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Abstract. Programs often have a lot of duplicated code, which makes
both understanding and maintenance more difficult. This problem can be
alleviated by detecting duplicated code, extracting it into a separate new
procedure, and replacing all the clones (the instances of the duplicated
code) by calls to the new procedure. This paper describes the design and
initial implementation of a tool that finds clones and displays them to
the programmer. The novel aspect of our approach is the use of program
dependence graphs (PDGs) and program slicing to find isomorphic PDG
subgraphs that represent clones. The key benefits of this approach are
that our tool can find non-contiguous clones (clones whose components
do not occur as contiguous text in the program), clones in which match-
ing statements have been reordered, and clones that are intertwined with
each other. Furthermore, the clones that are found are likely to be mean-
ingful computations, and thus good candidates for extraction.

1 Introduction

Programs undergoing ongoing development and maintenance often have a lot
of duplicated code. The results of several studies [1, 12, 13] indicate that 7–23%
of the source code for large programs is duplicated code. Duplication results
in increased code size and complexity, making program maintenance more dif-
ficult. For example, when enhancements or bug fixes are done on one instance
of the duplicated code, it may be necessary to search for the other instances in
order to perform the corresponding modification. Lague et al [13] studied the
development of a large software system over multiple releases and found that in
fact, programmers often missed some copies of duplicated code when performing
modifications.

A tool that finds clones (instances of duplicated code) can help alleviate these
problems: the clones identified by the tool can be extracted into a new procedure,
and the clones themselves replaced by calls to that procedure. In that case, there
will be only one copy to maintain (the new procedure), and the fact that the
procedure can be reused may cut down on future duplication. (Note that for a
language like C with a preprocessor, macros can be used instead of procedures



if there is a concern that introducing procedures will result in unacceptable
performance degradation.)

For an example illustrating clone detection and extraction, see Figure 1. The
left column shows four fragments of code from the Unix utility bison. The four
clones are indicated by the “++” signs. The function of the duplicated code is
to grow the buffer pointed to by p if needed, append the current character c to
the buffer and then read the next character. In the right column, the duplicated
code has been extracted into a new procedure next char, indicated by the “++”
signs, and all four clones replaced by calls to this procedure. The four calls are
indicated by “**” signs.

This paper describes the design and initial implementation of a tool for C
programs that finds clones suitable for procedure extraction and displays them
to the programmer. The novel aspect of the work is the use of program de-

pendence graphs (PDGs) [9], and a variation on program slicing [19, 16] to find
isomorphic subgraphs of the PDG that represent clones. The key benefits of a
slicing-based approach, compared with previous approaches to clone detection
that were based on comparing text, control-flow graphs, or abstract-syntax trees,
is that our tool can find non-contiguous clones (i.e., clones whose statements do
not occur as contiguous text in the program, such as in Fragments 1 and 2 in
Figure 1), clones in which matching statements have been reordered, and clones
that are intertwined with each other. Furthermore, the clones found using this
approach are likely to be meaningful computations, and thus good candidates
for extraction.

The remainder of this paper is organized as follows: Section 2 describes how
our tool uses slicing to find clones, and the benefits of this approach. Section 3
describes an implementation of our tool, and some of the insights obtained from
running the tool on real programs. Section 4 discusses related work, and Section 5
summarizes our results.

2 Slicing-Based Clone Detection

2.1 Algorithm Description

To find clones in a program, we represent each procedure using its program
dependence graph (PDG) [9]. In the PDG, nodes represent program statements
and predicates, and edges represent data and control dependences. The algorithm
performs three steps (described in the following subsections):

Step 1: Find pairs of clones.
Step 2: Remove subsumed clones.
Step 3: Combine pairs of clones into larger groups.

Step 1: Find pairs of clones. We start by partitioning all PDG nodes into
equivalence classes based on the syntactic structure of the statement/predicate
that the node represents, ignoring variable names and literal values; two nodes
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Fragment 1: Rewritten Fragment 1:

while (isalpha(c) || while (isalpha(c) ||

c == ’_’ || c == ’-’) { c == ’_’ || c == ’-’) {

++ if (p == token_buffer + maxtoken) if (c == ’-’) c = ’_’;

++ p = grow_token_buffer(p); ** next_char(&p, &c);

if (c == ’-’) c = ’_’; }

++ *p++ = c;

++ c = getc(finput);

