Falcon: A Graph Manipulation Language for Heterogeneous Systems

Unnikrishnan C, Department of CSA, Indian Institute of Science, Bangalore
Rupesh Nasre, Department of CSE, Indian Institute of Technology, Madras
YN Srikant, Department of CSA, Indian Institute of Science, Bangalore

Graph algorithms have been shown to possess enough parallelism to keep several computing resources busy — even hundreds
of cores on a GPU. Unfortunately, tuning their implementation for efficient execution on a particular hardware configuration
of heterogeneous systems consisting of multi-core CPUs and GPUs is challenging, time-consuming, and error-prone. To
address these issues, we propose a Domain Specific Language (DSL), Falcon, for implementing graph algorithms that
(i) abstracts the hardware, (ii) provides constructs to write explicitly parallel programs at a higher level, and (iii) can work
with general algorithms that may change the graph structure (morph algorithms). We illustrate the usage of our DSL to
implement local computation algorithms (that do not change the graph structure) and morph algorithms such as Delaunay
mesh refinement, survey propagation and dynamic SSSP on GPU and multi-core CPU. Using a set of benchmark graphs, we
illustrate that the generated code performs close to the state-of-the-art hand-tuned implementations.

CCS Concepts:*Software and its engineering — Compilers;

Additional Key Words and Phrases: graph manipulation languages, domain specific languages, CUDA, OpenMP, GPU,
multi-core CPU, morph algorithms, local computation algorithms.

1. INTRODUCTION

Graphs model relationships across real-world entities in web graphs, social network graphs, and
road network graphs. Graph algorithms analyze and transform a graph to discover graph properties
or to apply a computation. For instance, a pagerank algorithm computes a rank for each page in
the webgraph, a community detection algorithm discovers likely communities in a social network,
while a shortest path algorithm computes the quickest way to reach from one place to another in a
road network.

An algorithm is irregular if its data-access pattern or control-flow pattern is unpredictable at com-
pile time. Static analysis techniques prove inadequate to deal with the analysis and parallelization
of irregular algorithms, and we require dynamic techniques [Pingali et al. 2011] to deal with such
situations. Traditionally, graph algorithms have been perceived to be difficult to analyze as well as
parallelize because they are irregular.

GPUs further complicate graph algorithm implementations: managing separate memory spaces
of CPU and GPU, SIMD (single instruction multiple data) execution, exposed thread hierarchy,
asynchronous CPU/GPU execution, etc. Hand-written and efficient implementations are not only
difficult to code and debug, but are also error prone.

It would be really helpful if a programmer can specify a graph algorithm in a hardware-
independent manner and focus solely on the algorithmic logic. Unfortunately, such an approach
— which essentially auto-parallelizes a sequential piece of code — provides limited performance in
general when compared with a manually parallelized hardware-centric code by an expert.

New paper, not an extension of a conference paper.

This work is supported by the IMPECS project of DST (Government of India) and MPI-SWS (Germany).

Author’s addresses: Unnikrishnan C and Y N Srikant, Department of Computer Science and Automation, Indian Institute
of Science, Bangalore 560012, India; emails: {unni_c, srikant} @csa.iisc.ernet.in; Rupesh Nasre, Department of Computer
Science and Engineering, Indian Institute of Technology, Madras,600036, India; email: rupesh@cse.iitm.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions @acm.org.

© YYYY ACM. 1539-9087/YYYY/01-ARTA $15.00

DOI: 0000001.0000001

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYY'Y.

A:2 Unnikrishnan C et al.

Our goal in this work is to bridge this performance gap between an auto-generated code and a
manually crafted implementation. We wish to let the programmer write the algorithm at a higher
level (much higher than CUDA and OpenCL), without any hardware-centric constructs. To achieve
performance close to that of a hand crafted code, we make two compromises: (i) we allow only graph
algorithms to be specified (i.e., we do not provide special constructs for other type of algorithms),
and (ii) we require the code to be explicitly parallel. The first compromise trades generality for
speed, while the second one allows our code generator to emit hardware-specific code.

Our specific contributions are given below.

— The design of Falcon, a DSL for general graph algorithms. Unlike previously reported lan-
guages, Falcon supports morph algorithms, that is, algorithms wherein the graph structure may
also change, apart from the values at the nodes and the edges.

—Falcon’s code generation scheme for multicore CPU, single GPU, multi-GPU, and heteroge-
neous backends. Our compiler supports worklist based implementations of morph and local com-
putation algorithms on CPU, that run much faster than most hand-written implementations.

— Falcon’s support for graph partitioning and execution of a single algorithm on the partitioned
graph on the CPU and multiple-GPUs (for vertex-centric algorithms only).

— Performance analysis of Falcon: We generate CUDA and OpenMP code for morph algorithms
such as Delaunay mesh refinement (DMR), survey propagation (SP) and dynamic single source
shortest path (SSSP), as well as CUDA and OpenMP code for local computation algorithms.
Performance of these and several other benchmarks are compared against the state-of-the-art DSL
and framework-based implementations.

Rest of the paper is organized as follows. Section 2 mentions the benefits of Falcon. Sec-
tion 3 compares and contrasts with related work. We present the Falcon language with example
programs in Section 4. Section 5 explains the code generation phase of the compiler. Section 6 dis-
cusses the performance evaluation of the code generated by the Falcon compiler, and we conclude
in Section 7.

2. BENEFITS OF FALCON

Existing DSLs such as Green Marl [Hong et al. 2012] and Elixir [Prountzos et al. 2012] auto-
parallelize sequential graph algorithm implementations. The algorithm specification in these DSLs
tends to be much smaller and simpler compared to the corresponding specification in a general pur-
pose language such as C or Python. However, there are multiple issues with the existing approaches.
First, they target only a single type of device (multicore CPUs). It is unclear if these frameworks can
be modified to effectively support heterogeneous systems. Second, their scope is limited to graph
analytic algorithms, wherein the graph structure is assumed to be static. Therefore, the domain of
morph algorithms is unsupported. As has been shown earlier [Nasre et al. 2013b], concurrent ex-
ecution of morph algorithms poses new challenges, and their efficient parallel execution is quite
difficult. Third, despite the simplicity of these DSLs, a user needs to invest time in learning a new
language. This last issue is addressed by library based approaches such as Galois [Pingali et al.
2011] and Totem [Gharaibeh et al. 2013]. However, Totem does not support morph algorithms,
while Galois does not work for heterogeneous systems. New challenges while dealing with GPUs
and heterogeneous systems in the context of auto-parallelization of structural graph updates are not
addressed in any existing framework.

Falcon supports both morph and local computation algorithms for GPU, multi-GPU and a com-
bination of CPU and GPU. It extends the C language, and provides a rich set of constructs and
concurrent data structures for efficient execution across computing systems. Unlike Green Marl and
Elixir, Falcon also allows a user to write the entry function main allowing him full control over
the program’s execution. In Falcon, it is easy to write a worklist based implementation of many
algorithms on the multicore-CPU which are much faster than the state-of-the-art implementations
(for example, the A-stepping SSSP algorithm [Meyer and Sanders 1998] implementation).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYY'Y.

Falcon: A Graph Manipulation Language for Heterogeneous Systems A:3

Writing code for GPU based algorithms is very simple in Falcon. A programmer is simply re-
quired to annotate the location of the graph object, using an optional <GPU> tag, and the rest, includ-
ing thread, device, and memory management is handled by the Falcon compiler. The parallel
sections in Falcon can be used to specify concurrent execution of CUDA kernels on different
GPU devices. Generation of code for CPU is equally easy in Falcon. Further, the support for exe-
cution of vertex-centric algorithms on partitioned graphs makes such implementations easy for very
large graphs that do not fit entirely in GPU memory.

Handwritten codes of LonestarGPU [Nasre et al. 2013b] for GPU and Galois [Pingali et al. 2011]
for multicore CPU, both of which support morph algorithms, are very complex. Coding a new algo-
rithm using these platforms requires a very good knowledge of the device architecture, thread man-
agement and memory management and the programmer is required to handle all these on his/her
own. Such a code is difficult to debug. This makes Falcon as a new choice for coding parallel
graph algorithms that is easy to use, debug, and is also efficient.

3. RELATED WORK

References A D E
Green-Marl [Hong et al. 2012], Elixir [Prountzos vVooox X vooXx X
et al. 2012], [Hong et al. 2014]

[Ragan-Kelley et al. 2013] A< vV VX
Lonestar-GPU [Nasre et al. 2013b] X v/ X ARV
[Shun and Blelloch 2013], [Roy et al. X v voox X
2013], [Zhang et al. 2015]

Medusa[Zhong and He 2014], [Lee et al. 2009] X Vv X v X
Totem [Gharaibeh et al. 2013][Gharaibeh et al. X Vv vV v X
2012],

Galois[Pingali et al. 2011] vV v ooXx vV
[Burtscher and Pingali 2011], [Sariyiice et al. X X vV X
2013], [Nasre et al. 2013a], [Davidson et al.

2014], [Khorasani et al. 2014], [Mendez-Lojo

et al. 2012], [Prabhu et al. 2011], [Harish and

Narayanan 2007][Harish et al. 2009], [Hong

etal. 2011]

[Feng et al. 2012], [Menon et al. 2012] X X X v oV
[Tian et al. 2011] [Tian et al. 2008] X v ooXx Vv
[Low et al. 2012], [Bader and Madduri VARV | X
2008], [Gregor and Lumsdaine 2005]

Table I. Related Works Comparison
A=DSL, B=Framework, C=Library, D=CPU, E=GPU, F=Speculation

Green-Marl [Hong et al. 2012] and Elixir [Prountzos et al. 2012] are examples of Graph DSLs,
and both of them target multicore CPU. Green-Marl and Elixir can be used to implement only local
computation algorithms.

Morph algorithms can be classified as cautious, if the algorithms read all the neighborhood ele-
ments before modifying any of them. The Galois framework [Pingali et al. 2011], which is a library
implementation in C++, supports cautious morph algorithms and generates code only for multicore
CPU. Cautious morph algorithms have been implemented on GPU by Nasre et al. [Nasre et al.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 Unnikrishnan C et al.

2013b]. GraphLab [Low et al. 2012] is a framework that supports a combination of machine learn-
ing and graph algorithms. Pregel [Malewicz et al. 2010] is a graph-processing framework in a dis-
tributed setting. It uses bulk-synchronous parallelism for efficient execution of graph algorithms in a
cluster of nodes. OpenMP to GPGPU [Lee et al. 2009] is a framework for automatic code generation
for GPU from OpenMP CPU code. The Medusa [Zhong and He 2014] framework generates CUDA
code using device APIs for graph elements and supports multi-GPU systems. Paragon [Samadi et al.
2012] uses GPU for speculative execution and on misspeculation, that part of the code is executed
on CPU. An online profiling based method by [Kaleem et al. 2014] partitions work and distributes
it across CPU and GPU.

