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Abstract—For cloud native microservice monitoring and inci-
dent detection, companies and developers tend to largely focus
only on generating logs, metrics, and traces at the application
layer. However, in order to enable precise fault localization, it
is necessary to access and correlate logs pertaining to a single
end-user request across non-application layers as well, such as
the load balancer at the front and the database at the back
end. In this paper, we propose an observability library and an
observability platform that addresses this problem and generates
alerts that precisely point to fault locations. Logs at multiple
layers are tagged with a common request identifier that helps in
performing correlation. The observability platform is architected
such that it lends itself to extensions to catch multiple types of
errors and issues. The proposed observability platform has been
tested on five open source benchmarks. The results confirm that
our tool can be used deterministically and precisely to detect
elusive issues.

Index Terms— Logs, Metrics, HTTP 504 Gateway Timeout,
Deterministic Fault Localization, Alerts.

I. INTRODUCTION

In the microservices architectural style, a software appli-
cation is organized as a suite of loosely coupled services.
Each microservice handles a single business concern and
can be built, maintained, and deployed independently of the
other microservices in the application. This approach allows
developers to test and release the software faster. This is the
most preferred architectural paradigm for service scaling when
the incoming request load is a critical factor [1].

The different services typically invoke each other and hence
have inter-dependencies. If a service becomes unavailable or
becomes too slow in responding to requests due to any sort of
fault or issue, the observable symptom could be a timeout of
the outermost load balancer (aka Gateway) that is waiting for
the faulty service. This makes it challenging for deployment
engineers to localize the service that is the root cause of the
observed loss of availability (i.e., rejected requests).

A. A motivating example

Figure 1 depicts an interaction (or trace) in a simple food
delivery microservices application that we had developed as
an exemplar [2]. (A) A user with customer ID 101 issues
a HTTP GET request to the system to fetch the balance in
their wallet, which is accepted by the load balancer. (B) The
“Delivery” service is the root or outermost layer that receives
all the requests. The load balancer forwards the request to
one of the instances of the delivery microservice. (C) The
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Fig. 1: Wallet Get Balance throwing Gateway Timeout

“Delivery” service makes a HTTP GET call to the “Wallet”
service to fetch the balance for the customer. (D) The “Wallet”
microservice makes a blocking database call to the MySQL
database service. (E) The query is extremely slow due to
some reason and does not return a result quickly. (F) The
load balancer hits a pre-configured timeout for the request and
returns a HTTP 504 response “Gateway timeout exception” to
the end-user. There is no indication in this response as to what
was the root cause of the timeout.

B. Challenges and issues in fault localization

The inability to quickly address 504 responses could impact
the quality of the service leading to customer dissatisfaction.
Deployment engineers would like to identify the root cause
of a timed-out request and resolve the root cause in a timely
manner to prevent subsequent requests from meeting the same
fate. A simple investigation into load balancer logs cannot
reveal which layer, service, or component is the root cause of
the timed-out request. The returned error message is entirely
misleading as it portrays that the root cause for the timeout
is the gateway (i.e., load balancer), whereas, in reality, the
root cause is somewhere deeper down. In the absence of any
efficient aids to find the root cause, the one investigating why
a request timed out has to manually go through the logs of
the load balancer, application services, and database and then
correlate the timestamps of the key events in these logs with
the timeout timestamp at the gateway. However, this task can
get very complicated due to other concurrent requests also



potentially reaching the slow service or database and hence
also getting timed out. Therefore, it is non-trivial to localize
the faulty layer quickly.

There are real instances where such an incorrect diagnosis
has been reported. For example, Fowler [3] describes a real
example where a Redis data store ran out of memory and
subsequent requests showed timeout responses, masking the
original cause of failure. In another instance, an Amazon
Dynamo DB outage in US-EAST-1 in 2015 [4] was triggered
by a transient network problem that overwhelmed the metadata
servers. This caused higher latency to serve requests, which
caused timeouts and subsequent retries of the same requests
by clients, which eventually compromised the end-to-end
availability of the entire system.