} Rewritten Fragment 2:

while (isdigit(c)) {

Fragment 2: numval = numval*20 + c - ’0’;

** next_char(&p, &c);

while (isdigit(c)) { }

++ if (p == token_buffer + maxtoken)

++ p = grow_token_buffer(p);

numval = numval*20 + c - ’0’; Rewritten Fragment 3:
++ *p++ = c;

++ c = getc(finput); while (c != ’>’) {

} if (c == EOF) fatal();

if (c == ’\n’) {

warn("unterminated type name");

Fragment 3: ungetc(c, finput);

break;

while (c != ’>’) { }

if (c == EOF) fatal(); ** next_char(&p, &c);

if (c == ’\n’) { }

warn("unterminated type name");

ungetc(c, finput);

break; Rewritten Fragment 4:
}

++ if (p == token_buffer + maxtoken) while (isalnum(c) ||

++ p = grow_token_buffer(p); c == ’_’ || c == ’.’) {

++ *p++ = c; ** next_char(&p, &c);

++ c = getc(finput); }

}

Fragment 4: Newly extracted procedure:

while (isalnum(c) || void next_char(char **ptr_p, char *ptr_c){

c == ’_’ || c == ’.’) { ++ if (*ptr_p == token_buffer + maxtoken)

++ if (p == token_buffer + maxtoken) ++ *ptr_p = grow_token_buffer(*ptr_p);

++ p = grow_token_buffer(p); ++ *(*ptr_p)++ = *ptr_c;

++ *p++ = c; ++ *ptr_c = getc(finput);

++ c = getc(finput); }

}

Fig. 1. Duplicated code from bison

3



in the same class are called matching nodes. Next, for each pair of matching
nodes (r1, r2), we find two isomorphic subgraphs of the PDGs that contain r1
and r2.

The heart of the algorithm that finds the isomorphic subgraphs is the use
of backward slicing: starting from r1 and r2 we slice backwards in lock step,
adding a predecessor (and the connecting edge) to one slice iff there is a corre-
sponding, matching predecessor in the other PDG (which is added to the other
slice). Forward slicing is also used: whenever a pair of matching loop or if-then-
else predicates (p1, p2) is added to the pair of slices, we slice forward one step
from p1 and p2, adding their matching control-dependence successors (and the
connecting edges) to the two slices. Note that while lock-step backward slicing
is done from every pair of matching nodes in the two slices, forward slicing is
done only from matching predicates. An example to illustrate the need for this
kind of limited forward slicing is given in Section 2.2.

When the process described above finishes, it will have identified two isomor-
phic subgraphs (two matching “partial” slices) that represent a pair of clones.
The process is illustrated using Figure 2, which shows the PDGs for the first
two code fragments from Figure 1. (Function calls are actually represented in

Control dependence
Data dependence

if (p==token_buffer+
	         maxtoken)

p = grow_token_buffer(p)

c = getc(finput)*p++ = c

while (isdigit(c))

numval = numval*20+c−’0’

1b:

2b:

3b: 4b:

8:

9:

PDG for Fragment 2

p = grow_token_buffer(p)

if (p==token_buffer+
	         maxtoken)

1a:

2a:

*p++ = c

3a:

c = getc(finput)

4a:

5:

if (c==’−’)

c = ’_’

6:

7:

PDG for Fragment 1

while (isalpha(c) ||
         c==’_’ || c==’−’)

Fig. 2. Matching partial slices starting from *p++ = c;. The nodes and edges in the
partial slices are shown in bold.

PDGs using multiple nodes: one for each actual parameter, one for the return
value, and one for the call itself. For clarity, in this example we have treated
function calls as atomic operations.) Nodes 3a and 3b match, so we can start
with those two nodes. Slicing backward from nodes 3a and 3b along their in-
coming control-dependence edges we find nodes 5 and 8 (the two while nodes).
However, these nodes do not match (they have different syntactic structure), so
they are not added to the partial slices. Slicing backward from nodes 3a and 3b
along their incoming data-dependence edges we find nodes 2a, 3a, 4a, and 7 in
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the first PDG, and nodes 2b, 3b, and 4b in the second PDG. Node 2a matches 2b,
and node 4a matches 4b, so those nodes (and the edges just traversed to reach
them) are added to the two partial slices. (Nodes 3a and 3b have already been
added, so those nodes are not reconsidered.) Slicing backward from nodes 2a
and 2b, we find nodes 1a and 1b, which match, so they (and the traversed edges)
are added. Furthermore, nodes 1a and 1b represent if predicates; therefore we
slice forward from those two nodes. We find nodes 2a and 2b, which are already
in the slices, so they are not reconsidered. Slicing backward from nodes 4a and
4b, we find nodes 5 and 8, which do not match; the same two nodes are found
when slicing backward from nodes 1a and 1b.

