of P . A frame in the variable stack is a map [DefPaths 7→ V ersion], where
V ersion is the renamed version of a variable; a frame can be seen as a set
containing pairs {[ξ1, x1], [ξ2, x2], . . . , [ξn, xn]}, where ξi ∈ DefPaths. A variable
stack V arStackx is a stack of frames for the base variable x.

V arStack supports the following operations: push(ξi:DefPaths, xi:Version,

u:Basic-block) pushes a new frame with the association [ξi, xi] on V arStackx;
pop(u:Basic-block) pops o� all frames that were pushed in the basic-block u;
and top() returns the topmost frame on the stack.

A Frame in V arStack supports the following operations: get(ξ:DefPaths)
returns the version associated with ξ in the map; accumulate(ξi:DefPaths,
xi:Version) accumulates de�nitions: if a pair [ξj , xi] ∈ Frame, replace [ξj , xi]
by [ξj ∪ ξi, xi], else add a new association [ξi, xi] to the frame.

The top of the variable stack contains the set of active de�nitions � def-
initions that can be used to allocate arguments to the τ -functions in the cur-
rent basic-block. The algorithm traverses the control-�ow graph recursively in a
depth-�rst order over the dominator tree (as does the variable renaming phase
for SSA construction); the set of dominatees5 are traversed in the topological or-
der of the nodes in the control-�ow graph: the order is important to ensure that
4 The updates to ξi is done lazily; so a certain points, they may contain more paths
than the actual set of hot reaching paths.

5 The children of a node n in the dominator tree are the dominatees of n.



14 Subhajit Roy and Y. N. Srikant

when a basic-block is processed, the de�nitions from all its incoming paths reach
it. The active de�nitions are propagated via V arStack from a parent node to its
children in the dominator tree; for a join node u, the active de�nitions are accu-
mulated (by a similar operation as accumulate(ξi:DefPaths, xi:Version) for
a frame) in a De�nition Accumulator Ωx(u) from its predecessors in the CFG
� it is loaded up on V arStack when the node u is processed.

The τ -allocation algorithm is sketched in Algorithm 3. Let us describe the
algorithm via an example (Figure 5) for the �ow-graph in Figure 2:

a

PSfrag replacements

SR V arStackx

Ωx(f)
Ωx(i)

[p1p2p3, x3]

[p1, x7]

[p2, x17]
[p3, x18]

[p1, x7] [p2, x17]
[p3, x18]

[p1, x7]
[p1, x7] [p2, x17]

[p1, x7] [p2, x17] [p3, x18]
[p1, x7] [p2, x17] [p3, x18]
[p1, x7] [p2, x17] [p3, x18]

p1

p2

p3

n3

(a) After node a is pro-
cessed

a
b

PSfrag replacements

SR V arStackx

Ωx(f)

Ωx(i)

[p1p2p3, x3]

[p1, x7]

[p2, x17]
[p3, x18]

[p1, x7] [p2, x17]
[p3, x18]

[p1, x7]

[p1, x7] [p2, x17]
[p1, x7] [p2, x17] [p3, x18]
[p1, x7] [p2, x17] [p3, x18]
[p1, x7] [p2, x17] [p3, x18]

p1

p2

p3

n3

(b) After node b is processed

a
c

e

PSfrag replacements

SR V arStackx

Ωx(f)

Ωx(i)

[p1p2p3, x3]

[p1, x7]

[p2, x17]

[p3, x18]

[p1, x7] [p2, x17]
[p3, x18]

[p1, x7]
[p1, x7] [p2, x17]

[p1, x7] [p2, x17] [p3, x18]

[p1, x7] [p2, x17] [p3, x18]
[p1, x7] [p2, x17] [p3, x18]

p1

p2

p3

n3

(c) After node e is pro-
cessed

a

f

PSfrag replacements

SR V arStackx

Ωx(f)

Ωx(i)

[p1p2p3, x3]

[p1, x7]

[p2, x17]
[p3, x18]