C. Our contribution
We present a novel approach, which is an observability

library and observability platform, which enables investigators
to quickly find out the correct layer that ultimately caused a
504 timeout error at the gateway for a request. The incident
remediation can then be focused on rectifying or restarting this
problematic faulty layer. The crux of our approach and novelty
compared to known existing solutions is to insert a unique
request ID into each request when it arrives, and propagate
this ID through all layers as the request is processed, and
hence pin down precisely the layer that was the root cause of
a timeout of the request if the request got timed out.

D. Critique on existing approaches
Both practitioners and researchers have proposed different

observability platforms and monitoring tools for microser-
vices. These tools instrument and monitor specific service
layers and provide various reports. Picoreti et al. [5] utilize
infrastructure logs with application logs to enhance observabil-
ity. This approach does not extend observability to database
logs and load balancer logs. Therefore, the utility of this
approach is limited. Pharos [6] is an observability platform
built in the industry using open-source technology and the
public cloud. The paper does not indicate whether a layer that
specifically causes a request to timeout can be pinned down
automatically. Experimental evaluation results with precision
and recall are not available in the paper.

Garcia et al. [7] provides a tracing tool for distributed het-
erogeneous applications, where application-specific event IDs
re-construct traces that cross thread boundaries, thus reducing
the need for structural source-code modification. Mace et al.
provided a tool Pivot [8], which uses Lamport’s happens-
before relation to filter and group events based on properties
of any events that causally precede them in execution. They
describe a case study on how Pivot detected the HDFS Replica
Selection bug. Both of these papers do not address multi-layer
and end-to-end observability that enables accurate alerting.

II. OUR APPROACH

The main goal of our approach and tool is to provide
multi-layer observability for detecting which layer (e.g., mi-
croservice or database) was the root cause of each timed-out
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Fig. 2: Architecture of observability library and platform

request. Our tool’s output is in the form of alerts. Our approach
issues an alert for an end-user request under the following two
scenarios as of now:

• A slow database query issued by some microservice
invoked as part of processing the request causes the
gateway (i.e., end-user facing load balancer) to timeout
and return the 504 response code.

• A slow microservice that is invoked during the request-
processing does not respond in time to its invoking
microservice (or to the invoking gateway, if it was the
first microservice involved in the trace), which causes
the gateway to timeout and respond with 504.

Note, these are known to be among the common causes of
outer-level gateway timeouts. Each alert contains a request ID
that uniquely identifies the timeout request and the name of
the microservice or database instance that caused the timeout.

The overall architecture of our approach is summarized in
Figure 2. Our approach has two main components – logging
and alerting. The log records are emitted by an “Observability
library” that we provide, which needs to be linked to the
application, and which logs certain key events occurring at all
layers of the system (as depicted in the left part of the figure).
The alerts are generated by our “Observability platform”,
which runs concurrently with the application as a separate
service, and processes the log records to raise alerts.

A. Observability library

The observability library emits all log records in a stan-
dardized format to make it easier to implement the subsequent
observability platform. The log records have several fields, but
a log record emitted on behalf of a specific layer may use only
a subset of the fields. In the interest of space, we list below
some of the key fields in the log record:

• Request ID (rid): A unique ID identifying the outermost
request (to the gateway), which while being processed at
some layer, triggered this log record.

• Layer name (layer): The layer that emits this log record.
It could be Load Balancer, Application, or Database.



• Layer event (event): The kind of event being logged.
The different event kinds that we log are described
subsequently in this section.

• Current Method (cm): The controller method that is in
execution and causing this log record. Valid only in the
application layer.

• Time stamp (ts): The time at which this log record was
generated. We make an assumption in our work that the
clocks of all microservices are synchronized.

