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Abstract. The Static Single Assignment (SSA) form has been an em-
inent contribution towards analyzing programs for compiler optimiza-
tions. It has been affable to the design of simpler algorithms for existing
optimizations, and has facilitated the development of new ones. However,
speculative optimizations — optimizations targeted towards speeding-up
the “common cases” of a program — have not been fortunate enough to
savor an SSA-like intermediate form. We extend the SSA form for spec-
ulative analyses and optimizations by allowing only hot reaching defini-
tions — definitions along frequent acyclic paths in the program profile
— to reach its respective uses; we call this representation the Hot Path
SSA form. We propose an algorithm for constructing such a form, and
demonstrate its effectiveness by designing the analysis phase of a novel
optimization — Speculative Sparse Conditional Constant Propagation:
an almost obvious extension of Wegman and Zadeck’s Sparse Conditional
Constant Propagation algorithm. Our experiments on some SPEC2000
programs proves the potency of such an optimization.

1 Introduction

Program analyses and optimizations have benefited immensely from the SSA
form as an intermediate representation. An extremely simple idea — allow only
a single definition of a variable to reach the statements using it — prunes out
false dependencies, and factors long use-def chains into a web of short, simple
ones. A multitude of optimizations were either made possible, or were heavily
empowered by the SSA form — sparse conditional constant propagation, global
value numbering, and strength reduction to name a few.

However, speculative optimizations — optimizations biased towards frequently
executed paths — have not been fortunate enough to enjoy an SSA-like inter-
mediate representation. These optimizations have recently attracted a lot of at-
tention, and are now recognised as a major vehicle towards improving program
performance.

Modern compilation systems, acknowledging the importance of such uncon-
ventional optimizations, have started providing support for speculative analy-
sis and transformation. However, in most of the intermediate representations,
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the profiling information is not integrated into the static program representa-
tion. This makes implementing speculative optimizations cumbersome, having
to handle too many data-structures. Additionally, the absence of an SSA-like
sparse representation has hindered the development of efficient algorithms for
speculative optimizations.

We propose to extend the power of the SSA form to speculative optimiza-
tions by separating the hot use-def chains from the cold ones, thus allowing a
speculative optimizer to “see” only the most-likely dataflow facts. However, the
“non-speculative” SSA form is not lost: a traditional optimizer can still choose
to constrain itself to the non-speculative form by ignoring the speculative infor-
mation. The SSA form is not erased — just suitably extended with speculative
information — obviating the necessity of constructing and maintaining the non-
speculative SSA form separately; at the same time, this SSA-like intermediate
form is much more amenable to speculative analyses and optimizations.

We call this extension to the SSA form as the “Hot Path SSA (HPSSA) form”.
As the HPSSA form honours the constraint imposed by the SSA form (that of
a single reaching definition for every use), many of the SSA-based algorithms
for traditional optimizations developed over the last couple of decades (almost)
immediately become available to speculative optimizers.

Following are our contributions in this paper:

— We propose a novel program representation — the Hot Path SSA (HPSSA)
form — that allows a use to witness only the “more-likely” reaching defini-
tions (section 4);

— We present an algorithm for constructing the HPSSA form (section 5);

— We demonstrate the potency of the HPSSA form by designing the analysis
phase of a novel speculative optimization — Speculative Sparse Conditional
Constant Propagation (SSCP) — that identifies both “safe” (expressions that
are sure to be constants) and “speculative” (expressions that are more-likely
to be constants) constants in a given program. An almost trivial extension of
Wegman and Zadeck’s SCP algorithm [21], SSCP exhibits the possibilities of
developing new speculative optimizations using the HPSSA form by tailoring
of existing SSA-based traditional optimizations (section 6).

2 Background

2.1 The Static Single Assignment Form

A program is said to be in Static Single Assignment (SSA) form if each use of a
variable has ezactly one reaching definition. A special operator, the ¢-function,
merges multiple definitions from different paths into a single definition, forcing
any subsequent use to see exactly one definition.

Figure 1 shows the SSA form of a program. Notice how the definitions of x
at by, d; and e; are “merged” into a single definition at the statement f1, thus
making xg the only definition reaching the uses gs, hs and 7;. Understandably,
the use-def structure of a program in SSA form is extremely simple — allowing
the design of cleaner and faster algorithms.
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Fig. 1. A program in the SSA form. (Hot acyclic
2.3 A peek at the paths: pi:abfgi; py:acdfgi; ps:acefhi)
Hot Path SSA Form

In this paper, we propose to tie the run-time behaviour of a program — as indi-
cated by the frequently executed acyclic paths — directly to its static program
representation, thus providing a convenient data-structure for the speculative
optimizers. In the proposed representation, which we call the Hot Path SSA
(HPSSA) form, an additional construct — the 7-function — is introduced to
capture information relevant for speculative analyses and optimizations. The
T-functions act as “filters”, separating the more-likely use-def chains from the
lesser-likely ones. The first argument of the 7-function is the traditional meet-
over-all-paths reaching definition; the rest of the arguments are the “hot” reach-
ing definitions: definitions that are more-likely to reach the respective program
point.

Figure 2 shows the HPSSA form of the program in Figure 1. Consider the
basic-block g: the 7-function at g, indicates that g is the “safe” meet-of-all-paths
reaching definition, though the definitions of x7 and x,7 are more likely to reach
this program point (via the ¢-statement at f1). Similarly, for g4, h3 and hy, the
hot reaching definitions are from definitions of y4, 153 and x19 respectively — all
of which are definitions to constants. Hence, the HPSSA form exposes the fact
that the variables y12, 14 and y;5 are more likely to be constants with values 0, 3
and 2 respectively — enabling a speculative optimizer to speculatively “predict”
the value of these variables.
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Fig.2. The program in Figure 1 translated to Fig. 3. HPSSA form for a pro-
the Hot Path SSA (HPSSA) form (Hot paths: gram with loops (Hot paths:
pi:abfgi; poracdfgi; ps:acefhi). pi1:bc; pa:bdegh; ps:abdfh).