Parallel Boost Graph Library [Gregor and Lumsdaine 2005] is a distributed version of BGL and
SNAP [Bader and Madduri 2008] [Bader and Madduri 2005] is a stand-alone parallel graph anal-
ysis package. CuSha [Khorasani et al. 2014] proposes two new ways of storing graphs on GPU
that has improved regular memory access patterns. Efficient implementations of local computation
algorithms such as Breadth First Search (BFS) and Single Source Shortest Path (SSSP) on GPU
have been reported several years ago [Harish and Narayanan 2007] [Harish et al. 2009]. There have
also been successful implementations of other local computation algorithms such as n-body sim-
ulation [Burtscher and Pingali 2011], betweenness centrality [Sariyiice et al. 2013] and data flow
analysis [Mendez-Lojo et al. 2012; Prabhu et al. 2011] on GPU. [Davidson et al. 2014] proposes
different ways of writing SSSP programs on GPU along with their merits and demerits. It concludes
that worklist-based implementation would not benefit much on GPU compared to that on a CPU.

iGPU [Menon et al. 2012] architecture proposes a method for breaking a GPU function execution
into many idempotent regions so that in between two continuous regions, there is very little live state
and this fact can be used for speculative execution. Min Feng et al. [Feng et al. 2012] implemented
methods for speculative parallelization of loops on GPU which have irregular memory access and
control flow. The CoRD [Tian et al. 2008, 2011] framework proposes methods for speculative exe-
cution on multicore CPU. It supports rollbacks and morph algorithms which need not be cautious.
More references related to Graphs, Graph DSLs, Speculation etc., can be found in Table I. Falcon
currently supports only cautious morph algorithms.

4. OVERVIEW OF FALCON
4.1. Introduction

Falconisa graph DSL and it extends the C programming language. In addition to the full general-
ity of C (including pointers, structs and scope rules), Falcon provides the following types relevant
to graph algorithms: Point, Edge, Graph, Set and Collection. It also supports constructs
such as foreach and parallel sections for parallel execution, single for synchroniza-
tion, and reduction operations. Many complete examples of Falcon programs are available in [Un-
nikrishnan et al. 2015].

4.2. Example: Shortest Path Computation

Single source shortest path (SSSP) computation is a fundamental operation in graph algorithms.
Given a designated source node, an SSSP algorithm computes the shortest distance from the source
node to each node. Figure 1 shows the code for SSSP computation in Falcon for GPU. The algo-
rithm first initializes the dist variable of all the nodes to a large value (Line 24). The dist variable
of the source node is then made zero (Line 25). It then progressively relaxes nodes to determine
whether there is any shorter path to a node via some other incoming edge (Line 29). This is done by
checking the condition (for each edge (u, v)) dist[v] > dist[u] + weight(u,v). If this condition is
satisfied, then the distance of the destination node v is changed to the smaller value via u (Line 5),
using an atomic operation (more on this later). This procedure is repeated until we reach a fix point
(lines 27- 32).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYY'Y.

M oER W N

RIS B

11
12
13
14
15

Falcon: A Graph Manipulation Language for Heterogeneous Systems A5

Falcon needs each variable which resides on the GPU to have the <GPU> tag preceding the
variable name in the declaration statement (Lines 1, 19). Being a graph-DSL, the type Graph is
directly available in the language.

int <GPU> changed = 0; // Variable on GPU 16 main(int argc, char *argv[]){
relaxgraph(Point <GPU> p, Graph <GPU> graph) { 17 Graph hgraph; // graph on CPU
p-uptd = false; 18 hgraph.addPointProperty(dist, int);
foreach(¢ In p.outnbrs){ 19 hgraph.getType() <GPU> graph; // graph on
MIN(t.dist, p.dist + graph.getWeight(p, t), GPU
changed); 20 graph.addPointProperty(uptd, bool);
21 graph.addPointProperty(olddist, int);
} 22 hgraph.read(argv([1]) // read graph on CPU
reset(Point <GPU> t, Graph <GPU> graph) { 23 graph = hgraph; // copy graph to GPU
| tdist=tolddist = 1234567890; t.uptd = false; 24 foreach (t In graph.points) reset(t,graph);
} 25 graph.points[0].dist = 0; // source has dist 0
resetl(Point <GPU> t, Graph <GPU> graph) { 26 graph.points[0].uptd = true;
if (t.dist < t.olddist) t.uptd = true; 27 while(7){
t.olddist = t.dist; 28 changed = 0; //keep relaxing on GPU
} 29 foreach (t In graph.points) (t.uptd)
//main function on rhs relaxgraph(t,graph);
30 if (changed == 0) break; //reached fix
point
31 foreach (t In graph.points)
reset1(t,graph);
32 }
33 hgraph.dist = graph.dist; // copy all points
dist to CPU
34 for (int i = 0; i < hgraph.npoints; ++i)
35 printf("i=%d dist=%d\n", i,
hgraph.points[i].dist);

36 }

Fig. 1: Optimized GPU SSSP code in Falcon

Line 18 adds a property dist to each Point in the CPU Graph object, hgraph. The get Type ()
function on Line 19 (a compile-time function) returns a type which is used to create a Graph
object graph on the GPU. An object created from another type also inherits its dynamic properties.
Thus, the object graph automatically gets dist property attached to its points. Lines 20-21 add two
properties (uptd, olddist) to points in the GPU Graph object graph. Lines 22-23 read the graph
from a file into CPU memory and copy it to the GPU memory. The compiler generates efficient code
to perform this copy operation using DMA.

GPU kernels are specified using a foreach construct. Line 24 uses the foreach paralleliz-
ing construct to initialize a few properties of each Point in the graph variable. The foreach
statement identifies that the Graph object it uses is on the GPU and the appropriate GPU code is
generated automatically. The compiler needs to (i) identify the kernel code, (ii) identify the variables
used in the computation, and (iii) pass the appropriate parameters.

The relaxgraph() function is called repeatedly (Line 29) and it keeps on reducing dist value
of each Point (Line 5). The foreach in relaxgraph() is augmented with a condition (t.uptd)
that makes sure that only those points which satisfy the condition will execute the code inside the
relaxgraph() function. In the first invocation of relaxgraph(), only the source node will perform the
computation. Since multiple threads may update the distance of the same node (e.g., when relaxing
edges (uy,v) and (usg, v)), some synchronization is required across the threads. This is achieved by
providing atomic variants for commonly used operations. The MIN() function used by relaxgraph()

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Unnikrishnan C et al.

Data Description Major Fields Major Functions
Type
Point Point in X, Y, Z del(), getNeighbours()
Graph
Edge Edge in src, dst, weight del()
Graph
Graph Entire points[], edges|], addEdge(), addPoint(), getWeight(), read(),
Graph npoints, nedges addEdgePropery(),sortEdges(), addProp-
erty(), makePartition(), updatePartition()
Set A static size, parent find(), union(), clear()
collection
Collection| A dynamic size add(), del(), orderByIntValue(), clear()
collection

Table II. Data Types in Falcon

is an atomic function that reduces dist atomically (if necessary) and if it does change, the third
argument value will be set to 1 (Line 5). So, whenever there is a reduction in the value of dist for
even one Point, the variable changed is set to 1. Line 3 makes uptd property of each Point
whose current value is t rue to false. After each call to relaxgraph(), the resetl() function makes
uptd true only for points whose distance from the source node was reduced in the last invocation
of the relaxgraph() function (Line 31). The variable changed is reset to zero before relaxgraph()
is called in each iteration (Line 28). Its value is checked after the call and if it is zero, indicating a
fixed-point, the control leaves the while loop (Line 30). At this stage, the computation is over. The
final dist value of each Point is copied from the GPU to the CPU in Line 33(this is also a DMA
transfer). The final dist value of each Point is printed using a for loop in Line 34.

The CPU version of SSSP in Falcon does not differ much from the code in Figure 1. The
<GPU> tag does not precede any variable name, and there will be only one Graph object. So the
code up to Line 18 is the same, with the exception that there is no <GPU> tag. The Lines 20 and
21 should be modified to add the properties to CPU graph object hgraph. There is no need to create
a GPU graph object and we should replace all occurrences of the GPU graph object graph with the
CPU graph object Agraph. Lines 19, 23 and 33 will be absent in CPU SSSP code.

This example shows the ease of programming in Falcon. A programmer need not worry about
memory allocation and thread management on the device. Data copy between the CPU and the GPU
is performed efficiently and automatically for basic data types.

4.3. Data Types in Falcon
Table II shows a list of special data types in Falcon along with their important fields and functions.

4.3.1. Point and Edge. A Point data type can have up to three dimensions. An Edge can be
directed or undirected and both Point and Edge can store either integer or floating point values in
their fields. The Falcon compiler decides all these choices based on command line arguments (input
and other options) and does not allocate separate fields for each choice. Functions for Point and
Edge are self explanatory.

4.3.2. Graph. A Graph stores its points and edges in vectors points[] and edges[]. The
method addEdgePropery () is used to add a property to each edge in a Graph object with the
same syntax as addPointProperty () used in Line 18 of Figure 1. The addProperty ()
method is used to add a new property to a Graph object (not to each Point or Edge). This will
become a property of the whole Graph object. Such a facility allows a programmer to maintain
additional data structures with the graph which are not necessarily direct functions of points and
edges. For instance, such a function is used in Delaunay Mesh Refinement (DMR) [Chew 1993]
code as the graph consists of a collection of triangles, each triangle with three Points and a few

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYY'Y.

-

Falcon: A Graph Manipulation Language for Heterogeneous Systems A7

Graph hgraph, <GPU> graph;

2 Set hset[Point(hgraph)], set[Point(graph)];

-

w

Fig. 3: Use of Set in MST computation

extra properties. The statement shown below illustrates the way DMR code uses this function for a
Graph object, hgraph.

hgraph.addProperty(triangle, st ruct node);

The structure node has all the fields which are needed for the triangle property of the Graph
object. This will add to hgraph, a new iterator triangle and a field ntriangle which stores the number
of triangles.

4.3.3. Set. A Set is an aggregate of unique elements (e.g., a set of threads, a set of nodes, etc.). A
Set has a maximum size and it can not grow beyond that size. Such a set is naturally implemented
as a union-find data structure and we have also implemented it as suggested in [Stockel and Bog
2008], with our own optimizations. The parent field of a Set stores the representative key of
each element in a Set. A Set data type can be used to implement, as an example, Boruvka’s MST
algorithm [Chung and Condon 1996]. The way Set data type is declared in MST code is shown in
Figure 3.

