
Algorithms for Range-Skyline Queries

Saladi Rahul
Dept. of Computer Science & Engg.

Univ. of Minnesota–Twin Cities
4-192 Keller Hall, 200 Union St. S.E.

Minneapolis, MN 55455, USA
sala0198@umn.edu

Ravi Janardan
Dept. of Computer Science & Engg.

Univ. of Minnesota–Twin Cities
4-192 Keller Hall, 200 Union St. S.E.

Minneapolis, MN 55455, USA
janardan@umn.edu

ABSTRACT
Let S be a set of n points in R

d, where each point has t ≥ 1
real-valued attributes called features. A range-skyline query
on S takes as input a query box q ∈ R

d and returns the
skyline of the points of q∩S, computed w.r.t. their features
(not their coordinates in R

d). Efficient algorithms are given
for computing range-skylines and a related hardness result
is established.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Geo-
metrical problems and computations; H.2.8 [Database Ap-
plications]: Spatial databases and GIS

General Terms
Algorithms

Keywords
Query processing, skyline, range search, geometric transfor-
mation, computational hardness, spatial decomposition

1. INTRODUCTION
Consider the following scenario: We are given a real-

estate database that contains information on several thou-
sand homes for sale in a large metropolitan area. Each house
has a number of attributes associated with it: its location
(e.g., x- and y-coordinates or lat-long), price, real-estate tax,
age, distance to the high school, crime rate, etc. A prospec-
tive buyer would like to narrow her search by focusing on
houses in a small neighborhood of interest (specified as a
query region in the xy-plane). Among these houses, any
house that has higher values for each of the remaining at-
tributes (price, tax, age, etc.) than some other house in
the region clearly need not be considered further. (We say
that the former house is “dominated” by the latter.) Thus,
the response to the buyer’s query should be a list of houses

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November 6–9, 2012, Redondo Beach, CA,
USA.
Copyright 2012 ACM ISBN 978-1-4503-1691-0/12/11 ...$15.00.

lying in the query region such that no house in the list is
dominated by another house in the query region. This list
is called the “skyline” of the houses in the query region; it
consists of the houses that are worth further investigation
by the buyer. The advantage of working with the skyline
is that its size is typically much smaller than the number
of houses lying in the query region and, moreover, it con-
tains no redundant information from the buyer’s perspective
(i.e., no dominated house); thus, it makes the buyer’s search
much easier.

Figure 1 illustrates the above discussion. In (a), a set of
8 houses in the xy-plane is shown. The points b, c, d, e, f
(shown filled) lie in the query rectangle, q. The skyline of
these points is to be computed w.r.t. the ‘Age’ and ‘Price’
information shown in the table. In (b), these skyline points,
b, d, f , are shown circled.

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
��
�
�
�

(a) (b)

x

y

a

a a

b

b

b
c

c

c

dd

d e

e
e

f

f

f

g

g g

h

h

h

Price
Price

Age

Age

q
50

100

150

150
200

200

200

225

250

250

300

300

325

350

350

400

2

2

4

5

6

6

8

8

9

10

10

11

12

12

14

Figure 1: Skyline of points (i.e., houses) in q com-
puted w.r.t. ‘Age’ (in years) and ‘Price’ (× 100K).

Problem statement: Let S be a set of n points in d-
dimensional space, Rd, which we call the range space. Each
point p ∈ S has d real-valued attributes x1(p), . . . , xd(p) that
we call range attributes, i.e., its coordinates in range space.
Furthermore, p has t additional real-valued attributes, called
features, which we denote by a1(p), . . . , at(p). We call Rt the
feature space.

Throughout the paper, we will be interested in comput-
ing skylines in feature space (not range space). Accord-
ingly, for points p, r ∈ S, we say that p dominates r iff
ai(p) ≤ ai(r), 1 ≤ i ≤ t. For simplicity, we assume that no
two points have identical coordinates in all t dimensions of
feature space; thus, implicitly, at least one of the inequali-
ties above is strict. The extension to the more general case
is straightforward but tedious. The skyline of S consists of

526

those points of S that are not dominated by any other point
of S.

The problem we wish to solve is the following: Prepro-
cess S into a suitable data structure so that for any axes-
parallel query box q =

∏d

i=1
[ui, vi] in range space, the sky-

line of the set q ∩ S, computed in feature space, can be re-
ported efficiently. We call this skyline the range-skyline of
S w.r.t. q and denote the set of range-skyline points by
RangeSky(S, q).