Though the HPSSA form uses acyclic path profiles, it is still adept at prop-
agating hot reaching definitions across loop-boundaries. Figure 3 shows the
HPSSA form of a program with a loop. Notice how the variable i3 becomes
the hot reaching definition at the basic block e, even though i3 reaches the node
e along a path that contains a backedge (as c-b is a backedge, c-b-d-e is not a
segment of any acyclic path).

In this paper, we only assume reducible flow-graphs; we also assume the
existence of a loop-preheader node (leading to the loop-header) for each loop in
the program.

3 Thermal Properties of a Program

In this section, we establish a few terms and notations that we use in the rest of
the paper.

3.1 Thermal States of Program Entities
Definition 1. Hot/Cold Paths: A program path p : ny ~> ng is said to be hot

(cold) if the sequence of edges from node ny to ns appears (does not appear) in
any profiled path that occurs frequently in the program profile.
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The above definition has been intentionally left slightly ambiguous to make it
general enough to encompass various profiling and hot path selection schemes.
The phrase “profiled path” implies any sequence of basic-blocks that is collected
by a control-flow profiler; for instance, the “profiled path” is an edge for an edge
profiler, an acyclic path for a Ball-Larus path profiler, and a path spanning
multiple loop iterations for a k-iteration profiler [17,20]. In this paper (and our
implementation), a “profiled path” refers to intraprocedural acyclic paths, pro-
filed using a Ball-Larus profiler. The qualifier “frequently” in the above definition
depends on the hot path selection scheme: we may select hot paths by a thresh-
old frequency, or pick a finite number of the most commonly executed paths
from each procedure.

Definition 2. Temperature (0) of a node (edge) is defined as:

— hot: if the node (edge) is present on a hot path;
— cold: if the node (edge) is not present on any hot path.

A backedge b in a flow-graph is marked hot if, either of the dummy edges,
Sstart t0 aloop-header h or 0,4 from a loop-tail ¢, is hot!; this is understandable,
as any control-flow through a dummy edge reported by the Ball-Larus profiler
indicates a control-flow through the corresponding backedge in the program flow-
graph.

We will use the notation 6(n) to denote the temperature (hot/cold) of a
program entity (nodes, edges or paths). The predicates 6,,(n) /0.(n) denote that
the entity n is hot/cold.

For example, in Figure 1, all the nodes and edges are hot; the path ¢ — d —
f — g is hot (through the path py) while the path e — f — ¢ is cold.

Definition 3. Hot/Cold Reaching Definitions and Definition Chains

A definition 6 at a basic-block ny is said to reach a respective use at a basic-
block ny hot if there exists a hot path from ny to no, and 6 is not killed along
that path. A definition § at a basic-block ny is said to reach a respective use at a
basic-block no cold if there does not exist a hot path from ny to no, and § is not
killed at least along one cold path from ny to ns.

Consider Figure 1: treating a ¢-function not as a definition, but as a label to the
set of definitions in its argument set, we can see that though the meet-over-all-
paths reaching definition set at g3 is {x15, 17,7}, the definition z1g does not
reach it via any hot path. So, x1g is a cold reaching definition at g3, while z7
and z17 are the hot reaching definitions (reaching the node g via the paths p;
and ps). In the SSA form, the ¢-functions can be seen as creating a definition
chain, that is broken only by a non-¢ definition: 7 — =9 and x17 — zg9 are the
hot reaching definition chains at g3 , while £13 — xg is a cold reaching definition
chain. In the HPSSA form, the 7-functions “kill” the cold definition chains: for
example, in Figure 2, 135 — x9 no longer reaches gs as it is killed by ¢g;.

! The Ball-Larus profiler converts a flow-graph with cycles into a directed acyclic graph
(DAG) by adding dummy edges, dstart/dend, to and from the backedge source/target
(respectively) for each loop in the program [2].



6 Subhajit Roy and Y. N. Srikant

3.2 The structure of profiled acyclic paths

The set of acyclic paths can be grouped by the node they initiate from — the
program entry or a loop header; we refer to this node as the incubation node for
the acyclic paths originating from it. In Figure 3, node a is the incubation node
for p3, while b is the incubation node for p; and ps.

A set of profiled acyclic paths {p1,pa,...pn} entering a node v are said to
be buddies at u if the paths pq, po, ..., p, have seen ezxactly the same sequence of
edges from their incubation node; the group of all buddies are said to form the
BuddySet at a node. Consider Figure 1 with the following set of hot paths:

’pl : a-b-f-g-i; po: a-c-d-f-g-i; ps: a-c-e-f-h-i; p4: a-c-e-f-g-i; ps: a-b-f-h-i.

BuddySet,(f) = {{p1,p5},{p2}, {p3,pa}}; i.e. p1 and ps are buddies, so are
ps and py, while po has no buddy at f.

Notations Let us define a few notations to ease the following discussion:

— Paths(u): The set of all profiled “hot” acyclic paths reaching the node w.

— Pathsg(u): The set of all profiled “hot” acyclic paths reaching the node u
that initiate from the incubation node s.

— Pathss(u — v): The set of all profiled “hot” acyclic paths reaching the node
u that initiate from the incubation node s and progress along the edge u — v
from wu; without the subscript s, it denotes paths from all incubation nodes
that progress along v — wv.

— S(u): Set of all incubation nodes in the set of all profiled “hot” acyclic paths
reaching node u.

— N(o)/E(c): Set of all nodes/edges in the path o.