The partial slices are now complete. The nodes and edges in the two partial
slices are shown in Figure 2 using bold font. These two partial slices correspond
to the clones of Fragments 1 and 2 shown in Figure 1 using “++” signs.

Step 2: Remove subsumed clones A clone pair (S1′, S2′) subsumes another
clone pair (S1, S2) iff S1 ⊆ S1′ and S2 ⊆ S2′. There is no reason for the tool to
report subsumed clone pairs; therefore, this step removes subsumed clone pairs
from the set of pairs identified in Step 1.

Step 3: Combine pairs of clones into larger groups This step combines
clone pairs into clone groups using a kind of transitive closure. For example,
clone pairs (S1, S2), (S1, S3), and (S2, S3) would be combined into the clone
group (S1, S2, S3).

2.2 Need for Forward Slicing

Our first implementation of the clone-detection tool did not include any for-
ward slicing. However, when we looked at the clones that it found we saw that
they sometimes were subsets of the clones that a programmer would have identi-
fied manually. In particular, we observed that conditionals and loops sometimes
contain code that a programmer would identify as all being part of one logical
operation, but that is not the result of a backward slice from any single node.

One example of this situation is error-handling code, such as the two frag-
ments in Figure 3 from the Unix utility tail. The two fragments are identical
except for the target of the final goto, and are reasonable candidates for extrac-
tion; they both check for the same error condition, and if it holds, they both
perform the same sequence of actions: calling the error procedure, setting the
global error variable, and freeing variable tmp. (The final goto should of course
not be part of the extracted procedure; instead, that procedure would need to
return a boolean value to specify whether or not the goto should be executed.)
However, the two fragments cannot be identified as clones using only backward
slicing, since the backward slice from any statement inside the if fails to include
any of the other statements in the if. It is the forward-slicing step from the
pair of matched if predicates that allows our tool to identify these two code
fragments as clones.
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Fragment 1: Fragment 2:

if (tmp->nbytes == -1) if (tmp->nbytes == -1)

{ {

error (0, errno, "%s", filename); error (0, errno, "%s", filename);

errors = 1; errors = 1;

free ((char *) tmp); free ((char *) tmp);

goto free_lbuffers; goto free_cbuffers;

} }

Fig. 3. Error-handling code from tail that motivates the use of forward slicing.

Other examples where forward slicing is needed include loops that set the
values of two related but distinct variables (e.g., the head and tail pointers of a
linked list). In such examples, although the entire loop corresponds to a single
logical operation, backward slicing alone is not sufficient to identify the whole
loop as a clone.

2.3 Preventing Clones that Cross Loops

Based on experience gained from applying the algorithm to real programs, we
found that we needed a heuristic to prevent clones that “cross” loops; i.e., clones
that include nodes both inside and outside a loop but not the loop itself. To illus-
trate this, consider the two code fragments (from bison) in Figure 4. The clones

Fragment 1: Fragment 2:

fp3 = lookaheadset + tokensetsize; fp3 = base + tokensetsize;

for (i = lookaheads(state); ...

i < k; i++) { if (rp) {

++ fp1 = LA + while ((j = *rp++) >= 0) {

++ i * tokensetsize; ...

++ fp2 = lookaheadset; ++ fp1 = base;

++ while (fp2 < fp3) ++ fp2 = F +

++ *fp2++ |= *fp1++; ++ j * tokensetsize;

} ++ while (fp1 < fp3)

++ *fp1++ |= *fp2++;

}

}

Fig. 4. Two clones from bison that illustrates the heuristic that avoids “crossing” a
loop. These clones also illustrate variable renaming and statement reordering.

identified by our tool are shown using “++” signs. Each of these clones modifies
a portion of a bit array (lookaheadset / base) by performing a bit-wise or with
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the contents of another array (LA / F). The clones are identified by slicing back
from the statement that does the bit-wise or. Note that the two initial assign-
ments to fp3 are matching statements that are data-dependence predecessors
of matching nodes in the two clones (the nodes that represent the final while
predicates). Therefore, the algorithm as described above in Section 2.1 would
have included the two initial assignments in the clones. It would not, however,
have included in the clones the for loop in the first fragment and the outer
while loop in the second fragment because the predicates of those loops do not
match.

