Refinement in Object-Sensitivity Points-To Analysis via
Slicing

GIRISH MASKERI RAMA*, Infosys Limited, India
RAGHAVAN KOMONDOOR, Indian Institute of Science, India
HIMANSHU SHARMA, Indian Institute of Science, India

Object sensitivity analysis is a well-known form of context-sensitive points-to analysis. This analysis is
parameterized by a bound on the names of symbolic objects associated with each allocation site. In this
paper, we propose a novel approach based on object sensitivity analysis that takes as input a set of client
queries, and tries to answer them using an initial round of inexpensive object sensitivity analysis that uses a
low object-name length bound at all allocation sites. For the queries that are answered unsatisfactorily, the
approach then pin points “bad” points-to facts, which are the ones that are responsible for the imprecision.
It then employs a form of program slicing to identify allocation sites that are potentially causing these bad
points-to facts to be generated. The approach then runs object sensitivity analysis once again, this time using
longer names for just these allocation sites, with the objective of resolving the imprecision in this round. We
describe our approach formally, prove its completeness, and describe a Datalog-based implementation of it on
top of the Petablox framework. Our evaluation of our approach on a set of large Java benchmarks, using two
separate clients, reveals that our approach is more precise than the baseline object sensitivity approach, by
around 29% for one of the clients and by around 19% for the other client. Our approach is also more precise on
most large benchmarks than a recently proposed approach that uses SAT solvers to identify allocation sites to
refine.

CCS Concepts: » Software and its engineering — Automated static analysis; Software safety; Object
oriented languages; Software verification;

Additional Key Words and Phrases: Precise and scalable points-to analysis, client-driven refinement, Java

ACM Reference Format:

Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma. 2018. Refinement in Object-Sensitivity
Points-To Analysis via Slicing. Proc. ACM Program. Lang. 2, OOPSLA, Article 142 (November 2018), 27 pages.
https://doi.org/10.1145/3276512

1 INTRODUCTION

Points-to analysis is a fundamental problem in static program analysis, and involves the use of
static abstractions to determine the memory locations that each variable or each field of an object
can point to. Points-to analysis has varied applications, such as in compilation and optimization of
programs, verification of programs, and program understanding and program transformation tools.
A large number of different approaches have been proposed over the last two decades or so for

“Part of this work was done when the author was pursuing part-time PhD at Indian Institute of Science, Bangalore.

Authors’ addresses: Girish Maskeri Rama, Infosys Limited, India, girish_rama@infosys.com; Raghavan Komondoor, Indian
Institute of Science, Bangalore, India, raghavan@iisc.ac.in; Himanshu Sharma, Indian Institute of Science, Bangalore, India,
himanshu.ecko@gmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART142

https://doi.org/10.1145/3276512

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

https://doi.org/10.1145/3276512
https://doi.org/10.1145/3276512

142:2 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

points-to analysis, for different languages, and at different points in the precision vs. scalability
tradeoff [Kanvar and Khedker 2016; Smaragdakis and Balatsouras 2015; Sridharan et al. 2013].

An important characteristic of any points-to analysis approach is whether it is context insensitive,
wherein information entering into a method from all call sites are merged and propagated back
to all return-sites, or whether it is context sensitive, wherein different call-sites to a method are
distinguished at least to a partial extent. Context insensitivity leads to significant loss of precision
compared to context sensitivity [Lhotak and Hendren 2006]. Hence, almost all modern points-to
analysis approaches use some form of context sensitivity. There are several broad families of
context-sensitive approaches; for instance, ones that (i) use procedure summaries [Burke et al.
1994; Chatterjee et al. 1999; Emami et al. 1994; Madhavan et al. 2012], or (ii) analyze each method
under different contexts, with each context representing (a portion of) a call stack (also known as
k-CFA) [Guyer and Lin 2003; Whaley and Lam 2004], or (iii) analyze each method under different
contexts via object sensitivity [Milanova et al. 2005], wherein the contexts for an invocation site are
encoded using the static symbolic IDs of possible receiver objects at the invocation site.

Object-sensitivity analysis is designed specifically for object-oriented languages such as Java. This
technique has been found to be both more scalable and more precise than other alternatives [Lhotak
and Hendren 2006; Smaragdakis et al. 2011]. Several recently proposed points-to analysis approaches
are based on object sensitivity [Smaragdakis et al. 2011; Tan et al. 2016; Zhang et al. 2014]. It has
also been implemented in popular static analysis tools such as Wala [Wala [n. d.]], Doop [Doop [n.
d.]], and Petablox [Petablox [n. d.]].

The precision (and scalability) of object-sensitivity analysis is parameterized by the lengths of the
names of symbolic objects that are used in the analysis. Using longer names increases the number
of (static) symbolic objects, and hence, the number of different contexts in which each method is
analyzed. This increases precision. However, the increased number of method contexts increases
the time requirement of the analysis, and can adversely impact the scalability of the analysis. In
fact, k-CFA context sensitivity also has a similar property; longer context names can be used to
increase the number of contexts, but at the expense of scalability.

A basic idea that has been employed in the literature to deal with this conundrum is client-
driven refinement [Guyer and Lin 2003; Sridharan and Bodik 2006; Zhang et al. 2014]. The intuition
here is that given a specific client query regarding the points-to set of a given variable, a subset
of method invocations that are pertinent to resolving the query are somehow identified. These
invocations alone are analyzed under greater number of contexts, while other method invocations
are analyzed using their original contexts. In other words, extra effort is spent only on necessary
method invocations, thereby obtaining better precision for the given query without exploding the
expense of the analysis.

Our main contribution in this paper is a new refinement technique for object-sensitivity analysis,
which uses a novel form of program slicing to identify allocation sites that are pertinent to the
given query and that are to be refined. In the remainder of this section we introduce a running
example, give an informal overview of our approach, and contrast our approach with other existing
refinement techniques.

1.1 Motivating Example

Figure 1 depicts a toy Java program that we will be using as a running example throughout this
paper. The program has a class ‘M’, with three methods, namely, ‘main’, ‘foo’, and ‘bar’, and a class
‘Contain’, with two methods, namely, ‘get’ and ‘put’. A, B, and C are three other classes, with B and
C extending A; the definitions of these classes are omitted from the figure in the interest of brevity.
The class ‘Contain’ simulates a container; each object of this class points to a single object of type
Aviaits ‘f” field.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:3

21 A foo () {
22 Contain cf = new Contain(); // sy
23 A vf = new B(); // sg

1 M
1c ass. { ') 24 cf.put(vf);
2 static void main() {
5 A rf = cf.get();
3 M vl = new M(); // s
26 return rf;
4 Mv2 = new M(); // s w)
5 M v3 = new M(); // s3
28
M v4 = M(O); //
;’ N ‘t/1- new M() 54 29 Contain bar(A vb) {
. ‘f (’) 30 Contain cb = new Contain(); // sy
i ..
b.put(vb);
i H = v1.foo(): 31 cb.put(vb);

32 return cb;
33}

34} // end class M
35

10 else if (..) t1 = v2.foo();
11 else {

12 A v5 = new B(); // ss

13 A ve =new C(); // s

1 .
14 // B and C both extend A % class Contain {

. 37 A f;
15 Contain ¢l = v3.bar(v5);
. 33 A get() {
16 Contain ¢2 = v4.bar(vé6); .
39 A rg = this.f;
17 tl = cl.get();
} 40 return rg;
18
41}
19 (B) t1;

42 put(A vp) {
43 this.f = vp;
44}

45 }

20 } // end main

Fig. 1. Example program

Consider a query about what objects the variable t1 in function ‘main’ can point to. This query
would be useful in verifying whether the downcast in Line 19 is definitely safe. In reality, t1 can
only point to objects allocated at sites sg and ss. This is the ideal answer to this query, and this
answer would enable the downcast to be declared “safe”.