Line 2 declares objects of Set data type one each on CPU and GPU. Each Set object contains a
set of all the points in the host (hset) and the device (sef) Graph objects hgraph and graph respec-
tively. As edges get added to the MST, the two end points of the Edge are union-ed into a single
Set. The algorithm terminates when the Set has a single representative (assuming that the graph
is connected) or when no edges get added to the MST in an iteration (for a disconnected graph). We
mark all the edges added to the MST by using the Edge property mark of the Graph object. This
makes the algorithm a local computation, as the structure of the Graph does not change.

minset (Point <GPU> P, Graph <GPU>graph,s MinEdge (Point <GPU> p, Graph

Set set[Point(graph)]) { <GPU> graph, Set set[Point(graph)]) {
//finds an Edge with minimum weight 6 Point(graph) t1, (graph)t2;
from the Set to which Point P belongs to int t3;
a different Set Edge(graph) e;
t1 = set.find(p);
mstunion (Point <GPU> P, Graph <GPU> |, foreach(In p.outnbrs){
graph, Set set[Point(graph)]) { t2 = set.find(t);
//union the Set of Point P with the Set of {3 = graph.getWeight(p, t);
Point P’ such that Set(P) != Set(P’) and if (t1 1= 12) {
/ Edge(P, P’) is the minimum weight 15 if (t3 == t1.minppty.weight) {
edge of P, going to different Set 16 single (t1.minppty.lock) {
// performed only for the Point P that e = graph.getEdge(p, t);
) satisfies this condition. e.mark = true;
. 1}
//MinEdge on rhs 2 }
21 }

Fig. 2: Finding the minimum weight edge in MST computation

Figure 2 shows how minimum weight edges are marked in the MST computation. Function
MinEdge(), which gets converted to a device function, takes three parameters: a Point to oper-
ate on, the underlying Graph object on the GPU, and a Set of points. Line 10 takes each outgoing
neighbor of the Point p and checks whether those neighbors and p belong to the same set using

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Unnikrishnan C et al.

the £ind () function. If not (Line 14), the code checks whether the edge (p, t) has the minimum
weight (Line 15). If it is indeed of minimum weight, the code tries to lock the Point using the
single construct (see Section 4.5) in Line 16. If the locking is successful, this edge is added to the
MST. After MinEdge() completes, each end-point of the edge which was newly added to the MST
is put into the same Set using the union operation (performed in the caller).

4.3.4. Collection. A Collection refers to a multiset. Thus, it allows duplicate elements to be
added to it and its size can vary (no maximum limit like Set). The extent of a collection object de-
fines its implementation. If its scope is confined to a single function, then we use an implementation
based on dynamic arrays. On the other hand, if a collection spans multiple function / kernel invo-
cations, then we rely on the implementation provided by the Thrust library [Nathan Bell (NVIDIA)
2011] for GPU and Galois worklist and its run-time for multicore-CPU. Usage of Galois worklist
for multicore-CPU made it possible to write many efficient worklist based algorithms in Falcon.
Implementation of operations on Collection such as reduction and union will be done in
the near future.

Delaunay Mesh Refinement [Chew 1993] needs local Collection objects to store a cavity of
bad triangles and to store newly added triangles. A Collection can be declared in the same way
as a Set. A programmer can use add () and del () functions to operate on it and the current
length of a Collection can be found using the size field of the data type.

4.4, Variable Declaration

Variable declarations in Falcon can occur in two forms as shown with Point variables PO and
P1 below (Edge declarations are similar). Given a Graph object g, we say that g is the parent
of the points and edges in g.

Point PI, (graph)PO0; //parent Graph of PO is graph

When a point or edge variable has a parent Graph object, it can be assigned values from that
parent only and whatever modifications we make to that object will be reflected in the parent
Graph object. In the above example, PO can be assigned values that are Point objects of graph
only (see also line 6 of Figure 2). But If a variable is declared without a parent and a value is
assigned to it, it will be copied to a new location and any modification made to that object will not
be reflected anywhere else (e.g., P1 in the above example).

Falcon allows a programmer to specify on which GPU device the variable needs to be allocated
with the optional integer argument along with <GPU> tag. Falcon has a new keyword named
struct_rec, that is used to declare recursive data structures. In C, a recursive data structure can
be implemented using pointers and the malloc() library function. With st ruct_rec, a program-
mer can support a recursive data structure without explicitly using pointers, (like in Java).

4.5. Parallelization and Synchronization Constructs

Falcon provides reduction operations and three statements, single, foreach, and parallel
sections to exploit the parallelism available in the GPU.

4.5.1. single statement. This statement is used for synchronization across threads. It ensures
mutual exclusion for the participating threads. In graph algorithms, we use single statement to
lock a set of graph elements, as discussed later in this section.

When compared to other synchronization constructs such as synchronized construct of Java
or lock primitives in pthreads library the single construct differs in two aspects: (i) it has a
non-blocking entry, and (ii) only one thread executes the code following it.

Falcon supports two variants for single, as given in Table III: with one item and with a
Collection ofitems. In both the variants the e 1 se block is optional (Figure 2, Line 16). The first

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYY'Y.

Falcon: A Graph Manipulation Language for Heterogeneous Systems A:9

single(t1) {stmt blockl} The thread that gets a lock on item t1 executes stmt block1
else {stmt block2} and other threads execute stmt block2.

single(coll) {stmt block1 } The thread that gets a lock on all elements in the collection
else {stmt block2} coll executes stmt block1 and others execute stmt block?2.

Table III. Single statement in Falcon

variant tries locking one item. As it is a non-blocking entry function, if multiple threads try to get a
lock on the same object, only one will be successful, others will fail. In the second variant, a thread
tries to get a lock on a Collection of items given as an argument. This allows a programmer
to implement cautious forms of algorithms wherein all the shared data (e.g., a set of neighboring
nodes) are locked before proceeding with the computation. A thread succeeds if all the elements
in the Collection object are locked by that thread. As an example, a thread in DMR code tries
to get a lock on a cavity, which is a Collection of triangles. In both the variants, the thread
that succeeds in acquiring a lock executes the code following it and if the optional else block is
present, all the threads that do not acquire the lock execute the code inside the e 1se block.

foreach(item (advance_expression) In object.iterator) Used for Point, Edge
(condition) {block of code} and Graph objects
foreach(item (advance_expression) In object) Used for Collection and
(condition) {block of code} Set object

Table IV. foreach statement in Falcon

4.5.2. foreach statement. This statement is one of the parallelizing constructs in Falcon. It
processes a set of elements in parallel. This statement has two variants as shown in Table IV.
The condition and advance_expression are optional for both the variants. Use of a
condition was explained in Figure 1. An advance_expression is used to iterate from a
given position instead of from the starting or ending positions. A + advance_expression
(- advance_expression, respectively) makes the iterations go in the forward (backward, re-
spectively) direction, starting from the position given by the value of advance_expression.
The advance_expression is optional and its default value is taken as 0. The object used by
foreach (see Table IV) can also be a dereference of a pointer to an object. For examples on use of
these two features of Falcon, the reader is referred to the CPU code of Boruvka MST and DMR in
[Unnikrishnan et al. 2015]. Iterators used in foreach statement for different Falcon data types
are shown in Table V.

A foreach statement gets converted to a CUDA kernel call or an OpenMP pragma (except
for Collection) based on the object on which it is called: either a GPU object or a CPU object.

In a Graph, we can process all the points and edges in parallel. An iterator called pptyname is
generated automatically when a new property is added to a Graph object using addProperty ()
function. This is often used in morph algorithms. When a property friangle is added to Graph
object using addProperty (), it generates an iterator triangle. There is no nested parallelism
in our language. A nested foreach statement is converted to simple nested for loops in the
generated code, except for the outermost foreach that is executed in parallel. The outermost
foreach statement (executed in parallel) has an implicit global barrier after it (in the generated
code).

4.5.3. parallel sections. The parallel sections block statement consists of one or
more sections. Each section inside parallel sections runs as a separate parallel re-
gion. With this facility, Falcon can support multi-GPU systems and concurrent execution of CUDA
kernels and parallel execution of CPU and GPU code is possible. Falcon DSL code used to compute

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Unnikrishnan C et al.

Data

Type Iterator Description

Graph points iterate over all points in graph

Graph edges iterate over all edges in graph

Graph pptyname | iterate over all elements in new ppty.

Point nbrs iterate over all neighboring points

Point innbrs iterate over src point of incoming edges (Directed Graph)

Point outnbrs iterate over dst point of outgoing edges (Directed Graph)

Edge nbrs iterate over neighbor edges

Edge nbrl iterate over neighbor edges of Point P1 in Edge(P1,P2) (Directed Graph)
Edge nbr2 iterate over neighbor edges of Point P2 in Edge(P1,P2) (Directed Graph)

Table V. Iterators for foreach statement in Falcon

BFS and SSSP distance values for one input graph using parallel sections and multiple GPU Graph
objects can be found in Section 5.5.

4.5.4. Reduction Operations. Reduction operations such as ReduxSum, which sums a set of
items and ReduxMul which multiplies a set of items are provided by Falcon. We leave the
support for arbitrary associative functions as reduction operations as future work.

4.6. Library Functions

We provide atomic library functions MIN, MAX, SUB, AND, etc., which are abstraction over the
similar one in CUDA [Nickolls et al. 2008] and GCC [Stallman et al. 2011]. MIN atomic function
was used in Figure 1. We also provide a barrier() function which acts as a barrier for the entire
group of threads in a CUDA kernel and OpenMP parallel region. A genericbarrier() which supports
barriers for a group of related threads is also available.

4.7. Graph Partitioning

Falcon provides support for graph partitioning and execution of vertex-centric algorithms on the
CPU and multiple GPUs. This involves partitioning the input Graph into two or more subgraphs
and allocation of each subgraph on a GPU or a CPU. This is needed for input graphs that do not
fit in the global memory of a single GPU. An algorithm may benefit by executing on both highly
multithreaded GPUs and the CPU with the help of a graph partitioning algorithm using the Bulk
Synchronous Parallel (BSP) model of execution [Valiant 1990].