The resulting clones would therefore contain the statements inside the loops
and the assignments outside the loops, but not the loops themselves. This would
make it difficult to extract the clones into a separate procedure. To prevent the
algorithm from identifying “difficult” clones like these, we use a heuristic during
the backward slicing step: when slicing back from two nodes that are inside loops,
we add to the partial slices predecessor nodes that are outside the loops only if
the loop predicates match (and so will also be added to the partial slices). That
is why, as indicated in Figure 4, the initial assignments to fp3 are not included
in the clones identified by the tool.

2.4 Benefits of the Approach

As stated in the Introduction, the major benefits of a slicing-based approach to
clone detection are the ability to find non-contiguous, reordered, and intertwined
clones, and the likelihood that the clones that are found are good candidates for
extraction. These benefits, discussed in more detail below, arise mainly because
slicing is based on the PDG, which provides an abstraction that ignores arbitrary
sequencing choices made by the programmer, and instead captures the important
dependences among program components. In contrast, most previous approaches
to clone detection used the program text, its control-flow graph, or its abstract-
syntax tree, all of which are more closely tied to the (sometimes irrelevant)
lexical structure.

Finding non-contiguous, reordered, and intertwined clones: One exam-
ple of non-contiguous clones identified by our tool was given in Figure 1. By
running a preliminary implementation of the proposed tool on some real pro-
grams, we have observed that non-contiguous clones that are good candidates
for extraction (like the ones in Figure 1) occur frequently (see Section 3 for fur-
ther discussion). Therefore, the fact that our approach can find such clones is a
significant advantage over most previous approaches to clone detection.

Non-contiguous clones are a kind of near duplication. Another kind of near
duplication occurs when the ordering of matching nodes is different in the dif-
ferent clones. The two clones shown in Figure 4 illustrate this. The clone in
Fragment 2 differs from the one in Fragment 1 in two ways: the variables have
been renamed (including renaming fp1 to fp2 and vice versa), and the order of
the first and second statements (in the clones, not in the fragments) has been
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reversed. This renaming and reordering does not affect the data or control de-
pendences; therefore, our approach finds the clones as shown in the figure, with
the first and second statements in Fragment 1 that are marked with “++” signs
matching the second and first statements in Fragment 2 that are marked with
“++” signs.

The use of program slicing is also effective in finding intertwined clones. An
example from the Unix utility sort is given in Figure 5. In this example, one
clone is indicated by “++” signs while the other clone is indicated by “xx”
signs. The clones take a character pointer (a/b) and advance the pointer past all
blank characters, also setting a temporary variable (tmpa/tmpb) to point to the
first non-blank character. The final component of each clone is an if predicate
that uses the temporary. The predicates were the starting points of the slices
used to find the two clones (the second one – the second-to-last line of code in
the figure – occurs 43 lines further down in the code).

++ tmpa = UCHAR(*a),

xx tmpb = UCHAR(*b);

++ while (blanks[tmpa])

++ tmpa = UCHAR(*++a);

xx while (blanks[tmpb])

xx tmpb = UCHAR(*++b);

++ if (tmpa == ’-’) {

tmpa = UCHAR(*++a);

...

}

xx else if (tmpb == ’-’) {

if (...UCHAR(*++b)...) ...

Fig. 5. An intertwined clone pair from sort.

Finding good candidates for extraction: As discussed in the Introduction,
the goal of our current research is to design a tool to help find clones to be
extracted into new procedures. In this context, a good clone is one that is mean-
ingful as a separate procedure (functionally) and that can be extracted out easily
without changing program semantics. The proposed approach to finding clones
is likely to satisfy both these criteria as discussed below.

Meaningful clones: In order for a code fragment to be meaningful as a sep-
arate procedure, it should perform a single conceptual operation (be highly co-
hesive [17]). That means it should compute a small number of outputs (outputs
include values assigned to global variables and through pointer parameters, the
value returned, and output streams written). Furthermore, all the code to be ex-
tracted should be relevant to the computation of the outputs (i.e., the backward
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slices from the statements that assign to the outputs should include the entire
clone).