4 The Hot Path SSA (HPSSA) form

A speculative optimizer needs to identify “highly likely facts” — facts propagated
along frequently executed paths — to perform optimizations that, though not
legal on all static paths, “mostly” benefits the program. The HPSSA form uses a
novel construct — the 7-function — to “filter” definitions along cold paths, thus
allowing only hot definitions to propagate further. The form of a T-statement is
shown below:

Tout = T(T0, T1,- -+, Tn)

The 7-function argument list contains two types of arguments:

— Safe (or non-speculative) argument: The first argument, xq, is the safe ar-
gument. It carries the variable version that needs to be assigned to x,,: to
perform safe analyses and optimizations over the program.

— Speculative arguments: The rest of the arguments, z; ... x,, are the specu-
lative arguments, carrying the variable versions that reach the current node
along the frequently executed paths; a speculative optimizer can treat the
definition of z,y; as the union of these speculative arguments to perform
speculative analyses and optimizations over the heavily executed paths.
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The 7-function can be seen as a conditional ¢-function:

| &(x0) safe interpretation
7(x0, 71, Tn) = { ¢(z1,...,2,) speculative interpretation

If a program is in the Hot Path SSA form, then,

— each use of a variable is reachable by a single definition;

— if the safe interpretation of the 7-function is used, each use of a variable is
reachable by the meet-over-all-paths reaching definition chains;

— if the speculative interpretation of the 7-function is used, each use of a vari-
able in a hot basic-block is reachable only by the meet-over-hot-paths
reaching definition chains (or the meet-over-all-paths reaching definition
chains, if the use is not reachable from any meet-over-hot-paths reaching
definition chain).

With the speculative interpretation, the set of reaching definition chains at
even a cold basic-block might be smaller than that corresponding to the meet-
over-all-paths, as some of the definition chains may be “killed” by 7-functions on
their way to the cold node.

Each speculative argument x; in a T-function is mapped to the set of hot
profile paths along which the definition corresponding to x; is reached. In Figure 2,
for the variable z in g1, the 7-function allocates the parameter x7 corresponding
to the path p1, and the parameter x17 for the path ps. However, for the variable
y at gs, it allocates only one parameter, y4, corresponding to both p; and p, as
the same definition (from statement as) reaches it along both the paths.

The HPSSA form honours the constraint imposed by the SSA form: each use
is reachable by a single definition — encouraging the development of speculative
extensions of existing SSA-based algorithms on the HPSSA form.

Exiting the HPSSA form
Exiting the HPSSA form is extremely simple — a 7-statement is replaced by a
copy statement from the safe-argument to the defined variable:
Tout = T(T0,T1,- -, Tn) ™  Tout = To
This puts the program in the SSA form; one can then use a standard out-of-
SSA algorithm to exit the SSA form.

5 Constructing the HPSSA Form

In this this section, we discuss the construction of the HPSSA form. The original
program (not in SSA form) is transformed into HPSSA form in four steps:

— Insert ¢-statements: The classic algorithm for construction of the minimal
SSA form [8] places ¢-statements at the iterated dominance frontier of each
definition in the program. A node v is said to be in the dominance frontier
of another node w iff © does not dominate v while a predecessor of v is
dominated by w.
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— Insert 7-statements: For each variable z, we identify program points that
necessitate a 7-function, and, at all such points, insert a definition of the
form z = 7(x) (discussed in detail in section 5.1).

— Variable renaming: The definitive variable renaming algorithm [8] uses a vari-
able stack to propagate reaching definitions by traversing the basic-blocks
over the dominator tree. The correctness of our algorithm requires a depth-
first traversal over the dominator tree. Note that this phase also renames
the sole argument in the inserted 7-functions to the variable version corre-
sponding to the meet-over-all-paths “safe” reaching definition.

— Allocation of the 7-function arguments: Finally, we allocate the speculative
arguments to the 7-functions in correspondence to the hot reaching definition
chains (discussed in detail in section 5.2).

Note that after step 3, the program is in SSA form, and after step 4, it is
in HPSSA form. We have intentionally kept the phases for building the SSA
form (steps 1 and 3) clearly distinct from the steps required for constructing the
HPSSA form (steps 2 and 4) to apprise the essentials of the HPSSA construction
algorithm. It will be apparent that the phases need not be separate — some of
them can be combined in an efficient implementation.

5.1 Thermal Frontiers: Placing 7-functions

We call definitions due to ¢ and 7- functions as pseudo definitions, differentiating
them from other concrete definitions; the corresponding statements are called
pseudo/concrete statements. We define the set of visible definitions in the basic-
block u as the last definition of each variable in the block: these definitions
are the only ones that are “seen” by the basic-blocks reachable from u. In the
following discussion, a reaching definition would refer to only concrete definitions;
pseudo reaching definitions can be seen as the set of concrete definitions that
were “merged” due to a ¢- or a 7-function.

Each definition x := ... in the program can potentially lead to the insertion
of a T-statement for variable x. In a basic-block, a 7-statement is inserted after
all the ¢-statements (if any), before any of the concrete statements.

The ¢-functions act as definition mergers — “merging” multiple definitions
into a single one. Comparably, the 7-functions act as definition filters — sepa-
rating hot definitions from cold ones, which were merged by previously occurring
¢-functions. Hence, a node n will need a T-function for a variable v if, and only
if, both a hot and a cold reaching definition for the variable v arrive at n.

The minimal SSA construction algorithm uses an exquisite structure — the
Dominance Frontier — to insert the ¢-statements. To build the HPSSA form, we
identified a similar structure to place the 7-statements: the Thermal Frontier.

Definition 4. Thermal Frontier: A node v is said to be in the Thermal Frontier
(TF) of a reaching definition d, where d is defined at a node u, (v € TF(u,d)),
iff the node v is also exposed to a reaching definition d', defined at a node w (w
not dominated by u), such that 6(u ~ v) # 0(w ~ v). Also, v must be the first
node in the paths u ~» v and w ~> v that satisfies the above properties.
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Stated informally, a node v is in the thermal frontier of a hot/cold reaching defi-
nition d (defined at w), if v is also reachable by a different cold/hot (respectively)
definition d’ (defined at w), while being the first node along u ~ v and w ~» v
to satisfy the conditions.