[p1, x7] [p2, x17]
[p3, x18]

[p1, x7]
[p1, x7] [p2, x17]

[p1, x7] [p2, x17] [p3, x18]

[p1, x7] [p2, x17] [p3, x18]
[p1, x7] [p2, x17] [p3, x18]

p1

p2

p3

n3

(d) After node f is pro-
cessed

a

f

g

PSfrag replacements

SR
V arStackx

Ωx(f)

Ωx(i)

[p1p2p3, x3]

[p1, x7]

[p2, x17]
[p3, x18]

[p1, x7] [p2, x17]
[p3, x18][p1, x7]

[p1, x7] [p2, x17]

[p1, x7] [p2, x17] [p3, x18]

[p1, x7] [p2, x17] [p3, x18]

[p1, x7] [p2, x17] [p3, x18]
p1

p2

p3

n3
(e) After node g is processed

a

i

PSfrag replacements

SR V arStackx

Ωx(f)

Ωx(i)

[p1p2p3, x3]

[p1, x7]

[p2, x17]
[p3, x18]

[p1, x7] [p2, x17]
[p3, x18][p1, x7]

[p1, x7] [p2, x17]

[p1, x7] [p2, x17] [p3, x18]

[p1, x7] [p2, x17] [p3, x18]

[p1, x7] [p2, x17] [p3, x18]

p1

p2

p3

n3

(f) After node i is processed

Fig. 5. Steps in the execution of the τ -argument allocation algorithm.

Let the basic-blocks be processed in the order a, b, c, d, e, f , g, h, i.
The basic-block a is processed foremost: the algorithm (Step 3(c)) pushes the

de�nition x3 on V arStackx (Figure (a)), and then recurses on the children of a
in the dominator tree, namely b, c and f (Step 5). At the node b, the algorithm
(Step 3(c)) pushes the de�nition x7 on the stack; its successor node, f , turns out
to be a join node: hence, the algorithm (Step 4) accumulates the de�nitions in
the topmost frame of the stack into the (currently empty) de�nition accumulator
Ωx(f) (Figure (b)). As b has no children in the dominator tree, the algorithm
(Step 6) retraces the recursive path to node a, popping o� the de�nition pushed
by b in the process. The variable stack and the recursion stack (SR) now again
resemble that in Figure (a).

The nodes c, d, and e are processed similarly; Figure (c) shows the state of
the data-structures just after node e is processed. After handling e, the recursion
is unwound to node a.



The Hot Path SSA Form 15

Algorithm 3 A sketch of the τ -function argument allocation algorithm
Process a basic-block u in the following manner:

1. Push the De�nition Accumulator Ω(u) on V arStack (if Ω(u) exists).
2. If u is the incubation node for a set of hot paths, for all base-variables x which do

not have a φ-de�nition appearing in the basic-block u, push a frame 〈ξi, xi〉, where
ξi is the set of all paths that incubate from u, and xi is the meet-over-all paths
reaching de�nition (variable-version) for x at u.

3. Process each statement stm in the basic-block:
(a) If stm is a φ-statement: if u is a loop-header and the dummy pro�le edge t →

δend is hot (where δend denotes the dummy-end node for a Ball-Larus pro�ler,
and t is the corresponding loop-tail), accumulate 〈ξi, xi〉 at the topmost frame
of V arStackx, where
i. ξi is the set of all paths that incubate from u, and
ii. xi is the φ-statement argument corresponding to the backedge t → u.

(b) If stm is a τ -statement:
i. Create a set C of candidate de�nitions from the de�nitions in

V arStack.top() for each incubation node s: add 〈ξi, xi〉 to C i�
(Pathss(u) ∩ ξi) 6= ∅;

ii. If there exists at least one xi ∈ C such that its variable-version di�ers
from the safe argument x0, add arguments to the τ -function for each xi,
mapping the respective variable position to ξi; otherwise, replace the τ -
function with a simple copy statement: xout = x0.