5. CODE GENERATION

We now explain how the Falcon compiler generates code (code fragments are shown with macro
statements to make the code readable, but these macros are not a part of the compiler generated
code). Falcon extends the C language grammar to support additional constructs. The compiler
generates CUDA/C++ code. Currently, it supports two types of graph representation: (i) Compressed
Sparse Row (CSR) format, and (ii) Coordinate List (COO) or Edge List format. Graphs are stored as
C++ classes in Falcon generated code. The GGraph and HGraph classes are used to store a graph
on the GPU and the CPU respectively, and both inherit from a parent Graph class. The Graph class
has an extra field (of type void =) which stores all the properties added to a Graph object using
addPointProperty(), addEdgeProperty(), and addProperty(). The Point and Edge data types can
have either integer (default) or floating point values and are stored in a union type with fields ipe
and fpe respectively. The generated code is compiled with nvee and g++. Figure 4 gives an overview
of how parallelization and synchronization is done for CPU and GPU. The Falcon compiler names
for all data types and functions specific to CPU and GPU start with H(Host) and G(Gpu) respectively
in the generated code.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Falcon: A Graph Manipulation Language for Heterogeneous Systems A:11

Input
Falcon
DSL Code
arallel Convert to
Check for Falcon Synchro- Eections OpenMP
nization / Parallel Constructs) . parallel
statement sections
rg ~
single foreach
statement statement
- - l L foreach on Collection
Single One item
If outermost foreach statement
GZU: Convert to CUDA CAS based Y¢S | GPU:Convert to CUDA kernel call
code no with Thrust library
CPU:Convert to GCC CAS based -
code CPU: Convert to parallel code using
yes no Galois Worklist

Single Collection foreach on Graph/Edge/Point/ New

GPU: Convert to CUDA code with Graph property

grid-barrier inside the kernel If outermost foreach statement

CPU:Convert to OpenMP barrier GPU: Convert to CUDA kernel call

based code CPU: Convert to OpenMP pragma

Fig. 4: Falcon Code Generation overview for Parallelization and Synchronization Constructs

#define ep (st ruct struct_hgraph) alloc_extra_graph(GGraph &graph) {
#define DH cudaMemcpyDeviceToHost MA((void **) &(graph.extra), sizeof (ep));
#define HD cudaMemcpyHostToDevice MC(&tmp, (ep *)(graph.extra), sizeof (ep),DH);

#define MA cudaMalloc MA((void **) &(tmp.dist), sizeof (int)* graph.npoints);
#define MC cudaMemcpy MA((void **) &(tmp.olddist), sizeof (int)*
struct struct_hgraph { graph.npoints);
int *dist, *olddist; MA((void **) &(tmp.uptd), sizeof (bool)*
bool *uptd;}; graph.npoints);
struct struct_hgraph tmp; MC(graph.extra, &tmp, sizeof(ep), HD);}

Fig. 5: Allocating extra property for Graph object on GPU

5.1. Type Checking

Falcon is strongly typed. The compiler checks for undeclared variables, type mismatch involved
in an assignment, invalid iterator usage, invalid field-access, invalid property, and usage of the sup-
ported data-types (such as Collection).

5.2. Properties

Point and Edge are converted to integer ids. All the extra properties of a Graph object are stored
in the extra field, and can be type casted to any structure. By default, extra properties are stored in a
structure with the name struct_objectname and are assigned to the extra field of a Graph object. If
a Graph object is created by get Type () function, its extra properties are assigned to a structure
with the name struct_parentobjectname, which will have fields for extra properties of the parent
object and all the objects created by the get Type () compile time function. In the SSSP example
(Figure 1), Graphs on GPU and CPU are both allocated in a structure with the same name as the GPU
Graph object is being created with a call of get Type () . Figure 5 shows how extra properties of
the Graph object on the GPU in the SSSP computation are allocated. For the CPU Graph object
(hgraph), only dist field is allocated using malloc(), as olddist and uptd fields are associated only
with the GPU Graph object(graph). Such simple optimizations are performed during the storage
allocation phase of the Falcon compiler.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

[S

13

14

A:12 Unnikrishnan C et al.

5.3. Set and Collection

The Falcon compiler has two C++ classes HSet and GSet which implement the CPU and GPU
Set data types (resp.). Each of these classes has the same functions named, union to union two
sets and f£ind to find the representative key for an element. By default, the key for a subset will be
an integer number, which denotes the maximum value of an element in that subset.

Collections that are confined to a kernel are implemented using dynamic arrays. A Collection
that spans across multiple functions is implemented using the Thrust library (for GPU), and the
Galois worklist along with its runtime code (for CPU). This made possible the worklist based im-
plementation of boruvka MST and SSSP algorithms in Falcon DSL very easy. Details of a A-
stepping based implementation of the SSSP algorithm in Falcon and the code generated by the Fal-
con compiler Using the Galois worklist can be found [Unnikrishnan et al. 2015]. A Collection
based BFS implementation on GPU (written in Falcon) can be found in [Unnikrishnan et al. 2015].

#define t (((struct struct_hgraph *)(graph.extra))) 1 #define t (((struct struct_hgraph

__global__void relaxgraph(GGraph graph, int x) { *)(graph.extra)))
int id = blockIdx.x * blockDim.x + 2 void relaxgraph(int &p ,HGraph &graph) {
threadldx.x + x; if (t->uptd[p] == true){
if (id <graph.npoints){ t->uptd=false;
if (t->uptd[id] == true){ int faleftO = graph.index[id];
t->uptd=false;int falcftO = graph.index[id]; 6 int falcftl =
int falcftl = graph.index[id+1]-graph.index[id]; graph.index[id+1]-graph.index[id];
for (int falcft2 = 0; falcft2 < falcftl; falcfi2++) { 7 for (int falcft2 = 0; falcft2 < falcftl;
int ut0 =2 * (falcftO + falcft2); //edge index falcfi2++) {
int utl = graph.edges[ut0].ipe; //dest point int ut0 =2 * (falcftO + falcft2);
int ut2 = graph.edges[ut0 + 1].ipe;//weight int utl = graph.edges[ut0].ipe;
GMIN(&t->dist[utl], t->dist[id] + ut2 int ut2 = graph.edges[ut0 + 1].ipe;
, changed); HMIN(&t->dist[utl], t->dist[p] + ut2,
} utl, changed);
1} 12 }
} }
int flcBlocks=(graph.npoints/TPB+1)>MAXBLKS 14 }
IMAXBLCKS:graph.npoints/TPB+1); #pragma omp parallel for
for(int kk=0;kk<graph.npoints;kk+=TPB*flcBlocks) for (inti = 0; i < hgraph.npoints; i++)
relaxgraph < < < flcBlocks, TPB > > >(graph, kk); relaxgraph(i, hgraph);
Fig. 6: Code generated for GPU Fig. 7: Code generated for CPU SSSP relax-
SSSP relaxgraph() and its call. graph().

5.4. Foreach Statement

Code generation for a foreach statement depends on the object on which it is called and where
(GPU/CPU) the object is allocated. Nested parallelism using foreach is not supported. We convert
inner foreach statements of nested foreach statements to simple for loop statements during
code generation.

The outermost loop is retained as a foreach statement and is converted to a CUDA kernel call /
OpenMP pragma (except for Collection on CPU) in the generated code. Figure 6 shows the code
generated for the relaxgraph() function and its foreach call from Figure 1, with the target being GPU.
Since foreach statement inside relaxgraph() is nested inside foreach statement from main(),
the foreach inside relaxgraph() is converted to a simple for loop. The variable TPB (Threads Per
Block) corresponds to (MaxThreadsPerBlock - MaxThreadsPerBlock % CoresPerSM) for the GPU
device on which the CUDA kernel is being called. We also make sure that a kernel executes by
splitting a kernel call into multiple calls, if the number of threads or blocks for the kernel call is
above the allowed value for device. Each Edge in Falcon stores two values in the edges array, the

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYY'Y.

Falcon: A Graph Manipulation Language for Heterogeneous Systems A:13

destination Point and weight of the Edge. When a program uses innbrs iterator and outnbrs
iterators, the inedges arrays of the Graph class stores two fields: source Point of the incoming
Edge and an index in to the edges array which can be used to find out weight of the incoming
Edge, which is stored in edges arrays.

Figure 7 shows the code generated for relaxgraph() function and its foreach statement when SSSP
is written for a multicore CPU. The variable TOT_CPU stores the number of CPU cores available.
The MIN function is converted to GMIN for GPU and HMIN for CPU. This convention is used
throughout Falcon, as can be seen with Graph type converted to HGraph or GGraph based on
where it is allocated.

Falcon stores the beginning index of neighbors of a Point in the index field of Graph class
and outdegree of the point is found by taking the difference of index value of the nextpoint and this
point(Line 6, Figure 7). The foreach statement in relaxgraph() processes all the neighbors of a
Point serially, using a simple for loop. Similar code is generated for other iterators of Point and
Edge data type.

We have experimented with warp-based code generation as well. However, we
find that performance improvement is not always positive across benchmarks. De-
tails of warp-based code generation are provided in [Unnikrishnan et al. 2015].

int <GPU> changed; parallel sections { //do in parallel
SSSPBFS(char *name) { //begin SSSPBFS section {//compute BFS on GPU1
Graph hgraph;//Graph object on CPU while(1){
hgraph.addPointProperty(dist,int); graphl.changed[0]=0;
hgraph.addProperty(changed,int); foreach(t In graphl.points)
hgraph.getType() <GPU> graph0;//Graph on GPUO BFS(t,graphl);
hgraph.getType() <GPU> graphl;//Graph on GPU1 if(graphl.changed[0]==0) break;
hgraph.addPointProperty(dist1,int); }
hgraph.read(name);//read Graph from file to CPU }
graphO=hgraph;//copy entire Graph to GPUO section {//compute SSSP on GPUO
graphl=hgraph;//copy entire Graph to GPU1 while(1){
foreach(t In graphO.points)t.dist=1234567890; graph0.changed[0]=0;
foreach(t In graph1.points)t.dist=1234567890; foreach(t In graph0.points)
graphQ.points[0].dist=0; SSSP(t,graph0);
graphl.points[0].dist=0; if(graph0.changed[0]==0) break;

}
}
31 }//end SSSPBFS

Fig. 8: Multi-GPU BFS and SSSP in Falcon.

5.5. parallel sections, Multiple GPUs and Multiple Graphs

Falcon supports concurrent kernel execution using parallel sections. Falcon also sup-
ports multiple GPUs and Graphs. When multiple GPUs are available and multiple GPU Graph
objects exist in the input program, each Graph object will be assigned a GPU number in a round
robin fashion by the Falcon compiler. A GPU is assigned more than one Graph object if the
number of GPU Graph objects exceeds the total number of GPUs available. Falcon assumes that
a Graph object fits completely within a single GPU and proceeds with code generation. If there is
more than one GPU Graph object, object allocation and kernel calls will be preceded by a call to
cudaSetDevice() function, with the GPU number assigned to the object as its argument. It is possible
to execute either the same algorithm or different algorithms on the Graph objects in the various
GPUs.

For parallel kernel execution on different GPUs, each foreach statement should be placed in-
side a different section ofthe parallel sections statement. Theparallel sections

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Unnikrishnan C et al.

statement gets converted to a OpenMP parallel region pragma, which makes it possible for the code
segments in different sections inside the parallel sections to run in parallel. The method
that we use for assigning Graphs to different GPUs is not optimal and the search for a better one is
part of future work. The code fragment in Figure 8 shows how SSSP and BFS are computed at the
same time on different GPUs using aparallel sections statementof Falcon. An Important
point to be noted here relates to how changed variable is used in the code. If we declare changed as
shown in Line 1 of Figure 8, it will be allocated in GPU device 0. So, to ensure that changed appears
in each device, it is added as a Graph Property in Line 5.