Previous work: The work in the skyline literature clos-
est to our work are algorithms for computing skylines of
points that lie within a rectangular query range [1, 5]. Note
that here the range restrictions and skyline are both defined
on the same set of attributes, whereas in the range-skyline
problem that we consider, they are defined on different sets
of attributes (range attributes versus features). The method
in [5] can be suitably adapted to answer our range-skyline
query, but this approach provides no theoretical worst-case
guarantees.

Flow of the paper: In Section 2, we give an algorithm
for range-skyline queries on points with t ≥ 1 features in
1-dimensional range space R

1 (i.e., d = 1). In Section 3, we
solve the range-skyline query problem for points with t ≥ 1
features in range space R

d, d > 1. Finally, in Section 4,
we consider a closely-related problem, called range-skyline
counting where the goal is to count the number of points
in the range-skyline, rather than report them. We establish
the computational difficulty of this problem for d ≥ 2 and
t ≥ 3 by showing a linear-time reduction from the so-called
set intersection problem which is conjectured to be difficult.

2. RANGE-SKYLINE IN 1-DIMENSIONAL
RANGE SPACE

In this section, we take S to be a set of n points on the
real line R

1. Thus, a point p in S has d = 1 range attribute,
x1(p), and t ≥ 1 features, a1(p), . . . , at(p). To simplify nota-
tion, throughout this section we will view the range attribute
x1(p) to be equivalent to p and will generally write “p” in-
stead of “x1(p)”. The query is an interval q = [u1, v1] in
range space. As we shall see, our solution takes advantage
of the fact that there is a linear ordering of the points in the
range space and q ∩ S is a set of points that are contiguous
in this ordering. Therefore, our approach works in a more
general setting, where the points of S lie on a curve in R

d

(d ≥ 1) and the query, q, is a subsegment of the curve; the
curve is our range space, the ordering of the points along the
curve is the desired linear ordering, and q ∩ S is a subset of
contiguous points in this ordering. An instance of this set-
ting, for d = 2, is where many houses are situated along a
freeway and the buyer is interested in houses lying between
two points on the freeway. However, for simplicity, we will
describe our solution assuming that the range space is R1.

Key ideas: Assume that the points of S are given in
increasing order along R

1 as p1, p2, . . . , pn, and that there
are two dummy points p0 = −∞ and pn+1 = ∞ for which
all feature coordinates are set to −∞. For each point pi ∈ S,
we define two other points, p−i and p+i , as follows: p−i is the
point of S∪{p0, pn+1} with the largest index less than i that
dominates pi in the feature space. Symmetrically, p+i is the
point with the smallest index greater than i that dominates
pi in the feature space. Clearly, due to how we defined the
dummy points, the points p−i and p+i always exist.

The crucial observation is that pi ∈ RangeSky(S, q) iff
the following conditions are met: (a) pi ∈ q, (b) p−i 6∈ q,
and (c) p+i 6∈ q. Condition (a) is clear from the definition
of RangeSky(S, q). Conditions (b) and (c) follow from the
definition of p−i and p+i .

Thus, pi ∈ RangeSky(S, q) iff u1 ≤ pi ≤ v1 and p−i < u1

and p+i > v1, i.e., iff u1 ∈ (p−i , pi] and v1 ∈ [pi, p
+

i), i.e., iff
(u1, v1) ∈ (p−i , pi]× [pi, p

+

i).
Thus, in R

2, the point q′ = (u1, v1), defined by the end-
points of the query interval q = [u1, v1], must lie in the
axes-parallel rectangle Ri = (p−i , pi] × [pi, p

+

i) defined by
pi, p

−

i , and p+i . Thus, our problem reduces to determining
all rectangles Ri, corresponding to points pi ∈ S, that are
stabbed by the query point q′ = (u1, v1). This is a standard
intersection searching problem on n rectangles and can be
solved by employing a data structure due to Chazelle [2] that
uses O(n) space and has a query time of O(k+log n), where
k is the number of rectangles stabbed (hence the number of
points in RangeSky(S, q)). Complete details will appear in
the full paper.

Theorem 2.1. Let S be a set of n points on the real line
R

1, where each point has t features. S can be preprocessed in
O(n logt n) time into a data structure of size O(n) such that
for any query interval q = [u1, v1], the skyline of the points
of q ∩ S, computed w.r.t. their features, can be reported in
time O(k + log n), where k is the size of the skyline. This
is optimal, w.r.t. space and query time, in the decision tree
model. Furthermore, the same bounds hold even if the points
of S lie on a curve, C, in R

d (d ≥ 1) and the query is
specified as a subsegment of C.