Unlike Dominance Frontiers, Thermal Frontiers need not be join nodes. For
example, in Figure 2, node g € TF (b, z7) as x7 is a hot reaching definition (along
p1) and g is also reachable by the cold reaching definition z1s.

It is apparent that 7-functions for a definition d at a node u will be needed
at the iterated TF(u,d). We define the Iterated Thermal Frontier in exactly
the same way as iterated join and iterated dominance frontier were defined by
Cytron et al.[§].

Definition 5. Let v, (u) return the visible definition of the variable x in the
basic-block u; then, for a set of nodes k, the Iterated Thermal Frontier (ITF) is
the limit of the increasing sequence of sets of basic-blocks:

TF (5) = U, TF (1.7, (w)

TFF =TF*(k)

TF, =TF*(kUTFEY)

ITF® = TF3,, where TFZ, refers to the fixpoint, i.e. when TF® = TFf |

[oop)

However, as the ¢-statements are inserted by a prior phase, placing the 7-
functions does not require fixpoint computation: a simple topological traver-
sal over the CFG nodes suffices. Fixpoint computation is generally required if
dataflow information can change after propagating through a backedge. While
placing the 7-functions, if a 7-statement for a variable z is inserted in the header
h of a loop due to a definition in the loop body (the only case that requires fix-
point computation), then, the loop-header h is sure to contain a ¢-statement
(as no node in the loop-body can dominate h). Hence, if the CFG nodes are
processed in the topologial order, insertion of 7-functions at the required nodes
due to the definition of the variable x at h would have already happened.

Theorem 1. For a set of visible definitions of a variable z at a set of nodes
k, T-statements would be required at the Iterated Thermal Frontier ITF?* for
variable x.

The following lemma states the necessary condition for computing the set of
Thermal Frontiers.

Lemma 1. A node n € TF(u,d”) for a definition d* (of a variable x) if

— Condition I: n is the junction of a hot and a cold path, i.e., paths at different
temperatures meet at this node;

— Condition II: n is reachable by at least two different definitions of the vari-
able z.

Proof. If condition I fails, a 7-function is unnecessary as n can then be reachable
by only hot or only cold definitions of x. If condition II fails, a 7-function is again
unnecessary as the node is then dominated by a definition of .



10 Subhajit Roy and Y. N. Srikant

However, note that the above lemma is not a sufficient condition: a node v ¢
TF(u,d") if the same definition d” reaches v via both a hot and cold path (satis-
fying condition I), while v is also reachable by a different hot definition (of x), d’,
along a separate hot path (satisfying condition II). Hence, the above lemma may
identify spurious Thermal Frontiers: our HPSSA algorithm inserts 7-function
templates at all points identified by the lemma, leaving the task of weeding out
unnecessary 7-statements to the T-argument allocation phase (section 5.2). In
the rest of the discussion, we denote the set of Thermal Frontiers computed ac-
cording to Lemma 1 as TF(u,d), and denote the ideal set of Thermal Frontiers
(as defined in Definition 4) as T'Fjgeai(u, d).

Let us now sketch an algorithm for computing the Thermal Frontier of a node:
we first identify certain nodes that are “junctions” of hot and cold paths (we call
them Caloric Connectors), and thus, satisfy the first condition of Lemma 1; we
then identify a scheme for satisfying the second condition.

Caloric Connector

Definition 6. Caloric Connector (CC): A node n.. € CC if, for distinct nodes
n and n' (n #n'), there exist paths n ~ nee, 1’ ~> nee such that O(n ~> ne.) #
O(n’ ~> nee), and for all nodes n” € (N(n ~» nee) N N(n' ~ nee)) — {neet,
n” ¢ CC.

In other words, a node n.. is a Caloric Connector in a given graph (for a given set
of hot paths) if there exist distinct nodes n and n’, such that n and n’ can reach
nee through paths having different temperatures, and n.. is the first common
node in n ~ n.. and n’ ~ n,. satisfying these properties.

Consider Figure 1: the node g is a Caloric Connector as the path d — f — ¢
is hot while e — f — ¢ is cold, while both the “predecessor” paths (d — f and
e — [) are hot.

Lemma 2. A hot acyclic path t ~ u extended by a forward edge u — v forms a
cold path t ~ u — v if, for some incubation node s, there exists a set of buddy
paths B € BuddySets(u) among the paths at u, such that none of the buddies
0 € B traverse the edge u — v.

Lemma 3. If an acyclic path t ~~ u — v is cold, then, either

— t~>u is cold, or
— §~ t ~ u is hot, and 3B € BuddySets(u), such that none of the buddies
o € B traverses u — v (where s is the incubation node for s ~»t ~> u).

The intuition for the above lemmas is as follows: Each set of buddies at w,
B; € BuddySet4(u), correspond to a unique sequence of edges (s ~» u); from s
to u, distinct from that of any other buddy set B; € BuddySets(u), B; # B;.
If no hot path p € B; selects the edge u — v, that particular sequence of edges
(s ~ u); — v is surely missing among the hot paths reaching v. This implies
that the path (s ~» u); — v is cold. We omit the formal proofs for want of space.
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Algorithm 1 Computing the set of Caloric Connectors

Traverse each node v in the graph (in the topological order) in the following manner:

1. Initialize hasAColdPath and hasAHotPath to false.
2. For all edges e : u — v,

— if O.(u — v), set hasAColdPath = true;

— if On(u — v),

(a) Set hasAHotPath = true;

(b) If e is not a backedge, and if, 3B € BuddySets(u) (for some incu-
bation node s) such that B does not intersect Paths(u — wv), set
hasAColdPath = true.