1.2 Milanova’s Object Sensitivity Analysis

We now consider Milanova et al’s object-sensitivity analysis, which is our baseline analysis. A
sampling of the steps in this analysis when applied on our running example are illustrated in the
first two columns of Figure 2. We have used the basic mode of the analysis, wherein all symbolic
objects allocated at all sites use names of length 1 (this is also known as “k = 1 object-sensitivity
analysis”). Column (1) shows the points-to facts inferred by the analysis, in the order in which they
are inferred. Symbolic (static) objects are named o;, 0;, etc., with the convention that o; represents
objects allocated at site s;, 0; represents objects allocated at site s;, and so on. We use the variable
name ‘this_m’ to denote the implicit variable ‘this’ in method m. Each points-to fact is labeled for
convenience with a number, such as (1), (2), etc. Each row in Column (2) in Figure 2 indicates the
previously inferred facts and the lines of code that cause the facts in the same row in Column (1) to
be inferred. Note that the object-sensitivity analysis is flow-insensitive; this means that all the facts
are associated with all the points in the program. In the rest of this paper, wherever there would be
no confusion, we simply say “object” to mean a (static) symbolic object.

Note that there are two basic kinds of facts that are inferred by the analysis. Facts other than (10)
in the figure are of the first kind, and indicate the points-to sets of variables. For any non-static

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:4 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma
(1) Points-to fact(s) (2) Caused by (3) Points-to facts(s)
with k; = 1, Vi with kg=2

1 | (1) v4 — o4, (2) v6 — 04, (3) v3 — 03 | Lines 6, 13, 5 Same as Column (1)

2 | (4) (04, this_bar) — o4 Lines 16, 29, (1) Same as Column (1)

3 | {5) (03, this_bar) — o3 Lines 15, 29, (3) Same as Column (1)

4 | (6) (04, vb) — 04 Lines 16, 29, (1), (2) Same as Column (1)

5 | (7) (04, cb) — 09 Line 30, (4) (04, cb) — 049

6 | (8) (09, this_put) — o9 Lines 31, 42, (7) (049, this_put) — o049

7 | {9) (09, vp) — 04 Lines 31, 42, {6), (7) (049, VP) — 05

8 | (10) 09.f — 04 Line 43, (8), (9) 049.f — 0g

9 | (11) c2 > 09 Line 32, 16, (7), (1) €2 — 049

10 | (12) (o3, cb) — 09 Line 30, (5) (03, cb) — 039

11 | (13) c1 > o9 Lines 32, 15, (3), (12) | c1 — o039

12 | (14) (09, this_get) — 09 Lines 17, 38, (13) (039, this_get) — 039

13 | (15) (09, 1g) — 06 Line 39, (10), (14) -

14 | (16) t1 — o4 Lines 40, 17, {(15), (13) | -

Fig. 2. Points-to facts, and causality between facts, corresponding to example in Figure 1

method, its variables have separate points-to sets for each “receiver” object context under which
the method is invoked. For instance, facts (4) and (6) are for context o4. They arise because at
the invocation site in Line 16 in the program (see Figure 1) the “base” variable v4 points to the
“receiver” object o4. Similarly, facts (8) and (9) are for context 0q, because the base variable ‘cb’ in
the invocation in Line 31 points to receiver object 0g. ‘cb’ in turn points to oy (see fact (7)) due to
the allocation site in Line 30.

Facts (10) is of the second kind. It indicates that the ‘f” field of object 0y points to object og. This
was inferred due to the “put-field” in Line 43, in conjunction with the points-to sets of ‘this_put’
and ‘vp’ (as indicated by facts (8) and (9)).

Note the imprecision in fact (16). Variable t1 actually cannot point to (concrete) objects allocated
at site s¢. This imprecision causes the analysis to declare the downcast as potentially unsafe. The
imprecision is fundamentally because in the analysis variables c1 and c2 both point to the same
(symbolic) object, namely, oq (see facts (11) and (13)). Therefore, the invocation sequence via Line 16
and then Line 31 causes 0q.f to point to what v6 points to, namely, o4 (see fact (10)). Subsequently,
the invocation at Line 17 causes t1 to be assigned to what is pointed to by o,.f, which includes o (as
well as 05). Whereas, in reality, the invocations at Lines 16 and 17 cannot interact with each other,
because c1 and c2 necessarily point to different ‘Contain’ objects (although both these objects are
allocated at site so).

1.3 Our Proposal: Refinement Via Program Slicing

Our proposal is a query-driven refinement approach for the object sensitivity analysis. The pre-
liminary step is to run the object-sensitivity approach in a suitably efficient mode, such as k = 1
(i.e., all symbolic objects having names of length 1). Our approach is applied only if the initial
analysis mentioned above returns an unsatisfactory outcome for the given query. For instance, for
a downcast-safety query, an unsatisfactory outcome would be one where the downcast is declared
potentially unsafe. In this case our approach is applied. The starting point of our approach is the
points-to fact that caused the unsatisfactory outcome. We call such a fact a “bad” fact, and the
object that occurs in this fact a “bad” object. The core of our approach is to perform a form of

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:5

backward traversal among the set of points-to facts inferred by the preliminary analysis, along a
causality relation, to identify the facts that directly or transitively caused the analysis to infer the
seed “bad” fact. We call these facts the “causing” facts of the bad fact. Then, the allocation sites that
are involved in the inference of these causing facts are marked for refinement. A second round
of the object sensitivity analysis is now applied, this time using longer object names for objects
allocated at the marked allocation sites (and names of length 1 at the remaining allocation sites).
This round of the analysis is likely to be more precise than the preliminary analysis, and could
potentially yield a satisfactory answer to the query. In case it does not, the steps mentioned above
can be iterated as many time as desired, using the facts derived by the object-sensitivity analysis in
any iteration as the basis for the next iteration.

For instance, consider the facts generated by the preliminary analysis, as shown in Column (1)
of Figure 2. Fact (16) (in the last row) is the “bad” fact, as it causes the downcast in Line 19 of
the program (see Figure 1) to be declared as potentially unsafe. Our backward traversal basically
starts from the bad fact, and finds the facts that cause, directly or transitively, the bad fact to be
inferred. These causality relationships are captured in Column (2) of Figure 2. For instance, fact (16)
is directly caused by facts (15) and (13) (see the last row, Column (2)). Fact (15) is caused by
facts (10) and (14), and so on. Basically, the backward traversal eventually reaches all the facts
that are mentioned in Column (1) in Figure 2 other than fact (11). Of these facts, facts (1), (2), (3),
and (7) are directly caused by allocation sites, namely, sites s4, Sq, 53, and sy, respectively. Therefore,
these allocation statements are marked for refinement.