A partial slice obtained using backward slicing has a good chance of being
cohesive because we start out from a single node and include only nodes that
are relevant to that node’s computation. However, in addition to being cohe-
sive, a meaningful procedure should be “complete”. In practice, we have found
that there are examples (like the one in Figure 3) where backward slicing alone
omits some relevant statements. Our use of forward slicing seems to address this
omission reasonably well.

Extractable clones: A group of clones cannot be eliminated by procedure
extraction if it is not possible to replace the clones by calls to the extracted
procedure without changing program semantics. Such clone groups are said to
be inextractable. Since semantic equivalence is, in general, undecidable, it is not
always possible to determine whether a group of clones is extractable. In [11] we
identified sufficient conditions under which a single, non-contiguous clone can be
extracted by first moving its statements together (making it contiguous), then
creating a new procedure using the contiguous statements, and finally replacing
the clone with a call to the new procedure.

In the example in Figure 1, the duplicated code indicated by the “++”
signs meets the extractability criteria of [11]. However, in the same example, if
we wanted each clone to consist of just the two lines indicated by “++” signs
below, we would face problems:
++ if (p == token_buffer + maxtoken)

p = grow_token_buffer(p);

++ *p++ = c;

There is no obvious way of extracting out just these two lines because the
statement p = grow token buffer(p) cannot be moved out of the way from
in between the above two lines without affecting data and control dependences
(and hence without affecting semantics).

Because backward slicing follows dependence edges in the PDG, it is more
likely to avoid creating a “dependency gap” (e.g., including the statement *p++ =

c and its dependence grandparent if (p == token buffer + maxtoken), but
omitting its dependence parent p = grow token buffer(p)) than a text- or
syntax-tree based algorithm that detects non-contiguous clones. The heuristic
described in Section 2.3 is another aspect of our approach that helps avoid
identifying inextractable clones.

3 Experimental Results

We have implemented a preliminary version of our proposed tool to find clones
in C programs using the slicing-based approach described above. Our imple-
mentation uses CodeSurfer [10] to process the source code and build the PDGs.
CodeSurfer also provides a GUI to display the clone groups identified by the tool
using highlighting.
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The implementation of Step 1 of the algorithm (finding clone pairs) is done
in Scheme, because CodeSurfer provides a Scheme API to the PDGs. The other
two steps of the algorithm (eliminating subsumed clone pairs, and combining
clone pairs into clone groups) are done in C++.

We have run the tool on three Unix utilities, bison, sort and tail, and on four
files from a graph-layout program used in-house by IBM. The results of these
experiments are presented in the following subsections.

3.1 Unix Utilities

Figure 6 gives the sizes of the three Unix utilities (in lines of source code and
in number of PDG nodes), and the running times for the three steps of the
algorithm. Figure 7 presents the results of running the tool on those three pro-
grams; for each of eight clone size ranges, three sets of numbers are reported:
the number of clone groups identified that contain clones of that size, and the
max and mean numbers of clones in those groups (the median number of clones
in the groups of each size range was always two). Our experience indicates that
clones with fewer than five PDG nodes are too small to be good candidates for
extraction, so they are ignored by our tool.

Program Size Running Times (elapsed time)

Program
# of lines
of source

# of PDG
nodes

find clone
pairs (Scheme)

eliminate subsumed
clone pairs (C++)

combine pairs

into groups(C++)

bison 11,540 28,548 1:33 hours 15 sec. 50 sec.
sort 2,445 5,820 10 min. 5 sec. 2 sec.
tail 1,569 2,580 40 sec. 1 sec. 2 sec.

Fig. 6. Unix program sizes and running times

When run on the Unix utilities, the tool found a number of interesting clones,
many of which are non-contiguous and some of which involve reordering and
intertwining. These preliminary results seem to validate both the hypothesis
that programs often include a significant amount of “near” duplication, and the
potential of the proposed approach to find good quality clones.

Some examples of the interesting clones identified by the tool are listed below.

– The four-clone group shown in Figure 1, from bison.
– The two clones shown in Figure 4, from bison. These were part of a three-

clone group. The third clone involved a different renaming of variables, and
used the same statement ordering as the clone in Fragment 1.