3. If both hasAColdPath and hasAHotPath are true, add v to the set of Caloric
Connectors.

The algorithm for computing the set of Caloric Connectors (Algorithm 1) is
targeted at identifying if both a hot and a cold path can reach a node. Iterating
through all nodes in the CFG in topological order, for each node u, the algo-
rithm examines the temperature of each outgoing edge u — v. It decides on the
existence of a hot and/or a cold path at v in accordance to Lemma 2 and 3, and
sets the flags hasHotPath and hasColdPath accordingly. A node v is marked
as a Caloric Connector if it has both a hot and a cold path reaching it.

Computing Thermal Frontiers For a concrete definition d and a basic-block
v € TF(u,d), the second condition of Lemma 1 is satisfied if v is in the dominance
frontier of u (the node v is then also exposed to a different definition d’ at a node
w that is not dominated by u).

The case for pseudo definitions is slightly different: We
ideate a ¢-statement x3 = ¢(x1, x2) not as a single definition,
but as a set of concrete definitions {z5 = 21,235 = 22} being
propagated to all the outgoing paths from the definition-site;
we also envision the T-statements similarly, but with only the
speculative arguments?. As all paths from a pseudo defini-
tion d, defined at a node u, are now ideated as carrying this
set of definitions (instead of just d), the first Caloric Con-
nector (n..) on each outgoing path from w, called the Clos-
est Caloric Connectors of w (CCC(u)), satisfies Lemma 1 —
provided the pseudo-definition d actually reaches n... Fig-
ure 4 illustrates this case when d does not reach n..: Let
w € CCC(u); however, w ¢ TF(u,d;) as the pseudo-definition d; is “killed” by
the concrete definition d; at v, making ds the dominating definition for w —
violating condition IT of Lemma 1.

Algorithm 2 outlines our algorithm for inserting 7-nodes.

Fig.4. Violation
of condition II of
Lemma 1.

% In the HPSSA construction algorithm, the hot definitions are “percolated” through
the ¢ and 7 statements as the percolated definitions may appear as arguments to
future T-statements.
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Algorithm 2 Inserting 7-statements
Process each control-flow graph node v in the topological order as follows:

1. For all visible definitions “d : = = ...” in the basic-block v,

— if d is a pseudo definition: if the pseudo definition d is a reaching definition at
v (d is not killed by concrete definitions along some path to v), add the set of
the Closest Caloric Connectors for v to T F(v, d);
— if d is a concrete definition: TF(v,d) = DF(v) N CC.
2. For all w € TF(v,d), for all visible definitions “d : = = ...” in the basic-block v:
if u does not already have a 7-function for z, insert a T-statement: z = 7(z) just
after all ¢-statements (if any) at u, before any concrete statement.

5.2 Allocating T-function arguments

Before delving into the details of the algorithm, we take a slight digression into a
deeper understanding of the ¢ and 7 statements. We view a pseudo definition —
not as a new definition — but as a label to an existing set of definitions, namely,
the definitions corresponding to its argument set. So, when we talk of reaching
definitions in this section, we would refer to all definitions (pseudo and concrete)
that are not killed by a concrete definition; we do not allow pseudo definitions to
kill an existing set of definitions. For example, in Figure 2, we would say that the
definitions for xg, x17, and x7 are the set of hot definitions that reach g; we call
this set as the set of active definitions at g. In the SSA form, as each definition
corresponds to a unique version of the variable, we use the terms definition and
variable version interchangeably.

The algorithm, in essence, computes the path-sensitive active reaching def-
initions at each node u containing a 7-function. The hot reaching definitions
(variable versions) stand as arguments in the 7-functions at u, each definition
mapped to the set of hot paths along which it reaches u. A definition x; that
reaches u along the set of hot-paths &; can be used as a parameter for a 7-function
only if the following conditions are satisfied:

— if x; is a concrete reaching definition: z; can only be used as a parameter if
& # 0, ie., it does reach u along a hot path;

— if x; is a pseudo reaching definition: As discussed above, pseudo definitions
are just labels to a set of concrete definitions. Even if & # ), not all concrete
definitions contained® in x; may be reaching u: In Figure 2, the pseudo-
definition z9 reaches g; along the hot paths & = {p1,p2}, i.e. & # 0. How-
ever, if xg is used as parameter for the 7-function at g;, it would invariably
mean the inclusion of the definition x1g, which is not a hot reaching defini-
tion at g. Hence, a pseudo-definition can be used as an argument for some
set of hot paths £ if, and only if, all the concrete reaching definitions that it
merges reaches u along £. This condition can be ensured by checking if all

3 A definition for z; is contained in a ¢-definition if the ¢-function argument-list
either includes x;, or includes a variable-version z; such that z; is contained in the
definition for x;; for the 7-functions, we only consider the speculative argument-list.
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the contained concrete definitions for x; are available as active definitions at
u for the set of paths €.

Allowing definitions corresponding to pseudo-definitions in the 7-function argu-
ment list requires tracking of both pseudo and concrete definitions (which might
appear along intersecting set of paths), while ensuring that a pseudo definition
never kills a concrete definition, even along the same path. For the sake of sim-
plicity, we abandon any further discussion on the same: in the following discus-
sion, we ignore all pseudo definitions and maintain only the concrete definitions
as active definitions (except if a pseudo-definition occurs as the only available
reaching definition, or if a pseudo-definition is propagated along a backedge). As
pseudo-definition “labels” to a set of merged definitions can no longer appear in
the 7-function argument lists, the implication of ignoring the pseudo definitions
is a larger argument list for the 7-functions.