In the next round of the object-sensitivity analysis, we use longer names (say, of length 2) at
site so (sites s3, s4 and s are in ‘main’, and cannot use names of length more than 1). The facts that
would be inferred by the second round of object-sensitivity analysis and that correspond to the facts
in Column (1) are shown in Column (3) in Figure 2. Note, the object 0y has been refined into two
distinct objects, namely, 049 and 039. 049 represents objects created at site sy when the containing
method (i.e., ‘bar’) is called with o4 as the receiver object (i.e., from Line 16 in the program). Whereas,
039 Tepresents objects created at site sy when ‘bar’ is called with o5 as the receiver object (i.e., from
Line 15 in the program). With this refinement, c1 and c2 point to distinct objects, namely, 039 and
049. This eliminates the inter-dependence between Lines 16 and 17 in the program, and hence helps
infer that t1 does not point to os. Note, we have depicted a ‘-’ in Row 13, Column (3). This is because
039.f points to 05 alone, which causes the fact (039, rg) — 05 to be obtained in this round of analysis,
which does not correspond to the fact in Row 13, Column (1) (because that fact involves a points-to
edge to 0g, which is not allocated at the same site as 0s). Also, since the fact in Row 14 is dependent
on the fact in Row 13, we depict a *-” in Row 14, Column (3) as well.

1.4 Precision Of Our Approach

The precision of any refinement approach is the extent to which allocation sites are not unnecessarily
marked for refinement. Higher precision is desirable, because refinement of an allocation site that
cannot help any of the given queries to be resolved satisfactorily only increases the cost of the
analysis with no benefit derived.

Our approach uses two principle ideas to avoid marking allocation sites unnecessarily for
refinement. These are:

e Perform the backwards traversal of the causality relationship among the points-to facts
context sensitively.

e Perform a focused form of backwards traversal that reaches only the facts that had caused
the points-to analysis to infer the “bad” fact.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:6 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

In our example, the bad fact is ‘t1 — og’. Traversing back from this fact causes site sy (among
others) to get refined, but does not mark site s; for refinement. If our backward traversal had
been done starting from other facts in which t1 is involved, such as ‘t1 — og’, then even sites
s7 and sg would have gotten refined. This would cause, e.g., object 07 to get split into two
objects, namely, 017 and 0,7. This would in turn cause methods ‘get’ and ‘put’ to get analyzed
under separate contexts 017 and 0,7, instead of just o;7. This would increase the expense of
the analysis. However, this would have no impact on the precision with which the downcast
safety query is answered, because the refinement (or not) of s; does not affect the points-to
sets of the variables that are actually relevant to the query, namely, c1 and c2.

We discuss both these aspects in more detail in Section 3 of this paper. However, it is notable
that if our backwards traversal approach did not possess either one of the two features above, then
it would lose precision, and would mark certain allocation sites unnecessarily for refinement, such
as site s; in the running example.

The primary objective of our backwards traversal is to identify points-to facts that directly
or indirectly cause a given seed (or “bad”) points-to fact to be inferred by the points-to analysis.
However, because each points-to fact is generated by the points-to analysis due to the presence of
one or more specific statements in the program, the statements corresponding to the facts that are
reached in the backward traversal effectively form a slice of the program when the seed (i.e., “bad”)
fact is treated as the slicing criterion. We discuss the connection of our approach with backward
slicing in a more detailed manner in Section 3.

1.5 Novelty Of Our Approach

Several other approaches exist that selectively refine the precision of points-to analysis in accordance
with the needs of a given client analysis [Guyer and Lin 2003; Sridharan and Bodik 2006; Zhang et al.
2014]. Our approach is empirically more scalable than some of these approaches. It is potentially
simpler to implement than almost all these approaches, because these approaches are based on
an intertwining of the actual points-to analysis with the client analysis. Finally, some of these
approaches do not target refinement of object sensitivity in particular, which is our focus. We
discuss related work in more detail in Section 6.

1.6 Contributions

In summary, the main contributions of this paper are as follows:

e A novel, program-slicing based approach to refine object-sensitivity analysis to answer user
queries more precisely.

e Our context-sensitive program-slicing approach, viewed standalone, could be of interest to
the community. It is a generalization of the “def-use” analysis in Milanova et al’s paper. Our
slicing technique differs from most standard techniques for context-sensitive slicing of Java
programs, which are based on system dependence graphs [Horwitz et al. 1990; Liang and
Harrold 1998], and which do not scale readily to larger programs [Sridharan et al. 2007].

e An implementation of our refinement approach, based on the Petablox [Petablox [n. d.]]
program analysis framework.

e An evaluation of our implementation on nine benchmarks from the Dacapo 2006 benchmark
suite [Blackburn et al. 2006], using two separate client analyses. Our evaluation reveals that
for a given time budget (10 hours per benchmark), our approach gives 29% more precise
results than then baseline object-sensitivity analysis for one of the clients, and and 19% more
precise results for the other client.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:7

‘v=wf"e S, ((c,w) > 01)€F
[M-AscN] (01.f D o02)eF [M-GET]
((e,v) 2 02) € F

‘v=w"eS8, ((c,w) >0 eF
((c,v) > 0) e F

‘vi=w" €S, ((e,v) > o01) € « j L
viEw V) o o)es sq: v =new’ in meth m/, ((c, this_m/) = c) € ¥

((e,w) > 02) € F [M-PuT] [M-New]
O f oo eT ((c, v) —» mkName(c,q,kq)) € F
“v=wm(z)” €S, {(c, z) = o1, (c, w) = c1 } € F, m/(p) = dispatch(cy, m), i
(c1.p) = 01) € 7, ((c1, this_m)) — ¢1) € F [M-Carr]
“v=wm(z)” €S, ((c, w) = c1) € F, m/(p) = dispatch(c1, m), (c1, ret_m/) — 03) € F [M-RET]

((c,v) > 02) € F

Fig. 3. Object sensitivity approach

Our approach also gives higher precision on all nine benchmarks when compared with Zhang
et al’s query-driven refinement approach [Zhang et al. 2014].

o A proof of “completeness” of our approach. That is, every allocation site that, upon refinement,
can possibly improve the precision of a query, is definitely marked for refinement by our
slicing approach. In other words, the approach will not fail to answer a query satisfactorily if
at all it can be answered satisfactorily by refining some set of allocation sites.

Note that in general our approach does not guarantee that only allocation sites that can
possibly impact the precision of a query will be refined. In other words, our approach identifies
an over-approximation of the allocation sites that need to be refined.

The rest of this paper is structured as follows. Section 2 provides key background that is necessary
for us to present our approach. We describe our approach in Section 3. This section also discusses
certain key properties of our approach, and also contains a proof of completeness. Sections 4 and 5
describe our implementation, and our empirical evaluation, respectively. Section 6 discusses related
work. Finally, Section 7 concludes the paper.