(c) Update VarStack to include new de�nitions in the basic-block u:
� Concrete de�nition: Push the de�nition as a new frame associating it with

Paths(u);
� Pseudo de�nition: Ignore.

4. Save the active de�nitions in Ω of the (forward) successors (if successor is a join
node): for each forward (ignore backedges) successor edge u → v, if v is a join node,
for each 〈ξi, xi〉 ∈ V arStack.top() such that (ξi ∩ Paths(u → v)) 6= ∅, accumulate
〈ξi ∩ Paths(u → v), xi〉 in Ωx.

5. Recurse on the children of u in the dominator tree in accordance to their topological
order in the control �ow graph.

6. Pop o� all frames pushed by u from VarStack.

The algorithm then picks the node f : it �rst pushes the de�nition accumula-
tor of f , Ωx(f), on the variable stack (Step 1); on encountering the φ-de�nition
for x9, it simply ignores the same (Step 3(c)). Finally, it recurses on the imme-
diate dominatees of f , viz. g and h (Step 5).

The node g is processed next: on encountering the τ -de�nition for x11, the
algorithm (Step 3(b)) attempts to allocate arguments for the same: Examining
the active de�nitions (top of the variable stack), the algorithm attempts to as-
semble the candidate set C � a subset of de�nitions from the topmost frame
of V arStackx that, together, can map to all the hot paths passing through g.
The set of active de�nitions at g turn out to be {[p1, x7], [p2, x17], [p3, x18]}. To
be added to C, the path-component in the de�nition pairs must intersect with



16 Subhajit Roy and Y. N. Srikant

Paths(g) = {p1, p2}; [p1, x7] and [p2, x17] satisfy the condition, while [p3, x18]
does not. Notice how the cold de�nitions are pruned are from the possible set of
de�nitions to be added as arguments to the τ -function.

As the variable versions in the set C di�er from that of the safe argument,
we allocate arguments to the τ -function from C.

x11 = τ(x9, x7 〈p1〉 , x17 〈p2〉)

The algorithm then accumulates the active de�nitions in Ωx(i) (Figure (e)).
The nodes h, and then i are processed in order in a similar manner.

Note that the set of candidate de�nitions C for a τ -function at a node v
contains the exact set of hot de�nitions that reach v. Additionally, for each pair
〈ξi, xi〉 ∈ C, xi reaches u along the paths in ξi, and along no other hot path.

Now consider the control-�ow graph with loops (Figure 3): Let us illustrate
as to how the the hot reaching de�nition of i3 in the block c is identi�ed as
a hot reaching de�nition at the τ -function in the node e even though we use
acyclic path-pro�les. As the loop-path p1 is hot, when the node b is processed,
the de�nition-pair 〈p1p2, i3〉 is added to the top of the variable stack (being
the parameter to the φ-function corresponding to the backedge) by Step 3(a).
When the algorithm recurses on the children of d in the dominator tree, the
variable stack carries the de�nition to the basic-block e where it is recognised as
an argument for the τ -function along the path p2. The Step 2 in the algorithm
is required to carry the meet-over-all-paths de�nition n1 from the node a to the
node g, as there does not exist any acyclic hot path from a to g.

6 Speculative Sparse Conditional Constant Propagation

... ...

PSfrag replacements

· · · 0s 1s 2s 3s 4s 5s
· · ·

· · · 0 1 2 3 4 5 · · ·

>

⊥

0s

1s

2s

3s

4s

Fig. 6. The SSCP
Lattice (the constants
superscripted by 's'
are the speculative
constants).

i0=0;
while(...) {

i1=φ(i0, i3);
i2=τ(i1, i3);
i3=i2 + 1;

}

Fig. 7. A case
that requires
meet with its
old value in
the τ -statement
transfer func-
tion for SSCP.

We have implemented the anal-
ysis phase of a novel optimiza-
tion � the Speculative Sparse
Conditional Constant Propaga-
tion (SSCP) on the HPSSA form.
This optimization expands the
scope of the SCP [21] algorithm
� allowing it to identify specu-
lative constants (expressions that
are highly likely to be constants)
� along with the conventional
�safe� constants (expressions that
are guaranteed to be constants).