5.6. Inter-Device Communication

Copying data between the CPU and the GPU is translated to cudaMemcpy which has different forms
for the various assignment statements in Falcon. When an entire property of Graph, say Point
or Edge is copied from GPU or to GPU, a cudaMemcpy operation is called to transfer a block of
data. Falcon allows direct usage of GPU variables of basic types such as int, bool etc. inside
CPU code. These statements will be converted to cudaMemcpyFromSymbol(Line 30, Figure 1) and
cudaMemcpyToSymbol(Line 28, Figure 1) for data transfer from GPU and to GPU respectively,
using compiler generated temporary variables.

In the SSSP() example, dist property of all the points is copied by an assignment statement:

hgraph.dist = graph.dist; // Line 33 of Figure 1.

#define ep (st ruct struct_hgraph) struct struct_hgraph temp3;

#define DH cudaMemcpyDeviceToHost MC(temp3, (ep *)(graph.extra), sizeof(ep), DH);
#define HD cudaMemcpyHostToDevice MC(((ep *)(hgraph.extra))->dist, temp3.dist,
#define MC cudaMemcpy sizeof(int) * hgraph.npoints, DH);

Fig. 9: Code generated for Line 34 in Figure 1

The generated CUDA code for this statement is shown in Figure 9. The above statement needs
two cudaMemcpy operations as graph.extra is a GPU location and we cannot access graph.extra.dist
in cudaMemcpy, as this implies dereferencing a device location (something that cannot be done
from the host). A programmer can use The GPU Graph object directly in the printf statement and
Falcon compiler generates code to copy dist value of all points to temporary pointer variable and
use that in printf statement.

Recent advances in GPU computing allow access to a unified memory across CPU and GPU (e.g.,
in CUDA 6.0 and Shared Virtual Memory in OpenCL 2.0 and AMD’s HSA architecture). Such a
facility clearly improves programmability and considerably eases code generation. However, con-
cluding about the performance effects of a unified memory would require detailed experimentation.
For instance, CUDA’s unified memory uses pinning pages on the host. For large graph sizes, pin-
ning of several pages would interfere with the host’s virtual memory processing, leading to reduced
performance. We defer the use of unified memory in Falcon as a future work.

5.7. Synchronization statement

The single statement is used for synchronization in Falcon. The second variant of the single
statement is needed in functions which make structural modifications to graphs (morph algorithms)
and it requires a barrier for the entire function to be inserted automatically during code generation.
The total number of threads inside a CUDA kernel with a grid barrier cannot exceed a value specific
to the GPU device and so these functions run in such a way that one thread processes more than one
element. Cautious functions need single to be called on a Collect ion before any modification
to the elements of Collection and no new elements can be added to the same Collection
after the single statement. The compiler performs this check and if this condition is violated the
user is warned about possible incorrect results.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYY'Y.

Falcon: A Graph Manipulation Language for Heterogeneous Systems A:15

refine(Graph graph,triangle t){ #define t ((struct struct_graph *)(graph.extra))
Collection triangle[pred]; for(int i=0;i<pred.size;i++)
if(t is a bad triangle and not deleted) t->owner[pred.D_Vec[i]]=id;
find the cavity of t(set of surrounding gpu_barrier(++goal,arrayin,arrayout);//global barrier
triangles) for(int i=0;i<pred.size;i++){//2nd attempt to lock
add all triangles in cavity to pred if((t->owner[pred.D_Vecl[i]]<id)
5 single(pred){ break;//locked by lower thread,exit
6 //statements to update cavity else if(t->owner[pred.D_Vecli]]>id)
7 telse { t->owner[cav1]=id;//update lock with lower id
8 //abort }/end for
9 }/end single gpu_barrier(++goal,arrayin,arrayout);//global barrier
Hlend if int barrflag=0;
}//end refine for(int i=0;i<pred.size;i++){
Fig. 10: Usage of single statement if(t->0wner[pred.D_Vec[i]]!=@d){barrﬂag=l;break;}}
in DMR(Pseudo code) if(barrflag==0){ //update cavity }

else { //abort }
Fig. 11: Generated CUDA code

There is no support for a grid barrier in CUDA and we have implemented it as given in [Xiao and
chun Feng 2010]. The CPU code uses barrier provided by OpenMP. The way single statement is
used in DMR is shown in Figure 10. Here pred is a Collection object which stores the set of all
triangles in the cavity. If a lock is obtained on all the friangles then the cavity is updated else the
corresponding thread is aborted.

Pseudo Code in Lines 5-9 Figure 10 get converted to the CUDA code shown in Figure 11. Both
GPU and CPU versions follow the above code pattern, with appropriate GPU and CPU functions. We
lock the triangles based on the thread id and if two or more cavities overlap only the thread with the
lowest thread id will succeed in locking the cavity and others abort. The global barrier makes sure
that the operations of all threads are complete up to the barrier before any thread can proceed. This
generated code is similar to that used in LonestarGPU.

The first variant of single statement in Table III that locks a single object does not need a
barrier. It uses the compare_and_swap variant of CUDA [Nickolls et al. 2008] and GCC [Stallman
et al. 2011] for GPU and CPU respectively. This type of single statement is normally used in
local computation algorithms such as MST computation. In order for the single to work properly,
the property value must be reset to zero before entering the function in which single is executed.

5.8. Reduction Function

Reduction operation has been implemented on GPU objects. Translation of reduction functions to
CUDA functions is straightforward [Harris 2007].

5.9. Modifying Graph Structure

Deletion of a graph element is by marking. Each point and edge has a boolean flag that marks its
deletion status. We provide an interface that enables a programmer to check if an object has been
deleted by another thread.

For adding a Point or an Edge we rely on atomics. For a Graph object with the name
say graph, we add global variables falcgraphpoint, falcgraphedge which will be initialized to the
number of points and edges in graph(resp.). When a programmer writes graph.addPoint in the
Falcon program, that code will be replaced by a call to an automatically generated function falcad-
dgraphpointfun(). This function atomically increments falcgraphpoint by one. Analogous functions
exist for Edge and properties added using the addProperty function. Currently, none of proper-
ties (attributes) associated with graph elements can be auto-deleted (including the one added using

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Unnikrishnan C et al.

addProperty); their deletion must be explicitly coded by the programmer. DMR deletes triangles by
storing a boolean flag in the property triangle and making that flag value t rue for deleted triangles.

Automatic management of size is also needed for morph algorithms. For example in DMR, the
Graph size increases and the pre-allocated memory may not be sufficient. A call to compiler gen-
erated realloc() function is inserted automatically after the code that modifies the Graph size. This
realloc() function considers current size, the change in size and the available extra memory allocated
and performs Graph reallocation, if necessary.

In general, graph algorithms exhibit both memory as well as control-flow irregularity. While Fal-
con does not try to remove any of them completely, it takes the following measures to achieve better
coalescing and locality. (i) CSR representation enables accessing the nodes array in a coalesced
fashion. It also helps achieve better locality as edges of a node are stored contiguously. (ii) Shared
memory accesses for warp-based execution and reductions help improve memory latency. (iii) Op-
timized algorithms. Note that a high-level DSL allows us to tune an algorithm easily, such as the
SSSP optimization discussed in Section 4.

5.10. Heterogeneous Execution in Falcon using Graph Partitioning

When a Graph object does not fit into GPU memory, the programmer can make use of the graph
partitioning functions available in Falcon. Falcon currently supports partitioned execution with
one CPU and multiple GPUs. Only Totem [Gharaibeh et al. 2013][Gharaibeh et al. 2012] supports
partitioned execution. The partitioning algorithm, communication mechanism, and subgraph storage
structures used in Falcon have been derived from Totem. But unlike Totem, Falcon hides all the
internal details from the programmer. Falcon supports random partitioning, partitioning based
on the degree of the nodes, and a new partitioning algorithm, called ordered partitioning. In this
algorithm, if X and Y are the percentages (X+Y=100) of a graph to be allocated on two partitions, the
first X% points and their edges are allocated on subgraphl, and the remaining graph on subgraph2
(similarly for partitioning with three or more subgraphs). We have tested partitioned execution only
for vertex-centric algorithms (as in Totem). A non-vertex-centric algorithm requires edge-based
processing and this may result in more communication, as the number of edges in a graph is usually
much higher than the number of nodes. This will be explored in future work.

As in Totem, a node and all its edges are also stored in the same subgraph. If the destination
node of an edge is in the other partition, it becomes a remote node. In the case of computation with
GPU and CPU, new values of the remote nodes of a subgraph are sent to the other subgraph after the
computation step, with the help of a communication buffer created in the CPU and the GPU. We sup-
port multi-GPU execution by enabling peeraccess between GPUs. The values are updated after each
computation step for each subgraph in parallel without requiring any data transfer between GPUs.
We have also implemented a basic version of partitioned execution using Unified Virtual Addressing
(UVA), which is possible for Nvidia-GPUs with compute capability >=2.0. But computation with
peeraccess is faster than with UVA.

A programmer is required to use the parallel foreach construct with the initial Graph object
and the Falcon compiler automatically generates CUDA and OpenMP version codes for the GPU
and the CPU (resp.). The compiler also determines the properties of a node (Point) that are updated
in a parallel region. The programmer must specify a function for updating the values of properties of
Points in the Graph object. On receiving the new values of properties of Points from another
subgraph, the values are updated using this function (e.g., the minimum of the current value and the
incoming value is taken in SSSP and BFS).

Falcon code in Figure 12 shows how SSSP computation can be performed on an input using
both GPU and CPU. The makePartition function in Line 14 of Figure 12 partitions the graph into
two parts, one each on CPU (argument 1) and GPU (argument 2) using the partition algorithm based
on the degree of nodes in a graph (argument 3).

After a computation step, the current values of remote nodes are communicated to the parti-
tion in which the remote node is actually present. The updating function, updatePartition ()
(Line 22) applies the function funl (defined in Line 1 and specified as shown in Line 15) to update

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYY'Y.