2 BACKGROUND

In this section we give a brief introduction to the object-sensitivity points-to analysis [Milanova
et al. 2005], on which our approach is based. We give the points-to analysis rules for this analysis
in Figure 3. Our notation and formulation of these rules differs from that in the original paper
mentioned above, in order to make it easier for us to subsequently describe our backward traversal
rules (in Section 3). However, despite the modified formulation, the analysis essentially remains the
same as in the original paper, and infers the exact same facts conceptually. In the rules, we use the
symbol S to denote the set of all statements in the given program P, and the symbol to denote
the set of points-to facts that is being currently inferred. Recall from the introduction that we had
given to this analysis in Section 1.2, that in this analysis symbolic objects serve as contexts. Thus,
if we have a fact of the form (c, v) — o, it means the following: (a) ¢ and o are symbolic objects, (b)
when the method m’ within which v is declared is invoked with ¢ as the receiver object, then v may
point to o. There is also another kind of fact used in the analysis, namely, of the form o;.f — o,.
Rules M-AsGN, M-GET, and M-PuT in Figure 3 are self-evident. We now focus on the rule M-New.
Say the allocation statement “v = new” with label s, is currently being processed (e.g., see labels s;,
s, etc., in the program in Figure 1). Say this statement is in a method m/, and let ¢ be a context
under which this method is invoked. That is, ¢ is one of the receiver objects for this method (see the

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:8 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

fact ‘(c, this_m’) — ¢’ in the antecedent of the rule). This rule allots a symbolic object to represent
objects allocated at this site under context ¢, by appending the site ID q after c. This is handled by
the utility function mkName, which is as defined below.
mkName(oyj.. p,q. kq) = 0ij..pg if lij...p| < kq
0;j...pg> otherwise

Note, k, is a user parameter, which indicates the maximum allowed name-length at site s (in the
baseline ‘k = 1 analysis’, this bound is 1 for all allocation sites). Therefore, the function mkName
drops the leftmost side ID from the concatenated name if the concatenated name has length more
than k.

The logic above is illustrated in Row 5 in Figure 2, which shows the points-to fact for variable
cb inferred due to the allocation site sg. The invocation context of ‘bar’ is o4 in (see the fact ‘(o4,
this_bar) — 04’ in Row 2, Column (1), which is due to Line 16 in the program). In Row 5, Column (3),
ko is 2, resulting in the concatenated name 049. Whereas, in Row 5, Column (1), ko is 1, which causes
049 to become just 0.

We now focus on the rule M-CALL. Say the invocation statement “v = w.m(z)” occurs in some
method under invocation context ¢. The object ¢; that is pointed to by the base variable “w” under
context c is first recovered. Thus, c; is the receiver object of this invocation. dispatch(c;, m) returns
the method m/ in the program that the invocation mentioned above dispatches to when w points
to ¢;. Say ‘p’ is the formal parameter of m’ (for simplicity of presentation we assume that each
method has a single formal parameter). The rule now infers that under the receiver context c;, the
variable this_m/ points to ¢ itself. The rule also infers that under the same context c;, the formal
parameter ‘p’ points to the same object that the actual parameter ‘z’ points to, namely, o;.

As an illustration of the rule M-CaLL, consider Rows 5-7 in Column (3) in Figure 2. Also, in
conjunction, consider the call to ‘put’ in Line 31 in the program (see Figure 1). The base variable at
the call-site, namely, cb, points to 049 (see Row 5, Column (3) in Figure 2). From the last digit ‘9’
in the name of this object, the analysis infers that this object was allocated at site so. Therefore,
its type is inferred to be ‘Contain’. Therefore, dispatch(o4, put) returns the ‘put’ method in class
‘Contain’. The actual parameter in the call site, namely, vb, points to o4 (see Fact (6) in Row 4,
Column (1)). Therefore, the rule infers the two facts shown in Rows 6-7, Column (3).

The Rule M-RET is analogous to the Rule M-CALL, and deals with the scenario of a function
returning an object to a caller. ret_m’ is a placeholder, and denotes the variable in method m’
that holds the return value from the method. Notice the context sensitivity in this rule: if the
return variable ret_m/ in method m’ points to an object 0, under a context c;, then the lhs v at an
invocation statement is made to point to this object o, only if the receiver object at that invocation
statement is also c;.

Note, all “static” methods, including ‘main’ are always analyzed under an empty (or ‘¢’) context.
Also, if ‘g’ is a global variable, its points-to facts are always of the form ‘(¢, g) — 0. In the interest
of brevity we have omitted these details from Figure 3.

3 OUR APPROACH

Our approach for refinement in object sensitivity is summarized in Figure 4. In Line 1, for all
allocation sites i, the name-length bound k; is initialized to 1. Line 2 invokes object sensitivity
analysis, which returns a set of points-to facts .

The approach is given a set of queries Q as input. The queries need to be such that:

e They can be answered directly using points-to facts.
e There is a notion of a satisfactory answer for every query.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:9

Procedure: Refine object sensitivity

Require: Program P. Set of queries Q.
1: Initialize k; = 1, for alloc sites i.
2: Analyze P using object-sensitivity. Let ¥ be the resulting points-to facts.
3. Answer the queries in Q using the facts 7.
4: while time budget not exhausted and some queries in Q not yet answered satisfactorily do
5. Identify the bad facts corresponding to the queries that are not yet answered satisfactorily.
Let ¥, be the set of all such bad facts.
6: Apply rules in Figure 5 on ¥, to obtain the causality relationship ‘~»’ on the facts in F.
7. for all facts of the form f; = ‘((c, v) = 0)’ in ¥ such that there exists some allocation
statement “ sq: v.=new”, and o is an object allocated at s;, and there exists some fact f; in
Fp such that f; ~* f, do
8: Increase the value of k4 by some non-negative number (following some policy).
9: end for
10: Analyze P using object-sensitivity. Let ¥ be the resulting points-to facts.
11: Answer the queries in Q using the facts 7.
12: end while

Fig. 4. Our refinement approach

e For any query for which the answer is unsatisfactory, the set of “bad” facts that are the cause
of the unsatisfactory answer can be identified.

How to perform the last step above is not a feature of our approach per se, but is a client-specific
feature (i.e., depends on what the queries are asking for). For instance, if the safety of a downcast
‘(B) t1’ is being checked by a query, and if it is declared as potentially unsafe due to the points-to
set of t1, then every fact of the form ‘(c, t1) — o;’, where 0;’s type is not B or a sub-type of B, is a
bad fact for this query.

As another example, if a call-site ‘v.m(z)’ is being checked whether it dispatches to a unique
method in the program (this is called the “monosite” analysis), then, all facts in which the variable
v occurs are bad provided there are at least two different facts ‘(c;, v) — o0;” and ‘(¢;, v) — o;” such
that o; and o; are of types such that these types have different implementations of the method ‘m’.
Note that even though all facts in which v occurs need to be considered as bad facts, the approach
could still be beneficial, because in general even in this scenario only a subset of all allocation sites
in the program would impact the bad facts by causality and would get assigned a higher value of
kq.

As a third example, consider the static data-race detection client. Here, one needs to check using
points-to analysis whether a statement of the form “t = v.f” executing in one thread and a statement
of the form “w.f = s” executing in another thread could refer to a common object. For this analysis,
only points-to facts that involve common symbolic objects that both v and w point to need to serve
as bad facts.