Controllers are basically programmatic methods in mi-
croservices that receive requests from gateways or from other
microservices. To use our system, the application needs to
be linked to our library, and the annotations “@Log” and
“@DBLog”, which are defined by our library, need to be
inserted in the source code by the application developer just
before each controller method definition (these annotations
need no parameters). The above-mentioned annotations are
implemented in our library using aspect-oriented programming
and cause certain events occurring at each layer to be logged,
as discussed below.

a) Gateway layer: This layer, also known as the outer-
level load balancer, receives the original end-user request. We
assume that this layer assigns a unique ID to each incoming
request. Cloud providers generally have this facility, e.g., X-
Amzn-Trace-Id by Amazon Web Services. Our key idea, which
underpins our entire approach, is to percolate this unique ID
through the entire trace (through all layers) that executes to
fulfill this request. It is this ID that is placed in the rid fields
of all log records emitted throughout this trace. The following
events that occur at the gateway layer are logged by our
approach.

• Load Balancer Entry: We configure the cloud-
proivider’s gateway to generate and pass the rid in the
HTTP header to the initial application controller that
receives this request. (In Figure 1 this controller would
be in the ‘Delivery’ microservice.) The gateway also
typically logs this event using its own mechanism (not
our logging mechanism). The ‘@Log’ annotation on
the receiving controller invokes our observability library,
which looks up the gateway’s log to find the time-stamp
of creation of this rid, and then emits a log record of
type ‘load balancer entry’ on behalf of the gateway to
our observability platform.

• Load Balancer Exit: This represents the event of the
gateway responding back to the end-user when the request
processing finally completes or times out. This log is
emitted directly by our alerting service, and hence we
discuss it in Section II-B.

b) Application layer: The Application Layer consists
of the microservices, which in turn contain controllers that
receive requests. Outer-level microservices may invoke con-
trollers in inner-level microservices; e.g., the Delivery mi-
croservice contacts the Wallet microservice in Figure 1. The
‘@Log’ annotation on each controller causes the following
events to be logged during the execution of the controller.

if “Database Entry” log for r exists and the next log record
for r is a Load Balancer Exit by timeout then
alert(“timeout due to DB layer”, r).
if “Application Continue” log for r exists and the next
log record for r is a Load Balancer Exit by timeout then
alert(“timeout due to slow service”, r).

Fig. 3: Generating alerts for a request ID r

• Application Entry: The beginning of execution of the
controller. The rid is obtained from the header of the
request coming into this controller.

• Application Continue: The currently executing con-
troller is about to place a (blocking) request to another
microservice. The rid is present in the header of the
incoming request to the executing controller and is passed
along to the other microservice via the new request’s
header.

• Application Exit: The currently executing controller is
about to respond to its requester normally (no exception
thrown).

• Application Exception: The currently executing con-
troller throws an application exception, and the requester
gets notified of this.
c) Database layer: Whenever a controller makes a

database request, the ‘@DBLog’ annotation in the controller
ensures the logging of the following events.

• Database Entry: Sending the query to the database.
• Database Exit: Receipt of the response to the controller

from the database.

B. Observability Platform

The Observability Platform is a separate service that runs
concurrently with the application and generates alerts. The
log events generated as described above are processed by this
service. It organizes the log records as a map, keyed by the
unique request identifier (rid), with the value against each rid
being the set of all logs corresponding to this rid emitted so far.
The alerts service identifies when any request with rid r has
exited the system with a normal response to the end-user by the
load balancer or has been timed out by the load balancer, by
querying the load balancer’s internal logs periodically. When
such an exit is detected, it generates the “Load Balancer Exit”
log for this request with rid r, sorts all the log records for r by
their timestamp (ts) field, and then invokes the alert generation
algorithm described in Figure 3.

III. IMPLEMENTATION

The “Observability library” is built as a Spring Boot,
Java 11, and Maven compiled library. The annotations are
aspects built using the AspectJ library. Once any log record
is created within the library, it is pushed to the Observability
Platform’s “Unified Event Queue” (UEQ). This UEQ is an
event streaming platform built using Kafka version 3.3.1 [9].