Falcon: A Graph Manipulation Language for Heterogeneous Systems A:17

the value. The update function does not need atomic operations as each thread is accessing a dif-
ferent location. The Falcon compiler optimizes data transfers between partitions by sending the
values of only the required properties to remote partitions (e.g. property values of Point incom,
which are read in funl, in Figure 12).

funl(Point ori, Point incom){ 13 hgraph.read(argv[1]);
if(orig.dist > incom.dist) 14 hgraph.makePartition(1,1,SORT_BY_DEGREE);
orig.dist=incom.dist 15 hgraph.updateFunction(funl);
} foreach(t In hgraph.points) t.dist=1234567890;
relaxgraph(Point p, HGraph hgraph){ hgraph.points[0].dist=0;
foreach(t in p.outnbrs) while(1){
MIN(t.dist, p.dist+hgraph.getWeight(p,t), hgraph.changed[0]=0;
hgraph.changed[0]); foreach(t In hgraph.points)relaxgraph(t,hgraph);
} 22 hgraph.updatePartition();
main(int arge, char *argv[]){ if(hgraph.changed[0]==0)break; }//end while
HGraph hgraph; for(int i = 0;i < hgraph.npoints; i++)
hgraph.addPointProperty(dist, int); printf(“%d”, hgraph.points[i].dist);
hgraph.addProperty(changed, int); }//end main

Fig. 12: Partitioned SSSP algorithm (unoptimized)

For partitions in GPU and CPU, two cudaMemcpy operations are needed, one for each partition.
The values are updated using a CUDA kernel call for the GPU and an OpenMP parallel loop for
the CPU. Space allocation for various buffers and the generation of code for communication are
handled automatically by the Falcon compiler. The property, changed, gets duplicated for each
partition (also handled by the Falcon compiler). The Graph class contains pointers to the HGraph
(GGraph) class and these are used to allocate subgraphs on the CPU (GPU). The parallel call to
relaxgraph gets converted to a CUDA kernel call and an OpenMP pragma for the GPU and the CPU,
respectively. The if statement checks whether the value in the variable changed is unchanged (in
both the partitions). If a programmer wants to execute only on multiple-GPUs or multiple-GPUs
and CPU, the first two arguments are required to be modified. A programmer can also specify the
percentage of a Graph object to be allocated on the CPU and GPUs using command line arguments.

The above example shows the ease of programming in Falcon using partitioned graphs.
Falcon currently supports only vertex-centric algorithms and has been tested using a combina-
tion of multiple GPUs and a single CPU.

6. EXPERIMENTAL EVALUATION

To execute the CUDA codes, we have used an Nvidia multi-GPU system with Four GPUs (One
Kepler K20c GPU with 2496 cores running at 706 MHz and 6 GB memory, two Tesla C2075
GPUs each with 448 cores running at 1.15 GHz and 6 GB memory, one Tesla C2050 GPU with
448 cores running at 1.15 GHz and 4 GB memory). Multicore codes were run on Intel(R) Xeon(R)
E5645 CPU, with two hex-core processors (total 12 cores) running at 2.4 GHz with 24 GB memory.
All the GPU codes were by default run on Kepler K20c (device 0). The CPU results are shown as
speedup of 12-threaded codes against single-threaded Galois code. We used Ubuntu 14.04 server
with g++-4.8 and CUDA-7.0 for compilation.

We compared the performance of the Falcon-generated CUDA code against LonestarGPU-2.0
and Totem [Gharaibeh et al. 2013][Gharaibeh et al. 2012], and the multicore code against that of
Galois-2.2.1 [Pingali et al. 2011], Totem and GreenMarl [Hong et al. 2012]. LonestarGPU does not
run on multi-core CPU and Galois has no implementation on GPU. Only Totem supports imple-
mentation of an algorithm on multiple GPUs using graph partitioning and Falcon’s comparison

with Totem on this aspect is described in subsection 6.3.)
Results are shown for three cautious morph algorithms (SP, DMR and dynamic SSSP) and three

local computation algorithms (SSSP, BFS and MST). Falcon achieves close to 2x and 5x re-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Unnikrishnan C et al.

Input Graph Type Total Total BFS dis- Max Min
Points Edges tance Nbrs Nbrs
rand1 Random 16M 64M 20 17 1
rand2 Random 32M 128M 18 17 1
rmat] Scale Free 10M 100M INF 1873 0
rmat2 Scale Free 20M 200M INF 2525 0
road1(usa-ctr) Road Network 14M 34M 3826 9 1
road2(usa-full) Road Network 23M 58M 6261 9 1

Table VI. Inputs used for local computation algorithms

Algorithm Falcon Green- | Galois | Totem Falcon | Lonestar Totem

CPU Marl CPU GPU GPU GPU
BFS 26 24 310 400 28 140 200
SSSP 35 24 310 60 38 170 330
MST 113 N.A. 590 N.A. 103 420 N.A.
DMR 302 N.A. 1011 N.A. 308 860 N.A.
SP 198 N.A. 401 N.A 185 420 N.A.
Dynamic 51 N.A. N.A. N.A. 56 165 N.A.
SSSP

Table VII. Lines of codes for algorithm in different frameworks / DSLs

15 b i
8 | |4 Fatcon-ru 2 b7 Fatcon-Gru 9 N it
Tolem-GPU | Totem-GPU | 1= [] 4 i
7l c —
7 = 7
o 0 : 10 7 . ‘
=] ; < v
3 ’ o 2 ‘
2 4 ; AN 7
2 z 21 ¢ z
v | 3 5 o AR = 7
w & s [® Ho ~© 7 I 1 I v
20%0 22 o7 M “a g7 5, 8. 2° AN - c
- ~ - Z 3 Kl= - o ~ A Y 3
dda,: s BRI H e, @, RN 7
7| I 1 |7 7|1~ =} S |77 o - O a 7 7] I
7| [7] I Y 7 7|7 “ z(l7 [=} (=] 7 4 /| 4
O’Q ’ QE]’ o Uz m/ S| ARy ‘
SIS LEDE DI LD IDIDEDY
LTSS S ST SOEESS
& & & & & E FFEE LS
(a) SSSP speedup over LonestarGPU (b) BFS speedup over LonestarGPU (c) MST speedup over Lon-
estarGPU

Fig. 13: Speedup of SSSP, BFS and MST on GPU

duction in number of lines of code (see Table VII) for morph algorithms and local computation
algorithms respectively compared to the hand-written code. We have measured the running time
from the beginning of the computation phase till its end. This includes the cost of communication
between the CPU and the GPU during this period. We have not included the running time for reading
and copying the Graph object to the GPU and for copying results from the GPU. Absolute running
times for all the algorithms can be found in [Unnikrishnan et al. 2015].

6.1. Local Computation Algorithms

Figure 13 shows the results for BFS, SSSP and MST on GPU and Figure 14 shows the results for
BFS and SSSP on CPU. MST speedup on CPU is shown in Figure 15. We experimented with

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Falcon: A Graph Manipulation Language for Heterogeneous Systems A:19

several graph types (such as the Erdos-Rényi model random graphs [Erd6s and Rényi 1960], road
networks, and scale-free graphs) and have shown results for two representative graphs from each
category, with several million edges. Details can be seen in Table VI. Road network graphs are real
road networks of USA [DIMACS 2009], have less variance in degree distribution, but have large
diameter. Scale-free graphs have been generated using GTGraph [Bader and Madduri 2006] tool,
have a large variance in degree distribution but exhibit small-world property. Random graphs have
been generated using the graph generation tool available in Galois.

SSSP. Results for SSSP on GPU have been plotted as speedup over best time reported by Lones-
tarGPU variants (worklist based SSSP and Bellman-Ford style SSSP). We find that Falcon SSSP
(Figure 1) is faster than LonestarGPU. This is due to the optimization used in the Falcon pro-
gram using the uptd field, which eliminates many unwanted computations. For rmat2 input worklist
based SSSP of LonestarGPU went out of memory and speedup shown is over slower Bellman-Ford
style SSSP of LonestarGPU. The speedup for SSSP on GPU is shown for Totem and Falcon with
respect to LonestarGPU in Figure 13(a).

The results for SSSP on CPU are plotted as speedup over Galois single threaded code (Figure
14(a)). Falcon and Galois use a Collection based A-stepping implementation. Totem and
GreenMarl do not have a A-stepping implementation. Hence, Totem and GreenMarl are always
slower than Galois and Falcon for road network inputs. GreenMarl failed to run on rmat input
giving a runtime error on std: :vector: :reverse (). It is important to note that Bellman-
Ford variant of the SSSP code (Figure 1) on CPU with 12 threads is about 8 x slower than that of the
same on GPU. It is the worklist based A-stepping algorithm which made CPU code fast. BFS and
MST also benefit considerably from worklist based execution on CPU.

BFS. Results for BFS on GPU are compared as speedup over the best running times reported
by LonestarGPU. We took the best running times reported by worklist based BFS and Bellman-
Ford variant BFS implementations. The worklist based BFS performed faster only for road net-
work input. Falcon also has a worklist based BFS on GPU which is slower by about 2x com-
pared to that of LonestarGPU. Totem framework is too slow on road network due to lack of
worklist based implementation. GreenMarl failed to run on rmat input giving a runtime error on
std: :vector::reverse ().

Falcon BFS code on CPU always outperformed Galois BFS, due to our optimizations (Figure
14(b)). Totem and GreenMarl are again slower on road inputs. Totem performed better than Falcon
BFS on GPU for scale free graphs. Totem runs algorithms using graph partitioning which benefits
graphs that follow the power law distribution, and rmat graphs do follow the power law [Gharaibeh
et al. 2012]. The speedup for BFS on GPU is shown for Totem and Falcon with respect to Lones-
tarGPU in Figure 13(b).

MST. LonestarGPU has a Union-Find based MST implementation. Falcon GPU code for MST
always outperformed that of LonestarGPU for all inputs, with the help of better implementation of
Union-Find that Falcon has for GPU. But our CPU code showed a slowdown compared to Galois
(about 2x slowdown). Galois has a better Union-Find implementation based on object location as
key. The Speedup for MST on GPU is shown in Figure 13(c) and same for CPU is shown in Figure
15.

Multi-GPU. Figure 16 shows the speedup of Falcon when algorithms BFS, SSSP and MST are
executed on three different GPUs in parallel for the same input, when compared to their separate
executions on the same GPU. One should not be confused with speedup values in Figure 16 and
values in Figure 13, because for road networks, SSSP running time was very high compared to
the MST running time, and for other inputs (random, rmat) MST running time was higher. It is
also possible to run algorithms on CPU and GPU in parallel using the parallel sections
statement. A Programmer can decide where to run a program by allocating a Graph object on GPU
or CPU, which can be specified in a declaration statement with or without using <GPU> tag. He/She
can then place appropriate foreach statements in each sectionoftheparallel sections
statement of Falcon. For example, SSSP on road network inputs can be run on CPU (because it is

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Unnikrishnan C et al.