– The pair of intertwined clones shown in Figure 5, from sort.
– A group of seven clones from bison, identical except for variable names. Two

of the clones are shown in Figure 8. The clones were found by slicing back
from the statement putc(’,’, ftable). This code prints the contents of an
array (check / rrhs), ten entries to a line, separated by commas.
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Clone Size Ranges (# of PDG nodes)
bison 5–9 10–19 20–29 30–39 40–49 50–59 60–69 70–227

# clone groups 513 164 34 16 9 9 6 49
max # clones in a group 61 26 11 2 2 2 2 4
mean # clones in a group 3.7 2.8 3.3 2 2 2 2 2.1

sort 5–9 10–19 20–29 30–39 40–48
# clone groups 105 57 30 9 14
max # clones in a group 17 8 6 3 2
mean # clones in a group 3.0 2.8 2.4 2.1 2

tail 5–9 10–19 20–29 30–39 40–49 50–59 60–69 70–85

# clone groups 21 4 0 0 4 1 0 2
max # clones in a group 12 8 3 2 2
mean # clones in a group 3.2 3.5 2.3 2 2

Fig. 7. Results of running the tool

Fragment 1: Fragment 2:
++ j = 10; ++ j = 10;

++ for (i=1; i < high; i++) { ++ for (i=1; i < nrules; i++) {

++ putc(’,’, ftable); ++ putc(’,’, ftable);

++ if (j >= 10) { ++ if (j >= 10) {

++ putc(’\n’, ftable); ++ putc(’\n’, ftable);

++ j = 1; ++ j = 1;

++ } ++ }

++ else ++ else

++ j++; ++ j++;

++ fprintf(ftable, "%6d", check[i]); ++ fprintf(ftable, "%6d", rrhs[i]);

++ } ++ }

Fig. 8. Seven copies of this clone were found in bison.
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One limitation of the tool is that it often finds variants of the “ideal” clones
(the clones that would be identified by a human) rather than finding exactly the
ideal clones themselves. To illustrate this, consider the example in Figure 5. In
that example, the ideal clones would not include the final if predicates; therefore,
the clones found by the tool (which do include those predicates) are variants on
the ideal ones. In the same example fragment, the tool also identifies a second
pair of clones that is a slightly different variant of the ideal pair: this second
pair includes everything in the ideal clones, does not include the if predicates,
but does include the expressions UCHAR(*++a) and UCHAR(*++b) that occur in
the last and fifth-to-last lines of code (the lines not marked with “++” or “xx”
signs).

To further evaluate the tool we performed two studies, described below. The
goals of the studies were to understand better:

a. whether the tool is likely to find (variants of) all of the ideal clones;
b. to what extent the tool finds multiple variants of the ideal clones rather than

exactly the ideal ones;
c. how many “uninteresting” clones the tool finds (i.e., clones that are not

variants of any ideal clone), and how large those clones are;
d. how often non-contiguous clones, intertwined clones, and clones that involve

statement reordering and variable renaming occur in practice.

For the first study, we examined one file (lex.c) from bison by hand, and
found four ideal clone groups. We then ran the tool on lex.c, and it identified
forty-three clone groups. Nineteen of those groups were variants of the ideal clone
groups (including several variants for each of the four ideal groups, so no ideal
clones were missed by the tool), and the other twenty-four were uninteresting.
More than half of the uninteresting clone groups (13 out of 24) had clones with
fewer than 7 nodes (which was the size of the smallest ideal clone); the largest
uninteresting clone had 9 nodes.

For the second study we examined all 25 clone groups identified by the tool
for bison in the size range 30-49 (we chose an intermediate clone size in order
to test the hypothesis that the uninteresting clones identified by the tool tend
to be quite small). All but one of those 25 groups were variants of 9 ideal clone
groups (i.e., only one of them was uninteresting).

In the two studies, we encountered a total of 11 ideal clone groups (two groups
showed up in both studies) containing a total of 37 individual clones. Of those
37, 10 were non-contiguous. Two of the 11 ideal clone groups involved statement
reordering, five involved variable renaming, and none involved intertwined clones.

3.2 IBM Code

The goals of the experiments using the IBM code were:

a. to see whether this code also contained non-contiguous, reordered, and in-
tertwined clones;
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b. to gather some quantitative data on the immediate effects of extracting
clones.

Due to limitations of CodeSurfer, we were not able to process the entire IBM
program. Therefore, we selected four (out of the 70+ files) and ran the tool on
each of those files individually. The larger clones found by the tool were then
examined manually (about 250 clone groups were examined), and the clones
best-suited for extraction were identified. The “ideal” versions of those clones
were (manually) extracted into macro definitions, which were placed in the same
files, and each instance of a clone was replaced by a macro call. (Macros rather
than procedures were used to avoid changing the running time of the program.)
A total of 30 clone groups containing 77 “ideal” clones were extracted.