Benchmark Description Github # micro-
stars services

SJWT [10] Sample app for JWT token based
authentication

1200 1

RBAC [11] User Management through Role
Based Access Control

55 1

PayBill [12] Online bill payment system 5 4
Comic [13] Comic bookstore 1 1
Bank [14] Online banking 2 3

TABLE I: Benchmarks

The Kafka Consumer for the log events fetches the log records
and inserts them into a LogDB. The LogDB is an RDS MySQL
database instance. The “Observability Platform” is built as a
Spring Boot, Java 11 microservice. This service uses a con-
figurable Cron job scheduler pattern that periodically fetches
the log records from the database and runs the alert detection
algorithm specified in Figure 3. We can get alert notifications
in three distinct ways: by email, SMS, and by writing to
the local file system. The platform is easily extendable and
supports the addition of extra notification channels.

IV. TOOL EVALUATION

In this section, we provide the details of the tool evaluation.

A. Benchmarks

We searched for open-source benchmarks on Github to
evaluate our approach. The search terms we used were “Spring
Boot”, “Java”, “Microservices”, and “MySql”. Our current
tooling works only on applications that use REST APIs (with-
out any front-end specific logic in the backend code), use the
MySQL database, and do not use any asynchrony or internal
load balancers in their internal architecture. Extensions would
certainly be possible in our tool to overcome these limitations.
We identified the top five benchmarks (by Github stars) that
matched our criteria and used them in our subsequent evalua-
tions. We have provided some information about the selected
benchmarks in Table I. We manually added the observability
annotations @Log and @DBLog to the controller methods in
the benchmarks.

B. Workload

We then proceeded to create a workload (set of end-
user HTTP requests) for each benchmark, so that we could
test whether our platform catches timeouts that occur when
processing these requests. We started off by fixing two specific
requests – a POST request followed by a related GET request
– for each benchmark. We created these requests suitably
after understanding the benchmarks. For e.g., the workload
for SJWT [10] comprises a POST request for signing up a
new user followed by a GET request to search for the same
user.

We use the popular load testing tool Gatling [15] to send
the requests. We parameterized Gatling such that it would add
a total of one hundred new (virtual) users every minute over
a 10-minute duration, using 50 parallel threads. Each virtual
user sends the two requests mentioned earlier, and therefore,

Benchmark Ground Truth Number of Precision Recall
Service DB Total Alerts

SJWT 0 7 7 7 100.0% 100.0%
RBAC 3 9 12 12 100.0% 100.0%
PayBill 5 9 14 14 100.0% 100.0%
Comic 6 5 11 11 100.0% 100.0%
Bank 5 3 8 8 100.0% 100.0%

TABLE II: Performance of our approach

there will be a total of 2000 distinct requests over ten minutes
in a run for a benchmark. The requests of different users differ
in their request parameters or payload, but not in the URLs
or request paths. In order to account for non-determinism, we
do three runs for each benchmark; the same 2000 requests are
used in each run, but the schedule and concurrency of these
requests may differ due to non-determinism.

We ran our Gatling script from an Ubuntu machine, which
has an Intel Core i7-6700 CPU with 32 GB memory. We
hosted the benchmarks on Amazon AWS EC2 “t2.large”
instances, with 8 GB memory and a 3.0 GHz Intel Scalable
Processor.

C. Experiment Setup

We did not observe any naturally occurring 504 timeouts
for our benchmarks using the workload mentioned above.
Increasing the workload intensity could have helped, but
we still might not have been able to ensure that timeouts
occurred without facing network bottlenecks first from our
local Ubuntu machine. Therefore, to evaluate if our system
catches timeouts, we injected a slow service or a slow database
query fault during the processing of randomly chosen requests.
The actual slowdown was effected using sleep statements
manually placed at suitable points in the benchmark sources,
guarded by conditionals that would become true with very
low probability. The sleep duration was set to be longer than
the load balancer timeout duration. Both service and database
slowdown occurrences were injected using sleep statements.