0
= ~
= Galois-12 15 ;‘ﬁ Galois-12
rn o [al
7 Falcon-12 : &~ Falcon-12
7| — <t 2]
20‘?: @ Totem-12 - @ Totem-12
e
10 3 Ala oo [GreenMart-12 £ GreenMarl-12
: A1z 29
® - 3 | - 0 0
71 7|17 3
= Aac FEE 92 gp 10 150« sHa 2 3
3 fog EFE» S (417 5 wfs @ z
8 CoHe FEHS M 11 w0 21l cFe SEIE
O 204 2|7 i 17 n © 2 1N @ -
<3 CIEIH> Fl14lHA 1914 VIV 2@ © Cpin AT
a1 717 RRGIAES LIVES oo 010) * opls 7 [
= \Es AR e 11 <C SHHEE s AR oo
S IElE JAEIEE 1AM 16 Bl 7 ‘[0
Al AlA|=12RAI¥ 11 " “ A%
Al AlA|=12 WALV 11 5 7 7 Y17
Al AlA|=12RHI¥ 11 " 7 ‘||
Al AlAI=IERAIY 114 " 7 A%
Al Aldi=|2 R4y 11 " 9 ‘||
Al AlAI=IERAIY 114 " . A%
alA Aldi=|2 R4y 11 " “ ‘||
Al AlA|=12RAI¥ 11 " 7 A%
14 aia 1 17| |7 117 3 ” | |~]
Al AlA|=12RAI¥ 11 " . /17 o
|l i .: 7|17 7117 | 17 /(7 ©in
A1 AFIEE Pl blv |2 . c : ale e
AE AR A R B = A5° HAE° s s
0 : - 0 - B il
rand]l rand2 rmatl rmat2 roadl road2 randl rand2 rmatl rmat2 roadl road2
(a) SSSP speedup over Galois Single (b) BFS speedup over Galois single
Fig. 14: Speedup of SSSP and BFS on CPU
Q Galois-12 4
~ @
G o 3 3
o 10 7 Pl i
=] 7 N
= A ~ =)
L AR ~ -
(] Ak - 2 =
=9 ‘| s Q o g
1%5] 51F G G -
A
413 35 [P
a7 s [1 ’
AlA / J
a4 ; ;
AlA 1 F Z
717 1 17 J
o LAk 1 ;
O 7
5 W >
& & & > O o
& &F & >

& & &S
Fig. 15: speedup of MST on CPU over Galois Fig. 16: speedup of Falcon on Multi-GPU

single

slow on GPU) and for random and rmat graph inputs, on GPU. The effort required to modify codes
for CPU or GPU is minimal with Falcon.

We have Falcon implementations of many other graph algorithms such as page ranking, be-
tweenness centrality, etc., and these can be found in [Unnikrishnan et al. 2015]. We found it easy
to implement such algorithms in Falcon without worrying about the details of the underlying
architecture.

6.2. Morph Algorithms

We have specified three morph algorithms using Falcon: DMR, SP and dynamic SSSP. All these
algorithms have been implemented as cautious algorithms and we have compared the results with
implementations using LonestarGPU and Galois (other frameworks do not support mutation of
graphs). Other morph algorithms can be easily specified in Falcon.

Delaunay Mesh Refinement (DMR). DMR implementation in LonestarGPU relies on a global
barrier, which can be implemented either by returning to the CPU and launching another kernel, or
by emulating a grid-barrier in software [Xiao and chun Feng 2010]. LonestarGPU uses the latter

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYY'Y.

Falcon: A Graph Manipulation Language for Heterogeneous Systems A:21

Falcon-GPU

LonestarGPU

LonestarGPU
Falcon-GPU

20

B Falcon-CPU

=] 16.1

<
—
—

10.7
10.72

Speedup

10

SSSSSSS NS SSSSSSSSSIIINNNR] 20.91

SSSSSSSSsaany] 11.01

NNNNNNNNNNY

0 0.61
ETETTINIINS

[en]
FSSSY 4.02
KN 1.34

&

(a) DMR speedup over LonestarGPU (b) DMR speedup over Ga- (c) DynamicSSSP- Incremental speedup
lois single

Fig. 17: Morph Algorithm Results -DMR and DynamicSSSP

Galois Falcon Lonestar
Input(K, N, M) 12 threads 12 threads GPU Falcon GPU
(3,1x106, 4.2x10°) 67 46 26 23
(3,2x10°, 8.4x10°) 147 76 55 47
(3,3x10°, 12.6x10%) 232 114 86 69
(3,4x10°, 16.8x10%) 322 147 117 93
(4,4x10°, 9.9x10%) 1867 149 118 95
(5,1x10°, 21.1x10°) killed 356 414 314
(6,1x10°, 43.4x10°) killed 1322 1180 928

Table VIII. Performance comparison for SP (running time in seconds)

approach as it allows saving the state of the computation in local and shared memory across barriers
inside the kernel (which is infeasible in the first approach where the kernel is terminated) and this
approach is used in Falcon DSL code as well. Unfortunately, grid-level barriers pose a limit on the
number of threads with which a kernel can be launched, as all the thread-blocks need to be resident
and all the threads must participate in the barrier; otherwise, the kernel execution hangs. Therefore,
both LonestarGPU and Falcon-generated code restrict the number of launched threads, thereby
limiting parallelism. However, it avoids costly global memory access. This is also observable in
other morph algorithm implementations needing a grid-barrier. Figure 17(a) and 17(b) show the
performance comparison of DMR code for GPU and CPU on input meshes containing a large number
of triangles in the range 0.5 to 10 million. Close to 50% of the triangles in each mesh are initially
bad (that is, they need to be processed for refinement). Galois goes out of memory for 10 million
triangles or more, and terminates. Falcon code is about 10% slower compared to LonestarGPU
code and both used the same algorithm. This can be due to the inefficiency arising from conversion
of DSL code to CUDA code. Speedup shown is for mesh refinement code (including communication
involved during that time), after reading mesh.

Survey Propagation (SP). Survey Propagation algorithm [Braunstein et al. 2005] deletes a node
when its associated probability becomes close to zero and this makes SP a morph algorithm. In this
implementation, we implemented the global barrier on a GPU by returning to the CPU, as no local
state information needs to be carried across kernels (the carried state of variables is stored in global
memory). A similar approach is used in LonestarGPU as well.

The first four rows of Table VIII show how SP works for a clause(M)-to-literal(N) ratio of 4.2 and
3 literals-per-clause(K) for different input sizes and the last three rows are for different values for

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Unnikrishnan C et al.

the clause(M)-to-literal(N) ratio. We observe that Falcon-generated code always performs better
than both multicore Galois with 12 threads and LonestarGPU. Note that performance has been
compared with LonestarGPU-1.0 and Galois-2.1 codes. New versions of both these frameworks use
a new algorithm, which is yet to be coded in Falcon. Multicore Galois goes out-of-memory for
higher values of (K, N, M), whereas LonestarGPU and Falcon versions complete successfully.
LonestarGPU allocates each property of clause and literal in separate arrays whereas in Falcon,
each property of clause and literal is put in structures, one each for clause and literal. Galois has a
worklist based implementation of the algorithm. Also both Galois and LonestarGPU work by adding
edges from clauses (Point in Graph) to each literal (Point in Graph) in the clause. But Falcon takes
a clause as an extra property of the Graph (like triangle was used in DMR) and that property stores
literals (Points) of the clause in it. So our Graph does not have any explicit edges, and literals of a
clause (which correspond to edges) can be accessed very efficiently from the clause property of the
Graph. We find that Falcon code runs faster than that of both Galois and LonestarGPU. Writing
an algorithm that maintains a clause as a property of a Graph in LonestarGPU and Galois is not an
easy task.

Dynamic SSSP. In a dynamic Single Source Shortest Path (SSSP) algorithm, edges can be added
or deleted dynamically. A dynamic algorithm where only edges get added (deleted) is called as
an incremental (decremental) algorithm, whereas algorithms where both insertion and deletion of
edges happen are called fully dynamic algorithms [Frigioni et al. 1998]. We have implemented an
incremental dynamic algorithm on GPU and CPU using Falcon. We have used a variant of the
algorithm by [Ramalingam and Reps 1996]. Insertions are carried out in chunks and then SSSP is
(incrementally) recomputed. We found it difficult to add dynamic SSSP to the Galois system, be-
cause no Graph structure that allows efficient addition of big chunk of edges to an existing Graph
object was found. LonestarGPU code has been modified to implement dynamic SSSP, and we com-
pare it with our CPU and GPU versions. Falcon looks at functions used in programs that modify
a Graph structure (addPoint(), addEdge(), etc.) and converts a Graph read() function in Falcon to
the appropriate read() function of the HGraph class. For dynamic SSSP, the read() function allocates
more space to add edges for each Point and makes the algorithm work faster. LonestarGPU code has
also been modified in the same way. Results are shown in Figure 17(c), which shows the speedup
of the incremental SSSP computation with respect to initial SSSP computation. SSSP on GPU is an
optimized Bellman-Ford style algorithm that processes all the elements and so does many unwanted
computations, while CPU code is A-stepping algorithm. Implementation of a fully dynamic SSSP
is easy in Falcon. Edge deletion is a harder problem and we do not deal with it.

6.3. Heterogeneous Execution with Graph Partitioning

Falcon supports execution of vertex-centric algorithms on CPU and multiple-GPUs using graph
partitioning. We have collected results for two random graphs and three RMAT graphs. Random
graphs are with 64M nodes (rand64) and 128M nodes (rand128) with number of total edges being
four times the number of nodes. RMAT graphs are with 50M nodes (rmat50), 60M nodes (rmat60)
and 80M nodes (rmat80) with total number of edges being ten times the number of nodes. Results are
shown for SSSP and BFS on these inputs for execution on two GPUs (Figure 18(a)), and two GPUs
and one CPU (Figure 18(b)) as compared to execution over single threaded CPU code. The reader
should note that partitioned execution is to be used only when the graph does not fit into single GPU
or single (multi-core) CPU memory. We utilized the GPU memory to the maximum possible extent
for these large graphs. The rand128 input and rmat80 inputs did not fit in two GPUs and hence is
executed on two GPUs and one CPU. The Totem framework and Falcon code were run on multi-
GPU by enabling peeraccess and this is faster than code using Unified Virtual Addressing (UVA).
The peeraccess method needs GPUs to be on the same I/O Hub and so we used two GPUs (Fermi
C2075 and Fermi C2050) which are on the same I/O Hub in our multi-GPU machine. Totem needed
recompilation for compute capability 2.0 and modification of code to assign GPU partitions to use
devices with peeraccess. Our results were collected with ordered partitioning (because it worked

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYY'Y.

Falcon: A Graph Manipulation Language for Heterogeneous Systems A:23

H Falcon-sssp E Totem-sssp B Falcon-bfs H Totem-bfs

LR
<t S S
S 1~ = — 10
10 SN 7S & [o
o vy 0 M~ = [™0 <f
= 7w B I S
5 p ©
I y S > .
4 S S
25 J
0 2482 - A A 246 1A %'3'5 24122
rand64 rmat50 rmat60 rand128 rmat80
(a) Speedup on two GPUs (b) Speedup on two GPUs + one CPU

Fig. 18: Heterogeneous execution speedup comparison over single threaded CPU (SSSP,BFS).

better than other schemes with Falcon) and Totem uses random partitioning. Results are shown
with time including partitioning time, execution time and communication time during computation.