3. RANGE-SKYLINE QUERIES IN HIGHER-
DIMENSIONAL RANGE SPACE

In this section we give an efficient algorithm to answer
range-skyline queries in d-dimensional range space (d > 1),
for t ≥ 1 features. Our solution has the added advantage
of being efficiently dynamizable, i.e., points can be inserted
into and deleted from the set efficiently.

Key ideas: We take S to be a set of n points in R
d,

d > 1. Thus, a point p in S has d > 1 range attributes,
x1(p), . . . , xd(p), and t ≥ 1 features, a1(p), . . . , at(p). The

query is an axes-parallel box q =
∏d

i=1
[ui, vi] in range space.

The goal is to compute RangeSky(S, q).
Here is a high-level description of our approach. Through-

out this discussion, our focus will be on the points of S that
lie in q. The idea is to report the range-skyline of these
points using their at coordinates. The initial search space
is the entire feature space, Rt, and we find here the point
p ∈ q ∩S with the least at coordinate; p is guaranteed to be
in the range-skyline. In searching for the next range-skyline
point of q ∩ S, we can ignore a certain subset of Rt, deter-
mined by p, that cannot possibly contain that range-skyline
point. This subset will consist of the part of Rt that lies be-
low p, w.r.t. the at coordinate, or is in the first octant of p.
(A more formal description will be given below.) As we will
see, the remainder of Rt can be partitioned into t−1 disjoint,
axes-parallel boxes. We search these boxes in a certain order
(to be specified later) to find the next range-skyline point.
The box from which the reported point came can then be
partitioned similarly and the search is continued as above.
The search stops when no box containing points of q ∩ S
remains.

527

More formally, among the points of q∩S, let p be the point
with the smallest at coordinate. If there is a tie between two
or more points, then we consider their at−1, . . . , a1 values
in turn to break the tie, favoring smaller coordinate values
over larger. (This will succeed because, by assumption, no
two points have identical coordinates in all t dimensions of
feature space.) We report p as the first range-skyline point.

Next, we define the subset of feature space that can be
ignored when searching for the second range-skyline point
of q∩S. Towards that end, let w = (a1, . . . , at) be a generic
point in the feature space R

t. Let

Ip = {w | at ≤ at(p)}∪{w | (a1 ≥ a1(p))∧· · ·∧(at ≥ at(p))}.

Here the first term in the union is the closed halfspace of
the feature space below p (w.r.t. the at coordinate) and the
second term is the first octant of p in feature space. Our
choice of p, as described above, ensures that any other point
r ∈ q ∩ S that lies in Ip is dominated by p. Thus, the set
Ip can be ignored in our search for the second range-skyline
point of q∩S and we focus our search on its complement Īp,
defined as follows.

Īp = {w | at > at(p)} ∩ {w | (a1 < a1(p)) ∨ · · · ∨

(at < at(p))}

= {w | at > at(p)} ∩ {w | (a1 < a1(p)) ∨ · · · ∨

(at−1 < at−1(p))}

= H ∩ (A1 ∪ · · · ∪At−1),

where H = {w | at > at(p)} and Ai = {w | ai < ai(p)},
1 ≤ i ≤ t− 1.

It is easy to see that

A1 ∪ · · · ∪ At−1 = {w | a1 < a1(p)} ∪

{w | (a1 ≥ a1(p)) ∧ (a2 < a2(p)} ∪ · · · ∪

{w | (a1 ≥ a1(p)) ∧ · · · ∧

(at−2 ≥ at−2(p)) ∧

(at−1 < at−1(p))}

= B1 ∪ · · · ∪Bt−1, (1)

where Bi = {w | (a1 ≥ a1(p))∧· · ·∧ (ai−1 ≥ ai−1(p))∧ (ai <
ai(p))}, 1 ≤ i ≤ t− 1.

Clearly B1 ∪ · · · ∪ Bt−1 is a union of t − 1 disjoint, axes-
parallel boxes. Therefore, so is Īp = (H ∩ B1) ∪ · · · ∪ (H ∩
Bt−1), where, for 1 ≤ i ≤ t− 1,

H ∩Bi = B′

i =

{w | at > at(p)} ∩ {w | (a1 ≥ a1(p)) ∧ · · · ∧

(ai−1 ≥ ai−1(p)) ∧ (ai < ai(p))}. (2)

Figure 2 illustrates the partition of Īp.
Searching the boxes: Thus, once the first range-skyline

point, p, is found, the search space can be partitioned into
t − 1 disjoint, axes-parallel boxes B′

i = H ∩ Bi. We now
show that there is a certain order in which the boxes B′

i can
be searched for subsequent range-skyline points of q∩S that
makes the search simple and efficient.