Instead of performing an expensive classical path-sensitive dataflow analysis,
we designed an algorithm very similar to the variable renaming phase of SSA
construction [8] — using a variable stack to maintain the active definitions (or
renamed variables) reaching each node. Our algorithm is defined as a recursive
procedure running over the dominator tree of the control-flow graph. The vari-
able stack maintains the set of active reaching definitions (x;), along with the
set of hot paths (&) that carry the definitions to the current node *. Our al-
gorithm is more efficient than context-tupled classical path-sensitive dataflow
analysis as it does not require storing of path-sensitive dataflow information at
each basic-block.

Let P be the set of profiled acyclic path identifiers, and DefPaths be the
set of P. A frame in the variable stack is a map [Def Paths — Version], where
Version is the renamed version of a variable; a frame can be seen as a set
containing pairs {[{1, 71], [§2, 2], - - -, [§n; Tn]}, Where §; € Def Paths. A variable
stack VarStack, is a stack of frames for the base variable x.

VarStack supports the following operations: push (§; :DefPaths, =z;:Version,
u:Basic-block) pushes a new frame with the association [§;, x;] on VarStacky;
pop(u:Basic-block) pops off all frames that were pushed in the basic-block wu;
and top() returns the topmost frame on the stack.

A Frame in VarStack supports the following operations: get (£ :DefPaths)
returns the version associated with £ in the map; accumulate(¢;:DefPaths,
x;:Version) accumulates definitions: if a pair [¢;,z;] € Frame, replace [¢;, z;]
by [£; U&;, x;], else add a new association [§;, z;] to the frame.

The top of the variable stack contains the set of active definitions — def-
initions that can be used to allocate arguments to the 7-functions in the cur-
rent basic-block. The algorithm traverses the control-flow graph recursively in a
depth-first order over the dominator tree (as does the variable renaming phase
for SSA construction); the set of dominatees® are traversed in the topological or-
der of the nodes in the control-flow graph: the order is important to ensure that

4 The updates to &; is done lazily; so a certain points, they may contain more paths
than the actual set of hot reaching paths.
5 The children of a node n in the dominator tree are the dominatees of n.
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when a basic-block is processed, the definitions from all its incoming paths reach
it. The active definitions are propagated via VarStack from a parent node to its
children in the dominator tree; for a join node u, the active definitions are accu-
mulated (by a similar operation as accumulate(;:DefPaths, z;:Version) for
a frame) in a Definition Accumulator (2,(u) from its predecessors in the CFG
— it is loaded up on VarStack when the node u is processed.

The 7-allocation algorithm is sketched in Algorithm 3. Let us describe the
algorithm via an example (Figure 5) for the flow-graph in Figure 2:

o [l
G| [Leww - |

[p1p2p3~, 13]

@|[=][e][e]

: ] Sk VarStack, VarStack,
P1P2p3, T3
|E| ( | [p1, 7] | ) q [Ph Fﬂ?] [P-zy »’017] [1337 »’018]
Sk VarStack, Q.(f) Q.(f)
(a) After node a is pro- (b) After node bis processed (c) After node e is pro-
cessed cessed
G| [[rs = oo v v, 7] [par v
f 3, T18 [p3, 715]
[[p1p2ps, 23] @ W\
[p1, [;i [52}1‘17] Sk VarStack, = VarStack,
[a] ‘ [p1paps, 3] Q [ 27] [p2, 217] [ps, I1s]D Q [p1, 7] [p2, 214] [ps, l‘Ls]D
— ) 0
R ar QACK g T
Q [p1, @7] [p2, 17] [p3, qu]D Q (1, @7] [p2, @17 [ps, ‘T“‘]D q [p1, 7] [p2, 27] [ps, 1‘18]D
2(7) Q.(4) Q,(4)

(d) After node f is pro- (e) After node g is processed (f) After node i is processed
cessed
Fig. 5. Steps in the execution of the 7-argument allocation algorithm.

Let the basic-blocks be processed in the order a, b, ¢, d, e, f, g, h, 1.

The basic-block a is processed foremost: the algorithm (Step 3(c)) pushes the
definition x3 on VarStack, (Figure (a)), and then recurses on the children of a
in the dominator tree, namely b, ¢ and f (Step 5). At the node b, the algorithm
(Step 3(c)) pushes the definition x7 on the stack; its successor node, f, turns out
to be a join node: hence, the algorithm (Step 4) accumulates the definitions in
the topmost frame of the stack into the (currently empty) definition accumulator
£2,.(f) (Figure (b)). As b has no children in the dominator tree, the algorithm
(Step 6) retraces the recursive path to node a, popping off the definition pushed
by b in the process. The variable stack and the recursion stack (Sg) now again
resemble that in Figure (a).

The nodes ¢, d, and e are processed similarly; Figure (c) shows the state of
the data-structures just after node e is processed. After handling e, the recursion
is unwound to node a.
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Algorithm 3 A sketch of the 7-function argument allocation algorithm

Process a basic-block u in the following manner:

1.
2.

5.

6.

Push the Definition Accumulator 2(u) on VarStack (if 2(u) exists).

If w is the incubation node for a set of hot paths, for all base-variables x which do

not have a ¢-definition appearing in the basic-block u, push a frame (&;, z;), where

& is the set of all paths that incubate from wu, and x; is the meet-over-all paths

reaching definition (variable-version) for x at w.

Process each statement stm in the basic-block:

(a) If stm is a ¢-statement: if u is a loop-header and the dummy profile edge t —
Oend 18 hot (where denq denotes the dummy-end node for a Ball-Larus profiler,
and ¢ is the corresponding loop-tail), accumulate (£;, x;) at the topmost frame
of VarStack,, where

i. &; is the set of all paths that incubate from u, and

ii. x; is the ¢-statement argument corresponding to the backedge t — w.