We also record an entry into a Ground Truth File (GTF)
for every request for which a slowdown was injected. Each
entry contains the timestamp at which the sleeping started,
the rid for the request, and the layer where slowdown oc-
curred (database or service). We use this GTF subsequently to
compute the precision and recall of our approach. Note that
there can be at most one entry per rid in the GTF.

D. Evaluation

Table II summarizes the results from our approach. Columns
2-5 are cumulative numbers over the three runs for the
benchmark. The three “Ground Truth” columns summarize
the total number of slowed-down requests as per the GTF,
segregated by layer. Column 5 depicts the number of alerts
raised by our platform.

We say that an alert matches with an entry in the GTF when
both have the same rid and the same layer (i.e., database or
service layer). The precision of our approach is defined as the
percentage of all alerts that match some entry in the GTF,
while recall is defined as the percentage of GTF entries that



Benchmark Ground Truth Alerts Alerts
Service DB Total W=10 W=50

SJWT 0 7 7 9 (3) 21 (4)
RBAC 3 9 12 16 (4) 31 (5)
PayBill 5 9 14 20 (4) 39 (6)
Comic 6 5 11 15 (4) 35 (5)
Bank 5 3 8 12 (3) 28 (4)

TABLE III: Alerts raised by a baseline approach

have matching alerts. In our runs, we observed 100% precision
and recall for all our benchmarks.

E. A baseline
To serve as a baseline, we simulated a naive approach

similar to what practitioners would employ today when they
don’t have access to sophisticated observability tooling. For
each entry in the Ground Truth File (GTF), say the timestamp
in the entry is T1 and the unique Request ID is rid1. A script
we built searches for “Application Entry” log records whose
timestamp is up to W milliseconds before T1, and emits an
alert for each such log record, where W is a configurable
parameter. The rid’s in the Application Entry logs are not
used in this process, since it is our approach (and not a naive
approach) that propagates the unique rid of each request across
all layers. Table III indicates the number of alerts emitted by
the naive approach for different values of W (in milliseconds).
The number within brackets indicates, of the alerts emitted,
how many were due to Application Entry records that actually
contained the request ID rid1 (i.e., are true alerts).

For W = 0, no alerts were reported by the naive baseline
for any of the benchmarks. It is notable that the number of
alerts is somewhat close to the number of ground truth sleep
events for W = 10 and too few or too many for other values
of W . In other words, the precision and recall of the approach
are highly sensitive to this parameter.

Consider the first benchmark SJWT given in Table III.
The naive baseline produced 9 alerts with W = 10, and the
GTF recorded 7 slowed-down requests. Only 3 alerts, though,
correspond to actually slowed-down requests. As a result, the
recall is 43% and the precision is 33% for W = 10, which
is substantially below the recall and precision obtained by our
approach.

F. Artifacts
We have provided the source code for our observability

library and platform in a repository [2]. We have also provided
a script that will run a simple exemplar application that we
had developed that we had introduced in Section I. The script
will also run our platform and will generate alerts from the run
of the exemplar application. We have also uploaded a video
recording of this run to the repository.

V. DISCUSSION AND FUTURE WORK

Our approach reveals very encouraging results from our
experimentation and evaluation so far. It is the first approach

that can deterministically link the layer that is the root cause of
a timed-out request and has the potential to help deployment
engineers quickly remediate issues as timeout requests arise.

One item of future work in our plans is to experiment with
our approach on a greater variety of benchmarks. We would
also like to evaluate the tool under heavier workloads, so that
timeouts may occur naturally without us having to inject them.
An automatic log annotation addition strategy can be used to
minimize developer involvement. We would also like to in the
future measure the resource usage of the queues, alert service,
etc., as well as any performance loss in the program caused
by the injection of logging via the library.

Currently, our tool can identify two very common types
of root causes for load balancer timeouts. We would like
to extend the approach to identify other root causes such as
servers or VM instances reaching very high CPU or memory
utilization. The challenge here would be to link infrastructure-
related slowdown occurrences with specific requests that hap-
pen to get timed out due to these occurrences.
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