7. CONCLUSION AND FUTURE WORK

We presented Falcon, a domain specific language for expressing graph algorithms. It supports
writing explicitly parallel programs, thus retaining efficiency. By enabling an algorithmic specifica-
tion at a higher level, it allows easy changes to the code and also its maintenance. Salient features of
Falcon are that it supports morph algorithms, wherein the underlying graph structure may change
and provides support for heterogeneous architecture, multi-GPU systems and multi-core CPUs. We
illustrated its expressibility by generating CUDA and OpenMP code for morph algorithms such as
Delaunay mesh refinement, survey propagation and dynamic SSSP. We showed that writing code
for CPU and GPU are similar, except in the case where variables in GPU need to be annotated with
<GPU> tag and we showed that the generated code performs close to (and sometimes better than)
their hand-tuned implementations. We also presented preliminary results of execution of vertex-
centric algorithms on partitioned graphs. In the future, the portability of Falcon will be improved by
supporting OpenCL as the backend and by extending Falcon support for CPU Clusters. Automatic
code generation without the programmer explicitly specifying the location of Graph objects and
supporting speculation with rollback are also on the cards.

REFERENCES

D. Bader and K. Madduri. GTgraph: A synthetic graph generator suite. http://www.cse.psu.edu/
~madduri/software/GTgraph.

D. Bader and K. Madduri. Snap, small-world network analysis and partitioning: An open-source
parallel graph framework for the exploration of large-scale networks. In Proc. IEEE IPDPS 2008.

David A. Bader and Kamesh Madduri. Design and Implementation of the HPCS Graph Analysis
Benchmark on Symmetric Multiprocessors. In Proc. HiPC 2005. Springer-Verlag, 465-476.

A. Braunstein, M. Mézard, and R. Zecchina. Survey Propagation: An Algorithm for Satisfiability.
Random Struct. Algorithms 27, 2 (Sept. 2005), 201-226.

Martin Burtscher and Keshav Pingali. CUDA Implementation of the Tree-based Barnes Hut n-
Body Algorithm. In GPU Computing Gems Emerald Edition. Morgan Kaufmann, 75-92. http:
/liss.ices.utexas.edu/Publications/Papers/burtscher11.pdf

L. Paul Chew. Guaranteed-quality Mesh Generation for Curved Surfaces. In Proc. ACM Symposium
on Computational Geometry, 1993. 274-280.

Sun Chung and A. Condon. Parallel implementation of Boruvka’s minimum spanning tree algorithm
1996. http://www.cs.ubc.ca/~condon/papers/chungcondon96.pdf

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Unnikrishnan C et al.

A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-Efficient Parallel GPU Methods for
Single Source Shortest Paths. In Proc. IEEE IPDPS 2014.

DIMACS. 9th DIMACS Implementation Challenge. 2009. http://www.dis.uniromal .it/~challenge9/
download.shtml

P. Erdds and A Rényi. On the Evolution of Random Graphs. 1960. http://www.renyi.hu/~p_erdos/
1960-10.pdf

Min Feng, Rajiv Gupta, and Laxmi N. Bhuyan. 2012. Speculative Parallelization on GPGPUs. In
Proc. PPoPP 2012. ACM, 293-294.

Daniele Frigioni, Mario Ioffreda, Umberto Nanni, and Giulio Pasqualone. Experimental Analysis
of Dynamic Algorithms for the Single Source Shortest Paths Problem. J. Exp. Algorithmics 3,
Article 5 (Sept. 1998).

Abdullah Gharaibeh, Lauro Beltrdo Costa, Elizeu Santos-Neto, and Matei Ripeanu. A Yoke of
Oxen and a Thousand Chickens for Heavy Lifting Graph Processing. In Proc. PACT 2012. ACM,
345-354.

Abdullah Gharaibeh, Elizeu Santos-Neto, Lauro Beltrdo Costa, and Matei Ripeanu. The Energy
Case for Graph Processing on Hybrid CPU and GPU Systems. In Proc.3rd Workshop on Irregular
Applications: Architectures and Algorithms, 2013. ACM, Article 2, 8 pages.

Douglas Gregor and Andrew Lumsdaine. The parallel bgl: A generic library for distributed graph
computations. In In Proc. Parallel Object-Oriented Scientific Computing (POOSC), 2005.

Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on the GPU using CUDA.
In Proc. HiPC 2007. 197-208.

Pawan Harish, Vibhav Vineet, and P. J. Narayanan. Large Graph Algorithms for Massively Multi-
threaded Architectures. Technical Report. IIIT 2009.

Mark Harris. 2007. Optimizing Parallel Reduction in CUDA.

Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-Marl: A DSL for Easy and
Efficient Graph Analysis. In Proc. ASPLOS 2012. ACM, 349-362.

Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating CUDA Graph
Algorithms at Maximum Warp. SIGPLAN Not. 46, 8 (Feb. 2011), 267-276.

Sungpack Hong, Semih Salihoglu, Jennifer Widom, and Kunle Olukotun. Simplifying Scalable
Graph Processing with a Domain-Specific Language. In Proc. CGO 2014. ACM, Article 208, 11
pages.

Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis, Chunling Hu, and Keshav
Pingali. Adaptive heterogeneous scheduling for integrated GPUs. In Proc. PACT 2014. ACM,
151-162.

Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. CuSha: Vertex-centric Graph
Processing on GPUs. In Proc. HPDC 2014. ACM, 239-252.

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: A Compiler Framework
for Automatic Translation and Optimization. SIGPLAN Not. 44, 4 (Feb. 2009), 101-110.

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M.
Hellerstein. Distributed GraphLab: A Framework for Machine Learning and Data Mining in the
Cloud. Proc. VLDB Endow. 5, 8 (April 2012), 716-727.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser,
and Grzegorz Czajkowski. Pregel: A System for Large-Scale Graph Processing. In Proc. SIG-
MOD 2010. ACM, 135-145.

Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. A GPU Implementation of Inclusion-
based Points-to Analysis. In Proc. PPoPP 2012. ACM, 107-116.

Jaikrishnan Menon, Marc De Kruijf, and Karthikeyan Sankaralingam. iGPU: Exception Support
and Speculative Execution on GPUs. SIGARCH Comput. Archit. News 40, 3 (June 2012), 72-83.

Ulrich Meyer and Peter Sanders. Delta-Stepping: A Parallel Single Source Shortest Path Algorithm.
In Proc. European Symposium on Algorithms (ESA 1998). Springer-Verlag, 393-404.

Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013a. Data-Driven Versus Topology-driven
Irregular Computations on GPUs. In Proc.IEEE IPDPS 2013. 463—474.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Falcon: A Graph Manipulation Language for Heterogeneous Systems A:25

Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013b. Morph Algorithms on GPUs. In Proc.
PPoPP 2013. ACM, 147-156.

Jared Hoberock (NVIDIA) Nathan Bell (NVIDIA). 2011. Thrust: A Productivity-Oriented Library
for CUDA. Technical Report.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel Programming with
CUDA. Queue 6, 2 (March 2008), 40-53.

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Hassaan, Rashid
Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios
Prountzos, and Xin Sui. The Tao of Parallelism in Algorithms. In Proc. PLDI 2011. ACM, 12-25.

Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary Hall. EigenCFA: Accelerating Flow
Analysis with GPUs. SIGPLAN Not. 46, 1 (Jan. 2011), 511-522.

Dimitrios Prountzos, Roman Manevich, and Keshav Pingali. Elixir: A System for Synthesizing
Concurrent Graph Programs. SIGPLAN Not. 47, 10 (Oct. 2012), 375-394.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman
Amarasinghe. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Re-
computation in Image Processing Pipelines. In Proc. PLDI 2013. ACM, 519-530.

G. Ramalingam and Thomas Reps. On the computational complexity of dynamic graph problems.
Theoretical Computer Science 158 (1996), 233-277.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-Stream: Edge-centric Graph Processing
Using Streaming Partitions. In Proc.Symposium on Operating Systems Principles (SOSP 2013).
ACM, 472-488.

Mehrzad Samadi, Amir Hormati, Janghaeng Lee, and Scott Mahlke. Paragon: Collaborative Spec-
ulative Loop Execution on GPU and CPU. In Proc. Workshop on General Purpose Processing
with Graphics Processing Units, 2012 (GPGPU-5). ACM, 64-73.

Ahmet Erdem Sariyiice, Kamer Kaya, Erik Saule, and Umit V. Catalyiirek. Betweenness Centrality
on GPUs and Heterogeneous Architectures. In Proc. Workshop on General Purpose Processor
Using Graphics Processing Units, 2013 (GPGPU-6). ACM, 76-85.

Julian Shun and Guy E. Blelloch. Ligra: A Lightweight Graph Processing Framework for Shared
Memory. SIGPLAN Not. 48, 8 (Feb. 2013), 135-146.

Richard M. Stallman and The GCC Developer Community. Using the GNU Compiler Collection.
https://gcc.gnu.org/onlinedocs/gce.pdf

Morten Stockel and Soren Bog. Concurrent Datastructures. In Technical Report IMM-BSC-2008-
12. Technical University of Denmark.

Chen Tian, Min Feng, Vijay Nagarajan, and Rajiv Gupta. Copy or Discard Execution Model for
Speculative Parallelization on Multicores. In Proc. IEEE MICRO 2008. 330-341.

Chen Tian, Changhui Lin, Min Feng, and Rajiv Gupta. Enhanced Speculative Parallelization via
Incremental Recovery. In Proc. PPoPP 2011. ACM, 189-200.

Unnikrishnan C, Rupesh Nasre, and YN Srikant. Falcon: A Graph Manipulation Language for Het-
erogeneous Systems. In Technical Reports, Department of CSA, I1Sc, Bangalore-560012, India.
http://www.csa.iisc.ernet.in/TR/2015/5/

Leslie G. Valiant. A bridging model for parallel computation. CACM, Vol.33, No.8§, 1990, 103—-111.

Shucai Xiao and Wu chun Feng. Inter-Block GPU Communication via Fast Barrier Synchronization.
(April 2010).

Kaiyuan Zhang, Rong Chen, and Haibo Chen. NUMA-aware Graph-structured Analytics. In Proc.
PPoPP 2015. ACM, 183-193.

Jianlong Zhong and Bingsheng He. Medusa: Simplified Graph Processing on GPUs. IEEE Trans.
Parallel Distrib. Syst. 25, 6 (June 2014), 1543-1552.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