Line 3 in Figure 4 answers all the queries using the points-to facts #. Line 5 in our approach
collects together all bad facts pertaining to all unsatisfactory queries. Line 6 applies the rules in
Figure 5 to infer a causality relation ‘~»” among the facts in ¥ There is a very close correspondence
between these rules and the object-sensitivity analysis rules in Figure 3. Intuitively, whenever a set
S of antecedent facts are used by a rule in Figure 3 to infer a consequent fact f, the corresponding
rule in Figure 5 includes (fi, f) in the relationship ‘~»’ for every fact f; in S. Hence, the rules in
Figure 5 are self-explanatory.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:10 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

‘v=wf"e S8, ((c,w) > 01) € F

‘v=w"eS8, {(c,w) > o0, (c,v) >0} CF {(c,v) > 02, 01.f > 02} CF

W) =0~ (@) =0 [CAsen] —(ew s o~ @ ooy 1T
(01.f = 02) ~ ((c,v) = 02)
“vf=w"e S8, ((c,v) > 01)€F)
{(c,w) = 02, 01.f = 02} CF [C-PuT] “sq: v = new” in meth m/, ((c, this,,,j) = ¢) € F [C-NEw]

((e,v) = 01) ~ (01.f — 02) ((c, this,,;) = ¢) ~ ((c, v) — mkName(c, q, kq))

((c,w) = 02) ~ (01.f — 02)

“v=wm(z)’ €S, {(c,z) — o1, (c, W) = ¢1 } € F, m/(p) = dispatch(ci, m),
{(c1, p) = o1, (c1, this;j) = c1 } S F [C-CarL]
(e, w) = ¢1) ~ {(c1,p) = o1, (c1, this,,;) = c1}, ((¢,2) = 01) ~ ((c1,p) — 01)

‘“v=wm(z)” €S, {(c,w) > c1,(c,v) > 02} C F, mj(p) = dispatch(c1, m), ((c1, ret m/) > o)) € F
((c1, ret_m’) — 02) ~ ((c, V) = 02), (¢, W) = ¢1) ~ ((c, V) — 02)
RET]

[C-

Fig. 5. Rules for the causality relationship

Reverting back to the summary of the approach in Figure 4, Lines 7 and 8 identify allocation
sites that result in facts from which bad facts are reachable along the causality relationship. This
reachability computation is the same as the backward traversal that we had introduced in Section 1.3.
Basically, the allocation sites identified here are the ones that need to be refined. The k, value for
each such site s, is incremented by a certain value (the policy to determine this increment can be
provided to our approach). Lines 10 and 11 perform object-sensitivity analysis again, using the
updated k, values, and answer the queries again. The loop in lines 4-12 is repeated as long as the
user is willing to wait and as long as queries exist that are yet to be answered satisfactorily. Note,
there is no guarantee that all queries will be answered satisfactorily eventually.

3.1 lllustration Of Our Approach

We now illustrate our overall approach. Let us consider the downcast in Line 19 in the running
example (see Figure 1) as the query. From the initial “k=1" object sensitivity analysis (in Line 2 of
Figure 4), the facts that are produced regarding the downcasted variable t1 are t1 — og, t1 — o0s,
and t1 — og. Of these, the latter two facts are “harmless”, since sites s5 and sg allocate objects of
type B. t1 — og is the only bad fact, and is hence the only element of 7} (see Line 5 in Figure 4).

Line 6 of the approach is now applied. The causality relationship that is inferred in this line
is basically represented in the first two columns in Figure 2. The format of this figure is that in
each row, for the fact appearing in Column (1), its immediate causality predecessors are shown in
Column (2) of the same row. For instance, Row 9 in Figure 2 represents the following pairs in the
causality relationship ‘~»’: (1) ~» (11) and (7) ~» (11). These pairs are inferred by Rule C-RET in
Figure 5, triggered by the ‘return’ statement in Line 32 in the program.

From the format mentioned above about Figure 2, it follows that every fact that appears in
Column (1) in Figure 2 except fact (11) is a direct or transitive predecessor, via the causality
relationship, of the bad fact t1 — o5 (this bad fact appears in Row 14, Column (1), in Figure 2).

Moving on to the loop in lines 7-9 in Figure 4, the allocation site so satisfies the condition in
Line 7; this is due to the fact (7) in Figure 2, which is a transitive predecessor of the bad fact
t1 — o. Sites s3, s4 and sg also satisfy the condition in Line 7; this happens due to facts (3), (1)

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:11

and (2), respectively, in Row 1, Column 1 of Figure 2. Other allocation sites in the program, and
in particular, sites s; and sg, are not causality predecessors of the bad fact. Therefore, ks, k4, ke,
and ky get incremented; say all these get incremented to 2 (from 1). The next round of the object
sensitivity analysis, which happens in Line 10 in Figure 4, results in more refined points-to facts.
Some of these facts were shown in Figure 2, Column (3). This refinement causes the variables c1
and c2 to now point to two distinct objects, namely, 039 and 049. Earlier, they used to point to the
same object, namely, oy (see Column (1) in the same figure). As earlier discussed in Section 1.3,
this “non-aliasing” of c1 and c2 suffices to eliminate the bad fact t1 — o4 from this (second) round
of object sensitivity analysis. At this point, the downcast query has been answered satisfactorily
(since the bad fact has disappeared). Therefore, on this example, the approach terminates after just
the first iteration of the loop in lines 4-12 in Figure 4.

3.2 Key Properties Of Our Approach, and Relation To Program Slicing

In this part we discuss certain key aspects of the causality relationship ‘~»’ that we infer on the
points-to facts. We argue that traversal of the points-to facts using this relationship amounts to a
form of program slicing. We also discuss the key properties of this slicing approach, and novelty of
this approach over other forms of program slicing in the literature.

3.2.1 Relation To Program Slicing. The backward slicing problem [Weiser 1981], which has been
well-studied in the literature, is to identify a subset of statements in the program that are relevant to
producing values at a specified memory location of interest and/or at a specified program location
of interest. The specification mentioned above is typically called a “slicing criterion”. There also
exists the analogous problem of forward slicing.

Our fact-traversal approach also effectively acts like a slicing approach. This is because any pair
f1~> f2in the causality relationship is inferred by some rule in Figure 5, and any application of
any rule is with reference to a specific statement in the program (as mentioned in the antecedent
of the rule). Therefore, any traversal of the causality relationship also effectively traverses the
program statements that are associated with the causality pairs.

In our setting, the slicing criterion is a points-to fact, while the backward traversal from this
fact identifies statements that are responsible for the generation of this fact. In other words, our
traversal basically computes a data-dependence slice [Ferrante et al. 1987] of the given program,
using a given points-to fact as a criterion, ignoring all reads and writes of non-pointer memory
locations. Viewed another way, in a hypothetical program that makes use of only pointer values,
our approach would compute a complete data-dependence slice.

Our program slicing approach is a generalization of the “def-use analysis” presented by Milanova
et al. [Milanova et al. 2005]. Their approach determines which definitions in “put” statements reach
which uses “get” in statements. Our approach generalizes to all flows of data, including ones that
involve local variables, parameters, return values, etc. The precision of our approach is identical to
that of their approach when only writes to and reads from object fields are considered.