This section is more than a
description of a new analysis �
through this novel analysis, we es-
sentially aim to demonstrate how

new speculative optimizations can be developed on the HPSSA form by simple
extensions of existing �safe� SSA-based optimizations.



The Hot Path SSA Form 17

The SSCP algorithm operates on a four level lattice (Figure 6 shows the SSCP
lattice for integers): the conventional constant propagation lattice is extended
by another layer � that of speculative constants (indicated by the constants
superscripted with 's'). The speculative constants can be seen as constant values
with exactly the same properties as that of ordinary constants � just marked
�speculative� � indicating that they are predicted values, not guaranteed to hold
under all executions.

The transfer functions of all existing operations (including that of the φ-
function) hold as in SCP, except for the fact that if any operand in an expression
turns out to be a speculative constant, the result of the operation, if a constant,
would be a speculative constant carrying the respective constant value. For ex-
ample, 2 + 3s would render the speculative constant 5s.

The transfer function for the τ -functions is de�ned as follows (where u
is the meet operator): If the meet of all the arguments does not produce ⊥
(not-constant), the transfer function resembles the transfer function for the φ-
functions. Even if the meet of all the arguments turns out to be ⊥, there might
still be the chance of the expression being identi�ed as a speculative constant:
let β = x1 u x2 . . . u xn. The transfer function attempts to return β, if β is
⊥, > or a speculative constant; if β is a �safe� constant, β moves in the lattice
to (β)s, the corresponding speculative constant. Formally, the transfer function
for τ(x0, x1, . . . , xn) is given by the following (where each expression refers its
abstract value in the lattice, and β = x1 u x2 . . . u xn):

τ(x0, x1, . . . , xn) u

x0 u β if x0 u β 6= ⊥
β if x0 u β = ⊥ and β is not a safe constant
(β)s otherwise

The meet with the current value of the τ -function is added to ensure termi-
nation by ensuring monotonicity; otherwise, code fragments resembling that in
Figure 7 will never reach a �xpoint due to i3 increasing its value in the spec-
ulative domain, and the τ -function feeding the same value back to it. We omit
detailed discussions on this analysis for want of space.

7 Implementation and Experiments

We implemented our HPSSA construction algorithm, as well as the analysis
phase of the SSCP algorithm on the Scale compiler [18]; we were also aided
by the CIL [7] tool. We only cast scaler variables whose address has not been
taken in the HPSSA form; τ -functions are not introduced for the remaining
variables. The SSCP algorithm implementation handles only integer variables;
the implementation is interprocedural but context-insensitive; function pointers
are ignored (it �ags a warning, computing a possibly unsafe solution).

We tested our implementation on some programs from the SPEC2000 bench-
mark suite. We used a naive hot path selection criteria: all the acyclic paths
executed on the train input set was considered �hot� for building the HPSSA
form. Table 1 exhibits our �ndings for programs run on the ref input set. The
programs were run with the default parameters, i.e., no parameters were set on



18 Subhajit Roy and Y. N. Srikant

Table 1. Speculative Constants discovered by the SSCP algorithm. ( '~' indicates
almost ; grp, prg, & src refer to inputs graphic, program & source respectively).

Variable Uses Expression Uses Total
Program Inpt Uses HitRt Uses HitRt Hits Misses HitRt
181.mcf - 33110 100.00 49665 100.00 82775 0 100.00
175.vpr - 6938074 100.00 8110837 100.00 15048911 0 100.00

grp 26592 100.00 5 100.00 26597 0 100.00
164.gzip prg 17412 100.00 5 100.00 17417 0 100.00

src 4721 99.98 5 100.00 4725 1 99.98
197.parser - 165970964 ~100.00 340 97.94 165970861 443 ~100.00

grp 132106650 ~100.00 938 76.97 132107372 216 ~100.00
256.bzip2 prg 100819492 ~100.00 6576416 15.67 101849942 5545966 94.84