(b) If stm is a T-statement:

i. Create a set C of candidate definitions from the definitions in
VarStack.top() for each incubation node s: add (&,z;) to C iff
(Paths, (u) N &) # 0;

ii. If there exists at least one z; € C such that its variable-version differs
from the safe argument zo, add arguments to the 7-function for each z;,
mapping the respective variable position to &;; otherwise, replace the 7-
function with a simple copy statement: z,,: = xo.

(¢) Update VarStack to include new definitions in the basic-block u:

— Concrete definition: Push the definition as a new frame associating it with
Paths(u);

— Pseudo definition: Ignore.

Save the active definitions in {2 of the (forward) successors (if successor is a join

node): for each forward (ignore backedges) successor edge u — v, if v is a join node,

for each (&;,z;) € VarStack.top() such that (& N Paths(u — v)) # 0, accumulate

(& N Paths(u — v),z;) in 2.

Recurse on the children of u in the dominator tree in accordance to their topological

order in the control flow graph.

Pop off all frames pushed by u from VarStack.

The algorithm then picks the node f: it first pushes the definition accumula-

tor of f, £2,(f), on the variable stack (Step 1); on encountering the ¢-definition
for xg, it simply ignores the same (Step 3(c)). Finally, it recurses on the imme-
diate dominatees of f, viz. g and h (Step 5).

The node g is processed next: on encountering the 7-definition for 11, the

algorithm (Step 3(b)) attempts to allocate arguments for the same: Examining
the active definitions (top of the variable stack), the algorithm attempts to as-
semble the candidate set C' — a subset, of definitions from the topmost frame
of VarStack, that, together, can map to all the hot paths passing through g.
The set of active definitions at g turn out to be {[p1, z7], [p2, 17], [P3, x18]}. To
be added to C, the path-component in the definition pairs must intersect with
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Paths(g) = {p1,p2}; [p1,27] and [pa, x17] satisfy the condition, while [ps3,x1s)
does not. Notice how the cold definitions are pruned are from the possible set of
definitions to be added as arguments to the 7-function.

As the variable versions in the set C differ from that of the safe argument,
we allocate arguments to the 7-function from C.

zi =T(wy, 27(p1), 717 (p2)) |

The algorithm then accumulates the active definitions in 2, () (Figure (e)).
The nodes h, and then ¢ are processed in order in a similar manner.

Note that the set of candidate definitions C' for a 7-function at a node v
contains the exact set of hot definitions that reach v. Additionally, for each pair
(&, x;) € C, x; reaches u along the paths in &;, and along no other hot path.

Now consider the control-flow graph with loops (Figure 3): Let us illustrate
as to how the the hot reaching definition of i3 in the block c is identified as
a hot reaching definition at the 7-function in the node e even though we use
acyclic path-profiles. As the loop-path p; is hot, when the node b is processed,
the definition-pair (pips,i3) is added to the top of the variable stack (being
the parameter to the ¢-function corresponding to the backedge) by Step 3(a).
When the algorithm recurses on the children of d in the dominator tree, the
variable stack carries the definition to the basic-block e where it is recognised as
an argument for the 7-function along the path ps. The Step 2 in the algorithm
is required to carry the meet-over-all-paths definition n; from the node a to the
node g, as there does not exist any acyclic hot path from a to g.

6 Speculative Sparse Conditional Constant Propagation

We have implemented the anal-
ysis phase of a novel optimiza-

-
/// \\ i0=0; tion — the Speculative Sparse

L 2 3 4 5. while( DEEE Conditional Constant Propaga-
T |- (10713), tion (SSCP) on the HPSSA form.
i2= T(Zlvld): This optimization expands the

r oz e £ ig=iz + 13 scope of the SCP [21] algorithm
\\ / / ¥ — allowing it to identify specu-

Fig.7. A case lative constants (expressions that

Fig.6. The SSCP  (hat  requires *° highly likely to be constants)

Lattice (the comstants et with its along with the conventional

superscripted by S’ ol value in “safe” constants (expressions that

are the speculative (1o rstatement ¢ gugrantegd to. be constants).
constants). transfer  func- This section is more than a

tion for SSCP. description. of a new anfxlysis —

through this novel analysis, we es-

sentially aim to demonstrate how

new speculative optimizations can be developed on the HPSSA form by simple
extensions of existing “safe” SSA-based optimizations.
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The SSCP algorithm operates on a four level lattice (Figure 6 shows the SSCP
lattice for integers): the conventional constant propagation lattice is extended
by another layer — that of speculative constants (indicated by the constants
superscripted with ’s’). The speculative constants can be seen as constant values
with exactly the same properties as that of ordinary constants — just marked
“speculative” — indicating that they are predicted values, not guaranteed to hold
under all executions.

The transfer functions of all existing operations (including that of the ¢-
function) hold as in SCP, except for the fact that if any operand in an expression
turns out to be a speculative constant, the result of the operation, if a constant,
would be a speculative constant carrying the respective constant value. For ex-
ample, 2 + 3° would render the speculative constant 5°.

The transfer function for the 7-functions is defined as follows (where M
is the meet operator): If the meet of all the arguments does not produce L
(not-constant), the transfer function resembles the transfer function for the ¢-
functions. Even if the meet of all the arguments turns out to be L, there might
still be the chance of the expression being identified as a speculative constant:
let 5 = 1 Mxo...Mx,. The transfer function attempts to return g3, if § is
L, T or a speculative constant; if 3 is a “safe” constant, § moves in the lattice
to ()%, the corresponding speculative constant. Formally, the transfer function
for 7(xo,x1,...,x,) is given by the following (where each expression refers its
abstract value in the lattice, and 8 =z Mxy...Mxy,):

xoﬂﬂ 1f$0ﬂﬂ7£J_
T(xo,xl,...,2) 1< B if xgM B = 1 and f is not a safe constant
(8)*  otherwise

The meet with the current value of the 7-function is added to ensure termi-
nation by ensuring monotonicity; otherwise, code fragments resembling that in
Figure 7 will never reach a fixpoint due to i3 increasing its value in the spec-
ulative domain, and the 7-function feeding the same value back to it. We omit
detailed discussions on this analysis for want of space.