We argue that the second range-skyline point of q∩S must
belong to B′

1, unless B
′

1 contains no points of q ∩ S. To see
this, consider the point in B′

1 with the smallest at coordinate
(with ties broken as described earlier). This point cannot be

a1

a2

a3

B′

1

B′

2

Figure 2: Partition of Īp, in 3-dimensional feature
space, into two disjoint, axes-parallel boxes B′

1 and
B′

2. Point p (not shown) is the origin of the coordi-
nate system.

dominated by any other point in B′

1. Moreover, it cannot be
dominated by any point in a B′

j , j > 1, either. This follows
from the fact that for any point w ∈ B′

j , we have a1 ≥ a1(p),
whereas for any point w ∈ B′

1, we have a1 < a1(p). Thus,
the point in B′

1 with the smallest at coordinate is the second
range-skyline point. The search for the third range-skyline
point proceeds recursively in the descendant boxes of B′

1. If
B′

1 contains no point of q ∩ S, then the search proceeds to
B′

2 and the point in B′

2 with the smallest at coordinate is
the second range-skyline point. And so on.

Generalizing the above discussion, the search for the next
range-skyline point will always favor searching a box B′

i and,
recursively, its descendants, before searching a sibling B′

j of
B′

i, j > i.
The data structure: The points of S are organized in

a δ-dimensional range tree T , where δ = d + t. The first
d levels of T are built on the range attributes, x1, . . . , xd,
and the next t levels are built on the features a1, . . . , at.
At the last level (i.e., level δ), each node v stores a field,
min(v), which contains the point with the minimum at value
among those points of S stored in v’s subtree. The structure
T occupies O(n logδ−1 n) space and can be constructed in
O(n logδ−1 n) [4, Ch. 5].

The query algorithm: We initialize a stack, Z, to con-
tain the t-dimensional range (−∞,∞) × · · · × (−∞,∞) in
feature space. At any point in the execution of the algo-
rithm, the stack contains zero or more t-dimensional ranges
representing boxes to be searched for range-skyline points.
While Z is non-empty, we pop the range, R, at the top of Z
and search in T with the range q×R. This identifies a set, C,
of O(logδ n) canonical nodes in T . (See [4, Ch. 5] for more
details on this approach.) Among the points in {min(v) | v ∈
C}, we report the one with the smallest at value as the next
range-skyline point p. We then form the boxes B′

1, . . . , B
′

t−1

and push these onto Z, in the order B′

t−1, . . . , B
′

1, so that B′

1

is on the top of the stack. (In forming the B′

i, care must be
taken to ensure that they are t-dimensional. For instance, in
Figure 2, B′

2 = H ∩ B2 is represented as the 3-dimensional
range [a1(p),∞) × (−∞, a2(p)) × (a3(p),∞).) The query
algorithm terminates when Z becomes empty.

The query time is O((k + 1) logδ n). Updates can also be
efficiently performed on it without affecting the space and
the query bounds. Details will appear in the full paper.

Theorem 3.1. Let S be a set of n points in d-dimensional
range space, Rd, where each point has t features. S can be
preprocessed into a data structure of size O(n logδ−1 n) so

528

Algorithm 1: Range-Skyline-Query(T,q)

Input: A (d+ t)-dimensional range tree, T , storing a
set, S, of n points, each with d range attributes
and t features, and a d-dimensional,
axes-parallel query box q.

Output: The set, RangeSky(S, q) of range-skyline
points of q ∩ S.

begin
Initialize a stack, Z, to contain the t-dimensional
range (−∞,∞)× · · · × (−∞,∞)
while Z 6= ∅ do

R←− Pop(Z)
Query T with q ×R and find the point, p, in T
with minimum at value (as described in the text)
if p exists then

Report p as a range-skyline point
Compute the ranges B′

1, . . . , B
′

t−1 (Eq. 2)
Push B′

t−1, . . . , B
′

1 (in that order) onto Z
// B′

1 is on the top of Z

that given any axes-parallel, d-dimensional query box q =∏d

i=1
[ui, vi], the skyline of the points of q∩S, computed w.r.t.

their features, can be reported in time O((k + 1) log δn),
where δ = d + t and k ≥ 1 is the size of the skyline. The
data structure can be built in O(n logδ−1 n) time and can be
extended to support updates in O(logδ n) amortized time.