src 108134316 ~100.00 5256006 17.94 109077366 4312956 96.20

the command line, either for training, or for the actual run (on the ref set).
We collected statistics for dynamic uses (use of a variable/expression during the
actual run) for variables (Variable Uses), and for sub-expressions that could be
constant-folded speculatively (Expression Uses). The uses are tabulated only for
the speculative constants � uses that are likely (but not guaranteed) to be con-
stants. We have not shown the number of �sure� constants as it would be same
as that for the original SCP algorithm. We also indicate the Hit Rate (HitRt):
the percentage of uses where the use of variable/expression actually agrees with
the �predicted� speculative constant value.

The programs seem to enshroud plenitude opportunities for an optimizer
adept at performing speculative program transformations. Most of the programs
show a large number of dynamic speculative usages with good hit rates (except
256.bzip2 for the sub-expression uses; still the overall hit rate turns out high,
courtesy the variable usages). A more intelligent hot path selection scheme may
be able to reap more constants, though it may also have an e�ect on the hit-rate;
we are interested in experimenting with alternative schemes in the future.

8 Related Work

Multitude of interesting extensions and modi�cations have been proposed on the
SSA form. The Hashed SSA (HSSA) form [6] extends the traditional SSA form to
accommodate pointer variables by introducing an explicit may modify operator
(χ) and may reference operator (µ). The Array SSA [13] form captures element-
level data �ow information of array variables. The ψ-SSA form [19] simpli�es
the use of SSA-based optimizations on predicated code. Though we have not
addressed aliasing and arrays in this paper, it does not seem di�cult to address
these issues in the HPSSA form; we may investigate such extensions via concrete
implementations in the future.

Lin et al. [14] proposed a speculative SSA form by extending speculative
versions of the HSSA operators � speculative update (χs) and speculative use
(µs). The speculative �ag, either by use of pro�ling information and/or a set of
heuristic rules, is turned on these operators if it is highly likely that an update



The Hot Path SSA Form 19

or reference will be substantiated at runtime. Lin et al.'s work is orthogonal to
our work as we target exposing the hot use-def chains rather than likely alias
relations; both these techniques can be seamlessly combined for a more powerful
speculative optimization framework.

Towards path-sensitive program optimizations, Ammons and Larus [1] pro-
posed performing �ow-analysis on a hot path graph that isolates the frequent
paths. Das et al. [10] proposed a polynomial-time path-sensitive algorithm for
verifying a given temporal safety property, and proved it e�ective by verifying
the �le I/O behaviour of a version of the GNU C Compiler.

Researchers have also been interested in inferring likely data-�ow facts, com-
puted over control-�ow pro�les. Ramalingam [16] used edge-pro�les to infer the
probability with which a fact holds true for the class of �nite bi-distributive sub-
set problems. Probabilistic pointer analyses [4, 9] assign probabilities with which
a points-to relation might hold at a program point. Contributions to speculative
partial redundancy elimination have been made by [15, 22]. Path pro�le based
speculative PRE and PDE have been proposed by [11, 12]. Most of these tech-
niques use edge and node pro�les which are much weaker than path-pro�les used
by HPSSA. Also, the HPSSA form provides a common ground for writing e�-
cient optimizations on a sparse program representation; it scores over �ow-based
speculative optimizations due to the exact reason that the SSA-based algorithms
score over the �ow-based safe optimizations.

9 Conclusions

We propose a novel extension to the highly successful SSA form, and demonstrate
� by an analysis algorithm for Speculative Sparse Conditional Constant Prop-
agation � that novel speculative optimizations can be enabled on the HPSSA
form by almost obvious modi�cations of existing SSA-based traditional optimiza-
tions. We are pondering over the design of speculative versions of other existing
SSA-based traditional optimizations � Global Value Numbering [3] and Partial
Redundancy Elimination [5] being our foremost targets. We are also interested
in extending the HPSSA form for richer pro�les like the k-iteration [17] pro�les.