3.2.2 Relation to conditioned program slicing. In our approach, the slicing criterion need not be
just a variable, but is a points-to fact in general. That is, the criterion can be of the form ‘(c, v) — o’
or of the form ‘o;.f — 0,’. In the first case, the criterion indicates that we are only interested in
statements that cause the variable v to point to object o under a context c. Therefore, statements
that cause the variable v to point to other objects, or cause v to point to o but only in contexts other
than c, will not be included in the slice. Similarly, the second form of criterion mentioned above
identifies statements that cause field ‘f” of object o; to point to o,. For this reason, at a high-level
our approach can be considered as a form of conditioned slicing [Canfora et al. 1998; Field et al.
1995; Harman et al. 2001].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:12 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

To the best of our knowledge, our slicing approach is the first practical slicing approach to
employ the notion of pointing to a specific symbolic object as a slicing criterion. The previous
conditioned approaches mentioned above were typically concerned about conditions on primitive
values, and hence used expensive techniques like symbolic execution to compute the slices.

In our application, which is refinement of allocation sites for object sensitivity, slicing back from
specific facts can prevent allocation sites that cannot possibly help with the answering a query
satisfactorily from being refined. In our running example, if one were to simply slice back from the
variable t1 at Line 19 in the program (which is the downcast site), then all allocation sites in the
program will be reached (and hence, refined). However, if the bad fact ‘t1 — o4’ alone is used as the
slicing criterion, then allocation site s7 is not reached in the backward traversal. We had already
discussed in Section 1.4 how refinement of site s; would increase the cost of the analysis without
having any effect on the solution to the given downcast-safety query.

3.2.3 Precision and context-sensitivity of our slicing approach. In our slicing approach, a fact f;
would be reachable from a fact f; during a forward traversal along the causality relationship iff f;
is a direct or transitive ancestor of f, according to the antecedent-consequent relationship that
arises during the production of the points-to facts by the object sensitivity analysis (whose rules are
given in Figure 3). In other words, the context sensitivity of our slicing approach is based directly
on object sensitivity.

Context sensitivity has long been recognized to be important for precision [Horwitz et al. 1990].
The same is true in our application, where we identify allocation sites to refine. For instance, on
our running example, if our approach were not context sensitive, then even if we traversed back
only from the bad fact ‘t1 — o5’ along the causality relationship, we would still reach site s; and
refine it. In the interest of brevity we omit a detailed discussion of this phenomenon.

3.24 Contrast with SDG based slicing. Our slicing approach can be thought of as employing object
sensitivity to attain context sensitivity, as discussed in Section 3.2.3. In contrast, existing tools and
research approaches that we are aware of that provide support for program slicing [Chen and Xu
2001; Hammer and Snelting 2004; Liang and Harrold 1998; Sridharan et al. 2007; Wala [n. d.]] are
based on the traditional context-sensitive slicing approach that uses System Dependence Graphs
(SDGs) [Horwitz et al. 1990]. SDGs are an inter-procedural extension of program dependence
graphs (PDGs). SDG slicing is in principle fully context sensitive. Consider the partial example
program shown in Figure 6. The call to ‘fun1’ basically results in the value in v4 getting copied into
v5.m. Similarly, the call to ‘fun2’ results in the value in v6 getting copied into v7.m. SDG slicing has
the potential to determine these flows precisely’.

SDG slicing is based on building PDGs procedures for individual procedures. The PDG for
procedure funl1 is shown to the right in Figure 6 (the PDG for fun2 would be identical in structure).
The ovals represent variables or objects, the dashed arrows represent points-to edges, while the
two curved arrows indicate value flows that occur within the procedure. Note that the PDG of
fun1 needs its own copies of the heap objects 01, 0, and 03 (we have labeled these copies 011,012,
and 043). Similarly, fun2’s PDG (not shown in the figure), would need its own copies of these same
three objects. In short, the PDG of each procedure contains copies of all symbolic objects that are
potentially referred to in the procedure.

It has been observed in the literature that due to the reason mentioned above, SDG-based slicing
with data flows through heap objects tracked context-sensitively does not terminate successfully on
large programs [Sridharan et al. 2007]. Our own initial experiments with the Wala tool confirmed
the same. It were these observations that motivated us to come up with the alternative “object

Provided the writes to the object fields in the functions fun1 and fun2 are somehow treated as strong updates.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:13

1void funl(b, c¢) {

2 b.f.g.h = this;

3 c.m=b.f.g.h;

4}

s // fun2 is identical to fool
6

7main () {

8 // vl — o1, 01.f = 02, 02.9 = 03
9 // v4 —> 04, V5 — 05, V6 —> 05, VI — 07
10 v4.funl(vl, v5);

1 vé6.fun2(vl, v7);

Fig. 6. SDG slicing

sensitive” approach for context sensitive slicing that we actually propose in this work. On paper,
our approach is less precise than the SDG approach. In the example in Figure 6, our approach
would determine that v5.m and v7.m could both get their values from both v4 and v6. However, in
practice, SDG-based slicing does not terminate at all on large benchmarks; whereas our approach
terminates on large programs, and provides good precision for many code idioms, such as the ones
that are used in our running example.

3.3 Proof Of Completeness

Our approach is complete, in the sense that every allocation site that can possibly help answer any
of the given queries satisfactorily will necessarily be reached and marked for refinement during
the backward traversal. We provide an argument for this below.

3.3.1 Basic Definitions. An “allocation-site to length” map K is a function that maps each allocation
site g to a length bound k. That is, K(q) = kg, for any allocation site g. K; denotes the “initial” map,
which maps all allocation sites to 1. A step in the object-sensitivity analysis is an application of a
rule in Figure 3, which uses some facts and produces some facts. A derivation that is “based on” a
given map K is a sequence of steps such (a) any antecedent fact used by any step is produced in an
earlier step, and (b) any step that processes any allocation site g uses k; = K(q) as the name-length
bound.

3.3.2 When Is an Allocation-Site s, To Be Considered Relevant To Answering a Query Satisfactorily?
It is important to formalize this notion in order to eventually prove completeness. We claim that
an allocation-site s is relevant to answering a query satisfactorily if there exists a “bad” fact f;/
corresponding to this query, and there exist maps K, and K3 such that:

o K»(q) = Ki(q), for all allocation sites gq.

o Ks(sc) > Ky(s.), and K3(q) = K3(q) for all allocation sites g other than s,.

o f, € F1, f, € F2,and f; ¢ T3, where each ¥; is the set of all points-to facts derived by the
object-sensitivity analysis by using the map K;.

Basically, the points above imply that (i) s., possibly in conjunction with some other allocation
sites, when refined, can rule out the bad fact fb’ , (ii) those other facts when refined alone without s,
being refined alongside do not rule out f;.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:14 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

R1 RZ
Step 1 Step 1

Step j: processes site s., produces f. | Step j: processes site s, produces f/

Last step: produces bad fact f; Last step: produces bad fact f;/

Fig. 7. Corresponding derivations

3.3.3 Proof. If an allocation s, exists that satisfies the property above, then (1) there must exist a
derivation R; based on map K that finally infers f,. Wolog, we assume that this derivation has no
“useless” steps. That is, every step (except the last step) produces output facts that are used by some
subsequent step.