4. HARDNESS OF RANGE-SKYLINE COUNT-
ING

We consider a problem that is closely related to the range-
skyline query problem. This problem, called range-skyline
counting, is to count the number of points in RangeSky(S, q).
We provide evidence for the likely computational difficulty
of this problem by showing a linear-time reduction from the
set intersection problem, which is conjectured to be difficult.

Set Intersection Problem: Given sets S1, S2, . . . , Sm

of positive reals, where
∑m

i=1
|Si| = n, decide if Si and Sj

are disjoint, for query indices i and j, i < j.
It is conjectured that this problem is “hard”. Specifically,

in the so-called cell-probe model without the floor function
and where the maximum cardinality of the sets is poly-
logarithmic in m, any algorithm to answer set intersection
queries in Õ(α) time requires Ω̃((n/α)2) space, for 1 ≤ α ≤ n
[3]. (The“tilde”notation is used to suppress polylogarithmic
factors.)

Idea behind the reduction: Given sets S1, S2, . . . , Sm,
we map their elements to a point-set, T , with d = 2 range
attributes and t = 3 features. This mapping has the prop-
erty that Si and Sj are disjoint iff |RangeSky(T, qij)| =
|Si|+ |Sj |, where qij is a certain query rectangle determined
by Si and Sj . (We define qij below and establish the stated
property in Lemma 4.1.)

Specifically, let L1 : y = x+ n and L2 : y = x− n be two
lines in the plane (the range space). We map each element
of each set Si to two points, one on L1 and one on L2, as
follows: Let n0 = 0 and ni = ni−1 + |Si|, for 1 ≤ i ≤ m.
Let sik be the kth element of Si. (Si is unordered and sik
is simply the kth element in an arbitrary ordering of the
elements of Si.) The mapping of sik to points on L1 and

L2 is given as follows: sik 7→ s′ik = (−(k + ni−1),−(k +
ni−1)+n), on L1 and sik 7→ s′′ik = ((k+ni−1), (k+ni−1)−
n), on L2.

The resulting set, T , consists of 2n points and the above
coordinates are the range attributes of the points of T . Ob-
serve that the elements of each Si map to sets of contiguous
points on L1 (in the second quadrant) and on L2 (in the
fourth quadrant). Moreover, it is easy to see that for any
query indices i and j, where i < j, there is a rectangle qij
that contains exactly all the points s′ik that Si maps to on
L1 and all the points s′′jk that Sj maps to on L2. Specifically,
qij is defined uniquely by the first and last mapped points of
Si on L1 and the first and last mapped points of Sj on L2.
By storing with each set the first and last mapped point of
that set on L1, and similarly on L2, the rectangle qij can be
computed in O(1) time for any pair of query indices i and
j, i < j.

Next, each point of T is assigned t = 3 features. Specifi-
cally, for each set Si, the points s

′

ik and s′′ik are both assigned
the feature vector (i, sik,−sik). This constitutes the entire
reduction and it is clear that it takes O(n) time. The follow-
ing lemma, whose proof is omitted due to space limitation,
captures the main property of the reduction.

Lemma 4.1. Sets Si and Sj (i < j) are disjoint iff
|RangeSky(T, qij)| = |Si|+ |Sj |.

Clearly, deciding if |RangeSky(T, qij)| = |Si| + |Sj | is no
more difficult than range-skyline counting for d = 2 and
t = 3. Furthermore, the latter is no more difficult than
range-skyline counting for d > 2 and t > 3. This, together
with Lemma 4.1, establishes the following theorem.

Theorem 4.1. The range-skyline counting problem (for
d ≥ 2 and t ≥ 3) is at least as hard the set intersection prob-
lem. Specifically, answering a range-skyline counting query
in Õ(α) time requires Ω̃((n/α)2) space, for 1 ≤ α ≤ n in the
cell-probe model, without the floor function.

5. REFERENCES
[1] G. S. Brodal and K. Tsakalidis. Dynamic planar range

maxima queries. In Proc. 38th Intl. Conf. on Automata,
Languages, and Programming, pages 256–267, 2011.

[2] B. Chazelle. Filtering search: A new approach to
query-answering. SIAM J. Computing, 15(3):703–724,
1986.

[3] P. Davoodi, M. Smid, and F. van Walderveen.
Two-dimensional range diameter queries. In Proc. Latin
American Theoretical Informatics Symposium, pages
219–230, 2012.

[4] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and applications. Springer-Verlag, 2nd edition, 2000.

[5] D. Papadias, Y.Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems. ACM Trans.
on Database Systems, 30(1):41–82, 2005.

529