Acknowledgements. Subhajit Roy was supported by Doctoral Fellowship from
Philips Research, India.

References

1. Glenn Ammons and James R. Larus. Improving data-�ow analysis with path
pro�les. SIGPLAN Not., 39(4):568�582, 2004.

2. Thomas Ball and James R. Larus. E�cient path pro�ling. In International Sym-
posium on Microarchitecture (MICRO), pages 46�57, 1996.

3. Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. Value Numbering. Soft-
ware: Practice and Experience, 1997.



20 Subhajit Roy and Y. N. Srikant

4. Peng-Sheng Chen, Yuan-Shin Hwang, Roy Dz-Ching Ju, and Jenq Kuen Lee. In-
terprocedural Probabilistic Pointer Analysis. IEEE Transactions on Parallel and
Distributed Systems, 15(10):893�907, 2004.

5. Fred Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu, Raymond Lo, and Peng
Tu. A new algorithm for partial redundancy elimination based on SSA form. In
Programming Language Design and Implementation (PLDI), pages 273�286, 1997.

6. Fred C. Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark Streich. E�ec-
tive Representation of Aliases and Indirect Memory Operations in SSA Form. In
International Conference on Compiler Construction (CC), pages 253�267, 1996.

7. CIL - Infrastructure for C Program Analysis and Transformation.
http://hal.cs.berkeley.edu/cil/.

8. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. E�ciently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451�490, 1991.

9. Je� Da Silva and J. Gregory Ste�an. A probabilistic pointer analysis for speculative
optimizations. SIGARCH Comput. Archit. News, 34(5):416�425, 2006.

10. Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: path-sensitive program veri�-
cation in polynomial time. In Programming Language Design and Implementation
(PLDI), pages 57�68, 2002.

11. Rajiv Gupta, David A. Berson, and Jesse Z. Fang. Path Pro�le Guided Partial
Dead Code Elimination Using Predication. In Parallel Architectures and Compi-
lation Techniques (PACT), page 102, 1997.

12. Rajiv Gupta, David A. Berson, and Jesse Z. Fang. Path Pro�le Guided Partial
Redundancy Elimination Using Speculation. In International Conference on Com-
puter Languages (ICCL), page 230, 1998.

13. Kathleen Knobe and Vivek Sarkar. Array SSA form and its use in parallelization.
In Principles of Programming Languages (POPL), pages 107�120, 1998.

14. Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju, Tin-
Fook Ngai, and Sun Chan. A compiler framework for speculative analysis and
optimizations. In Programming Language Design and Implementation (PLDI),
pages 289�299, 2003.

15. David J. Pereira R. Nigel Horspool and Bernhard Scholz. Fast Pro�le-Based Partial
Redundancy Elimination. Modular Programming Languages, 2006.

16. G. Ramalingam. Data �ow frequency analysis. In Programming Language Design
and Implementation (PLDI), pages 267�277, 1996.

17. Subhajit Roy and Y. N. Srikant. Pro�ling k-Iteration Paths: A Generalization of the
Ball-Larus Pro�ling Algorithm. In International Symposium on Code Generation
and Optimization (CGO), pages 70�80. IEEE Computer Society, 2009.

18. Scale: A Scalable Compiler for Analytical Experiments.
http://www-ali.cs.umass.edu/Scale/.

19. Arthur Stoutchinin and Francois de Ferriere. E�cient static single assignment
form for predication. In International Symposium on Microarchitecture (MICRO),
pages 172�181, 2001.

20. Sriraman Tallam, Xiangyu Zhang, and Rajiv Gupta. Extending path pro�ling
across loop backedges and procedure boundaries. In International Symposium on
Code Generation and Optimization (CGO), pages 251�264, 2004.

21. Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional
branches. ACM Trans. Program. Lang. Syst., 13(2):181�210, 1991.

22. Jingling Xue and Qiong Cai. A lifetime optimal algorithm for speculative PRE.
ACM Trans. Archit. Code Optim., 3(2):115�155, 2006.