(2) Secondly, this derivation must process site s in some step j, and must produce a fact of the
form f! = ((¢’, v) — 0’) in that step, where v is the variable at the lhs of the allocation site s, and o’
is an object allocated at this site. The reason being, if this was not the case, then R, would also be a
valid derivation based on K3, which contradicts the assumption that f, ¢ 7.

(3) There exists a derivation R; based on K; such that: (a) R; has the same number of steps as R;.
(b) Ry processes the same sequence of statements as Rs. (c) in each step i, each fact f; that is used in
step i of Ry is a “suffix” of the corresponding fact f;' that is used in step i of Ry, and each fact f; that
is produced in step i of R; is a “suffix” of the corresponding fact f, that is produced in step i of R;.

A fact fi is said to be a “suffix” of another fact f; if both facts refer to the same variable name (or
field name), and the name of each object mentioned in f; is a suffix of the name of the corresponding
object mentioned in f}.

In this setting, we say that Ry corresponds to R;.

Due to space constraints, we are unable to argue why such a derivation R; must exist. The
argument is conceptually straightforward, but needs a detailed case-by-case analysis of each
inference rule of the object-sensitivity analysis. This result is available as a separate proof on the
home page of the second author of this paper.

As anillustration of the correspondence of a derivation to a more refined derivation, the derivation
of any of the facts in Column (3), Figure 2 can be taken as Ry, with the derivation of the corresponding
fact in Column (1) serving as the corresponding derivation R;. As further illustration, fact ‘(o4, cb)
— 09" corresponds to fact (04, cb) — 049’ in Row 5 of the figure, with fact (o4, cb) — 09’ being a
suffix of fact (04, cb) — 049’

Recall that run R; infers the bad fact f, in its final step. Let f, be the corresponding last fact
inferred by R;. Let f, be the fact corresponding to f;, produced in step j in R;. This entire situation
is represented schematically in Figure 7. In this figure, every step under the R; column corresponds
to the same step under R,.

We make the following assumption about any client query: if any fact f;’ is a bad fact for the
query, then any fact that is a suffix of f, is also a bad fact for the query. This assumption is naturally
satisfied by commonly known clients. For instance, if (0;;, t1) — ok;’ is a bad fact for a hypothetical
downcast safety query, then ‘(o0;, t1) — o0;" would be a bad fact, too. This is because (a) o; is allocated
at the same site as oy, and hence has the same type, and (b) a downcast site is potentially unsafe if
in any context the downcasted variable points to an object of the wrong type.

Therefore, f}, is also a bad fact. Since s, is processed in step j in Ry, by correspondence s, is
processed in step j by R; also. Since R; corresponds to R,, R; cannot have any useless steps, either.
That is, the fact f. produced in step j in R; is a direct or transitive ancestor of the final fact f;

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:15

kq=1, for all sites q
l Solution
Program P : Fi
—> Obj Ser.ls »| Client Client
Analysis
A
Fp
F:
T,:]
\ 4
Backward | Sites to | ObjSens
Traversal [refine R " Analysis
A
kg=3,VqeER
k,=1vq¢&R

Fig. 8. Tool architecture

according to the antecedent-consequent relationship that arises due to the rules of the object-
sensitivity analysis (Figure 3) during the production of the points-to facts by the steps of R;. Now,
by the argument at the beginning of Section 3 (before Section 3.1), f, must be a direct or transitive
predecessor of f;, as per the causality relationship ‘~»’ on the facts generated by R;. Therefore,
fc would be reached in a backward traversal from f; along the causality relationship on the facts
produced by R;. Since f, corresponds to f/, and since f/ is of the form ((¢’, v) — 0’), where o’ is an
object allocated at s., f. must be of the form ((c, v) — 0), where o is a suffix of o’. Therefore, 0 must
also be allocated at site s.. Therefore, f. (with s.) satisfies the condition required to be satisfied by
fi1 (with s;) mentioned in Line 7 of our approach (see Figure 4). Therefore, site s, would be marked
for refinement. This completes our argument.

4 IMPLEMENTATION

We have implemented our approach using the Petablox [Petablox [n. d.]] program analysis frame-
work. Petablox in turn uses Soot [Soot [n. d.]] as a front-end, and uses “bddbddb” [bddbddb [n. d.]]
as the backend Datalog engine.

4.1 Overall Tool Architecture

Our tool architecture is as shown in Figure 8. The overall workflow is achieved using Java code
(as an extension of the ‘JavaAnalysis’ class defined in Petablox). The individual steps are either
implemented in Datalog or in Java. The basic object sensitivity step (invoked two times in our
tool) is already available in Petablox (in the file ‘CtxtsAnalysis.java’). We modified this code to
take as an additional input a relation that specifies the ‘k,’ value to be used at each allocation site
g. The initial round of object sensitivity analysis (which is the first occurrence of the rectangle
labeled “Obj Sens Analysis”) uses k4 = 1 at all allocation sites q. The output set of facts from this,
namely, 77, is fed into the client analysis. We have implemented two different client analyses for
our evaluation (discussed in further detail later in this section). A client analysis uses the set of
points-to facts given to it, and emits a “satisfactory” or “unsatisfactory” result for each query. It also
emits the set of all “bad” facts 7 corresponding to all queries that were not answered satisfactorily.
We have implemented our client analyses using Datalog.

The set of all facts 7; as well as the set of bad facts 7 are fed as input to our backwards traversal
algorithm (see the rectangle labeled “Backward Traversal” in Figure 8). We have implemented this

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:16 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

traversal in Datalog. Note that our tool does not actually create and persist the causality relationship
‘~»’. Instead, our Datalog rules access the points-to facts ¥;, and starting from the facts that are
also in 3, find the direct and transitive predecessors of these facts along the causality relation
via a fix-point computation. In other words, effectively, in each step of this computation, a set of
facts that are already in the growing fix-point set are taken, are considered as an antecedent of one
of the rules in Figure 5, and the source fact(s) in the causality relationship that is present in the
consequent of this rule are added to the growing fix-point set.

For instance, our Datalog rule to process an assignment statement of the form ‘v = w’ is as
follows:

TRCD(c@,w,c1) :- MobjVarAsgnInst(_,v,w), TRCD(c@,v,c1), CVC(cO,w,cl).

The relation TRCD is a part of the growing fix-point set that we compute. A tuple (c0,w,c1) being
added to the relation “TRCD’ means that points-to fact ‘(c0, w) — c1’ is reached in the backward
traversal. ‘MobjVarAsgnInst(_,v,w)’ is a reference to a built-in Petablox relation, and evaluates to
true if ‘v = w’ is an assignment statement in some method in the program. ‘CVC(c0,w,c1)’ is also a
reference to a built-in relation, and evaluates to true if fact ‘(c0, w) — c1’ is in #;. The rule above
basically implements Rule C-AsGN in Figure 5.