The results of the study are summarized in Figure 9, which gives, for each
file:

– the size (in lines of source code and in number of PDG nodes);
– the running time for the tool (in all four cases, Step 1 of the algorithm –

finding clone pairs – accounted for at least 90% of the running time);
– the number of clone groups that were extracted;
– the total number of extracted clones;
– the reduction in size of the file (in terms of lines of code);
– the average reduction in size for functions that included at least one extracted

clone (in terms of lines of code).

# of
lines of
source

# of
PDG
nodes

running
time

(elapsed)

# of clone
groups

extracted

total # of
clones

extracted
file size

reduction
av. fn size
reduction

file 1 1677 2235 1:02 min 3 6 1.9% 5.0%
file 2 2621 4006 7:49 min 12 24 4.7% 12.4%
file 3 3343 6761 5:15 min 3 7 2.1% 4.4%
file 4 3419 4845 13:00 min 12 40 4.9% 10.3%

Fig. 9. IBM file sizes and clone-extraction data

Of the 30 clone groups that were extracted, 2 involved reordering of matching
statements, 2 involved intertwined clones, and most of them involved renamed
variables. Of the 77 extracted clones, 17 were non-contiguous.

3.3 Summary of Experimental Results

The results of our experiments indicate that our approach is capable of find-
ing interesting clones that would be missed by other approaches. Many of these
clones are non-contiguous and involve variable renaming; some also involve state-
ment reordering and intertwining. The Unix-code studies also indicate that the
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tool is not likely to miss any clones that a human would consider ideal, and
additionally is not likely to produce too many clones that a human would con-
sider uninteresting (except very small ones). The IBM-code study provides some
additional data about the amount of extractable duplicated code that may be
found by our tool, and how extracting that code affects file and function sizes.
Of course, the more important question is how duplicate code extraction affects
the ease of future maintenance; unfortunately, such a study requires resources
beyond those available to us (as noted in the Introduction, the work of [13] does
provide a first step in that direction).

The two sets of studies also reveal that the current implementation often
finds multiple variants of ideal clones rather than just the ideal ones. This may
however not be a problem in practice; manually examining the 250 clone groups
reported by the tool for the four IBM files and identifying the corresponding 30
ideal clone groups took only about 3 hours. Nevertheless, future work includes
devising more heuristics (like the one described in Subsection 2.3) that will
reduce the number of variants reported by the tool by finding clones that are
closer to ideal.

As for the running time, although the tool is currently very slow, we believe
that this is more a question of its implementation than of some fundamental
problem with the approach. As indicated in the table in Figure 6, the bottleneck
is finding clone pairs; one reason this step is so slow is that it is implemented in
Scheme, and we use a Scheme interpreter, not a compiler. Another factor is that
our primary concern has been to get an initial implementation running so that
we can use the results to validate our approach (rather than trying to implement
the algorithm as efficiently as possible). Future engineering efforts may reduce
the time significantly. Furthermore, improvements that eliminate the generation
of undesirable clones (e.g., variants of ideal clones) should speed up the tool.
Finally, it may be possible (and profitable) to generate clone groups directly,
rather than generating clone pairs and then combining them into groups (because
for each clone group that contains n clones, we currently generate (n2 − n)/2
clone pairs first).

4 Related Work

The long-term goal of our research project is a tool that not only finds clones, but
also automatically extracts a user-selected group of clones into a procedure. A
first step in that direction was an algorithm for semantics-preserving procedure
extraction [11]. However, that algorithm only applies to a single clone; different
techniques are needed to determine when and how a group of clones can be
extracted into a procedure while preserving semantics. Also, while that work
was related to the work presented here in terms of our over-all goal, it addressed
a very different aspect, namely, how to do procedure extraction; there was no
discussion of how to identify the code to be extracted, which is the subject of
the current work.
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Other related work falls into 3 main categories: work on clone detection, work
on converting procedural code to object-oriented code, and work on subgraph
isomorphism.

Clone detection: Baker [1, 2] describes an approach that finds all pairs of
matching “parameterized” code fragments. A code fragment matches another
(with parameterization) if both fragments are contiguous sequences of source
lines, and some global substitution of variable names and literal values applied
to one of the fragments makes the two fragments identical line by line. Comments
are ignored, as is whitespace within lines. Because this approach is text-based
and line-based, it is sensitive to lexical aspects like the presence or absence of
new lines, and the ordering of matching lines in a clone pair. Our approach does
not have these shortcomings. Baker’s approach does not find intertwined clones.
It also does not (directly) find non-contiguous clones. A postpass can be used to
group sets of matching fragments that occur close to each other in the source,
but there is no guarantee that such sets belong together logically.