7 Implementation and Experiments

We implemented our HPSSA construction algorithm, as well as the analysis
phase of the SSCP algorithm on the Scale compiler [18]; we were also aided
by the CIL [7] tool. We only cast scaler variables whose address has not been
taken in the HPSSA form; 7-functions are not introduced for the remaining
variables. The SSCP algorithm implementation handles only integer variables;
the implementation is interprocedural but context-insensitive; function pointers
are ignored (it flags a warning, computing a possibly unsafe solution).

We tested our implementation on some programs from the SPEC2000 bench-
mark suite. We used a naive hot path selection criteria: all the acyclic paths
executed on the train input set was considered “hot” for building the HPSSA
form. Table 1 exhibits our findings for programs run on the ref input set. The
programs were run with the default parameters, i.e., no parameters were set on
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Table 1. Speculative Constants discovered by the SSCP algorithm. ( ’~’ indicates
almost; grp, prg, & src refer to inputs graphic, program & source respectively).

Variable Uses |Expression Uses Total
Program (Inpt| Uses [ HitRt | Uses [ HitRt Hits [ Misses [ HitRt
181.mef | - 33110 | 100.00 | 49665 | 100.00 82775 0 100.00
175.vpr - | 6938074 | 100.00 [8110837| 100.00 | 15048911 0 100.00
grp | 26592 | 100.00 5 100.00 26597 0 100.00
164.9zip | prg | 17412 | 100.00 5 100.00 17417 0 100.00
src 4721 99.98 5 100.00 4725 1 99.98
197.parser| - |165970964|7100.00| 340 97.94 |165970861| 443 |7100.00
grp |132106650|7100.00| 938 76.97 132107372 | 216 |7100.00
256.bzip2 | prg [100819492|7100.00{6576416| 15.67 |101849942|5545966 | 94.84
src |108134316|7100.00|5256006| 17.94 |109077366 (4312956 | 96.20

the command line, either for training, or for the actual run (on the ref set).
We collected statistics for dynamic uses (use of a variable/expression during the
actual run) for variables (Variable Uses), and for sub-expressions that could be
constant-folded speculatively (Ezpression Uses). The uses are tabulated only for
the speculative constants — uses that are likely (but not guaranteed) to be con-
stants. We have not shown the number of “sure” constants as it would be same
as that for the original SCP algorithm. We also indicate the Hit Rate (HitRt):
the percentage of uses where the use of variable/expression actually agrees with
the “predicted” speculative constant value.

The programs seem to enshroud plenitude opportunities for an optimizer
adept at performing speculative program transformations. Most of the programs
show a large number of dynamic speculative usages with good hit rates (except
256.bzip2 for the sub-expression uses; still the overall hit rate turns out high,
courtesy the variable usages). A more intelligent hot path selection scheme may
be able to reap more constants, though it may also have an effect on the hit-rate;
we are interested in experimenting with alternative schemes in the future.

8 Related Work

Multitude of interesting extensions and modifications have been proposed on the
SSA form. The Hashed SSA (HSSA) form [6] extends the traditional SSA form to
accommodate pointer variables by introducing an explicit may modify operator
(x) and may reference operator (u). The Array SSA [13] form captures element-
level data flow information of array variables. The 1-SSA form [19] simplifies
the use of SSA-based optimizations on predicated code. Though we have not
addressed aliasing and arrays in this paper, it does not seem difficult to address
these issues in the HPSSA form; we may investigate such extensions via concrete
implementations in the future.

Lin et al. [14] proposed a speculative SSA form by extending speculative
versions of the HSSA operators — speculative update (x,) and speculative use
(15)- The speculative flag, either by use of profiling information and/or a set of
heuristic rules, is turned on these operators if it is highly likely that an update
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or reference will be substantiated at runtime. Lin et al.’s work is orthogonal to
our work as we target exposing the hot use-def chains rather than likely alias
relations; both these techniques can be seamlessly combined for a more powerful
speculative optimization framework.

Towards path-sensitive program optimizations, Ammons and Larus [1] pro-
posed performing flow-analysis on a hot path graph that isolates the frequent
paths. Das et al. [10] proposed a polynomial-time path-sensitive algorithm for
verifying a given temporal safety property, and proved it effective by verifying
the file I/O behaviour of a version of the GNU C Compiler.

Researchers have also been interested in inferring likely data-flow facts, com-
puted over control-flow profiles. Ramalingam [16] used edge-profiles to infer the
probability with which a fact holds true for the class of finite bi-distributive sub-
set problems. Probabilistic pointer analyses [4, 9] assign probabilities with which
a points-to relation might hold at a program point. Contributions to speculative
partial redundancy elimination have been made by [15,22]. Path profile based
speculative PRE and PDE have been proposed by [11,12]. Most of these tech-
niques use edge and node profiles which are much weaker than path-profiles used
by HPSSA. Also, the HPSSA form provides a common ground for writing effi-
cient optimizations on a sparse program representation; it scores over flow-based
speculative optimizations due to the exact reason that the SSA-based algorithms
score over the flow-based safe optimizations.

9 Conclusions

We propose a novel extension to the highly successful SSA form, and demonstrate
— by an analysis algorithm for Speculative Sparse Conditional Constant Prop-
agation — that novel speculative optimizations can be enabled on the HPSSA
form by almost obvious modifications of existing SSA-based traditional optimiza-
tions. We are pondering over the design of speculative versions of other existing
SSA-based traditional optimizations — Global Value Numbering [3] and Partial
Redundancy Elimination [5] being our foremost targets. We are also interested
in extending the HPSSA form for richer profiles like the k-iteration [17] profiles.
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