Kontogiannis et al [12] describe a dynamic-programming-based approach that
computes and reports for every pair of begin-end blocks in the program the
distance (i.e., degree of similarity) between the blocks. The hypothesis is that
pairs with a small distance are likely to be clones caused by cut and paste
activities. The distance between a pair of blocks is defined as the least costly
sequence of insert, delete and edit steps required to make one block identical
line-by-line to the other. This approach does not find clones in the sense of our
approach, or Baker’s approach. It only gives similarity measures, leaving it to
the user to go through block pairs with high reported similarity and determine
whether or not they are clones. Also, since it works only at the block level it can
miss clone fragments that are smaller than a block, and it does not effectively
deal with variable renamings or with non-contiguous or out-of-order matches.

Two other approaches that involve metrics are reported in [7, 14]. The ap-
proach of [7] computes certain features of code blocks and then uses neural
networks to find similar blocks based on their features, while [14] uses function
level metrics (e.g., number of lines of source, number of function calls contained,
number of CFG edges, etc.) to find similar functions.

Baxter et al [4] find exact clones by finding identical abstract-syntax tree
subtrees, and inexact clones by finding subtrees that are identical when variable
names and literal values are ignored. Non-contiguous and out-of-order matches
will not be found. This approach completely ignores variable names when asked
to find inexact matches; this is a problem because ignoring variable names re-
sults in ignoring all data flows which itself could result in matches that are not
meaningful computations worthy of extraction.

Debray et al [8] use the CFG to find clones in assembly-language programs
for the purpose of code compression. They find matching clones only when they
occur in different basic blocks, no intertwined clones, and only a limited kind of
non-contiguous clones.
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Converting procedural code to object-oriented code: The primary goal of
the work described by Bowdidge and Griswold in [6] is to help convert procedural
code to object-oriented code by identifying methods. As part of this process,
they do a limited form of clone detection. Given a variable of interest, the tool
does forward slicing from all uses of the variable. The slices are subsequently
decomposed into a set of (overlapping) paths, with each path stretching from
the “root” node (i.e., the node that has the use of the variable) to the end point
of the slice. Finally the paths obtained from all slices are overlayed visually
on a single diagram (only the operators of the nodes are shown) with common
prefixes drawn only once. Each common prefix is a set of isomorphic paths in
the PDG and therefore represents a duplicated computation; the user selects the
prefixes to be extracted. There are a few significant differences between their
approach and ours. They report only isomorphic paths in the PDG, whereas we
report isomorphic partial slices. Our observation is that most clones that are
interesting and worthy of extraction are not simply paths in the PDG. Their
diagram can be very large for large programs, making it tedious for the user to
figure out what clones to extract. Finally, they do only forward slicing, which in
our experience is not as likely to produce meaningful clones as a combination of
backward and forward slicing; for example, of all the clones found by our tool
that are illustrated in this paper, only the ones in Figures 3 and 5 correspond
to forward slices.

Subgraph isomorphism: A number of people have studied the problem of
identifying maximal isomorphic subgraphs [3, 15, 5, 18]. Since this in general is
a computationally hard problem, these approaches typically employ heuristics
that seem to help especially when the graphs being analyzed are representations
of molecules. In our approach we identify isomorphic partial slices, not general
isomorphic subgraphs. We do this not only to reduce the computational com-
plexity, but also because clones found this way seem more likely to be meaningful
computations that are desirable as separate procedures.

5 Conclusions

We have described the design and implementation of a tool that finds duplicated
code fragments in C programs and displays them to the programmer. The most
innovative aspect of our work is the use of program-dependence graphs and
program slicing, which allows our tool to find non-contiguous clones, intertwined
clones, and clones that involve variable renaming and statement reordering.

Our implementation indicates that the approach is a good one; real code
does include the kinds of clones that our tool is well-suited to handle (and that
most previous approaches to clone detection would not be able to find), and
the tool does find the clones that would be identified by a human. However, it
currently finds many variants of the ideal clones. Future work includes developing
heuristics to cut down on the number of variants identified, as well as to improve
the running time of the implementation.
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