From all the facts reached in this traversal, the ones caused by allocation statements are identified,
and the corresponding allocation sites are placed in the output set R (which is the set of allocation
sites to refine). The object sensitivity analysis is applied again now (see the second occurrence of
the rectangle labeled “Obj Sens Analysis”). In this second round of analysis, we set k4 to 3 for all
allocation sites in the set R. Note, we have chosen the value 3 as a compromise, as higher values
tended to increase the time requirement quite a lot. The resultant points-to facts from this round
(i.e., F;) are fed to the same client analysis again. This time, the solutions to the queries from the
client are taken as the final solutions.

By default, our implementation performs only iteration of the outer loop in our approach (see
Figure 4). In other words, it performs only one round of refinement. We do have an optional
component in our implementation which performs a second round of refinement, using k; = 5 at
allocation sites that are marked for refinement in this round of refinement (and using k, = 1 at all
other allocation sites).

Petablox allows certain parts of the application (or libraries) to be excluded from the scope of
the analysis if high efficiency is required. Excluding parts of the code from analysis can introduce
unsoundness. Hence, in our experiments we do not exclude any parts of the application or libraries
from the scope of the analysis.

4.2 Modified Object Naming Scheme

We made another modification within the core object sensitivity analysis, which is orthogonal
to our primary contribution of refinement. This is in cognizance of the fact that programs often
go through deep layers of calls through library code. Since the names of objects are suffixes of
their true contexts, this process ends up removing allocation site IDs in the “application layer”
from the object’s names. This ends up reducing precision in the application layer, while preserving
precision in the library layer. Whereas, developers might prefer more precision in the application
layer, where the code that they wrote themselves resides.

Therefore, we adopt a modified object naming scheme as a heuristic. Whenever multiple allocation
sites from the library layer appear consecutively in an object’s name, we retain only the last (i.e.,
deepest) site among these library sites. The skipped library site names then do not count towards the
name-length of the object. For instance, say 0gpc1mn is a full context name. Say a, b, ¢ are allocation
sites in the application layer, and [, m, n are allocation sites in the library layer. Say the name-length

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:17

bound k,, at site n is 3. Instead of using the pure suffix 0;,,,, we use the modified name oy.,. Note
how this modification increases the portion of the name that is devoted to application sites and
reduces the portion of the name that is devoted to library-layer sites.

This heuristic is easily seen to be sound. Note, we always retain the deepest allocation site’s
name in any object’s name, because this site indicates the allocation site where this object was
allocated, which is a required information for most client analyses.

Our implementation segregates application allocation sites from library allocation sites using a
set of patterns. The allocation sites that occur in packages whose names match java’, sun’, javax.,
com.sun’, com.ibm” or org.apache. harmony. are considered library allocation sites, while all other
allocation sites are considered application allocation sites.

It is notable that the same intuition has been earlier exploited in the context of k-CFA by
Medicherla et al. [Medicherla and Komondoor 2015]. Also, this intuition is exploited in a more
general way in the work of Tan et al. [Tan et al. 2016], which also introduces “holes” in object
names to reduce unnecessary context information.

4.3 Client Analyses

The first client analysis that we implemented is checking safety of downcasts. This is a commonly
used client in various research papers [Lhotak and Hendren 2006; Sridharan and Bodik 2006; Zhang
et al. 2014].

The second client we implemented is one that identifies “immutable” allocation sites. These are
allocation sites that produce objects such that after execution returns from the constructor, the
“root” object created at the site as well as other objects reachable from the root object (which would
have been linked to the root object within the constructor) are not mutated further anywhere in
the program. Identifying immutable allocation sites has various applications [Haack et al. 2007;
Marinov and O’Callahan 2003; Porat et al. 2000], such as assisting program understanding, and
enabling code optimizations and refactorings.

To check the mutability of any allocation site s, conservatively, we check if there is any “put”
statement anywhere in the program (but not inside the constructor corresponding to the allocation
site) of the form “v.f = w”, and any points-to fact of the form (c, v) — o, where o is either an object
allocated at site s, or is reachable from any (symbolic) object allocated at s, via a sequence of one or
more field dereferences as per the points-to facts. If such “put” statements exist, we conservatively
declare the site s; as being possibly mutable, and include all facts such as the one mentioned above
into the set of bad facts 7.

5 EMPIRICAL RESULTS

For our evaluations, we considered 9 real-world large programs from the DaCapo 2006 benchmark
suite [Blackburn et al. 2006]. We analyzed these programs using our approach, using both the
downcast safety as well as the immutable site client analyses. For the downcast safety client,
following previous researchers [Sridharan and Bodik 2006], we checked only downcast sites in
the application layer. For the immutability client also we checked only the allocation sites in the
application layer. In both cases, we distinguished the application layer from the library layer using
the library package patterns that we had mentioned in Section 4.2.

To serve as a baseline, we also applied the plain object sensitivity analysis for each client, which
uses a uniform value of k at all allocation sites. We tried different values for k, such as 1, 2, and 3.

All experiments were performed on desktop computers with Intel i7 processors, with 40 GB allot-
ted to the VM for each analysis. We used a uniform time budget of 10 hours in all our experiments,
and stopped any run of any analysis on any benchmark if it did not complete within that time.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:18 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

Before we report our actual empirical results, we mention an empirical validation of the com-
pleteness of our slicing approach (see Section 3.3), which we performed. For this, we compared the
precision of our approach with kg set to 2 (instead of 3) at all sites that are marked for refinement
by the slicing, with the precision of the baseline approach (which uses k; = 2 at all allocation
sites). For this validation, we disabled our modified object naming scheme (Section 4.2), because
this scheme is not incorporated in the baseline approach and because we want an apples-to-apples
comparison. We did the comparison mentioned above on 6 benchmarks, and observed that the
number of downcast warnings from both approaches were identical in all six cases. This serves as
an empirical validation that our slicing marks for refinement all allocation sites that could possibly
impact the precision of the answer to the given query.

We structure the rest of this discussion in the form of four research questions (RQs).

5.1 RQ 1: What Is the Scalability and Precision Of Our Approach For Downcast Safety?

The results for the downcast safety analysis are summarized in Table 1. Column 1 shows the
benchmark program on which the analysis was performed. Column 2 shows the total number of
application-layer downcasts sites (these are the downcasts that were checked by the analyses).
Column 3 shows the total number of allocation sites in the program. Column 4 shows the number of
downcasts in the program that were proved as safe using a simple, inexpensive context-insensitive
(CI) points-to analysis. Column 5 shows the time taken by the CI analysis. All timings we report
are in ‘H:MM’ format, and are end-to-end timings, inclusive of all rounds and steps. Note, in
columns 4, 7, and 9, ‘R’ means number of downcasts (R)esolved as safe.

Column 6 shows the highest value of k for which the baseline object sensitivity analysis ter-
minated in the allocated time budget. Columns 7 and 8 show the number of downcasts that were
resolved as safe and time taken, by this baseline approach, when the value in Column 6 is used
uniformly as the value of k at all allocation sites.

Similarly, Columns 9 and 11 show the number of downcasts resolved as safe and time taken
by our approach, respectively. Column 10 shows the number of allocation sites refined by our
approach (i.e., given a value k; = 3 in the second round of object sensitivity analysis). Note, for
any benchmark for which our approach hit the 10-hour timeout, we record a ‘DNT’ (i.e., Did Not
Terminate) in Column 11. In this scenario, we record in Column 9 the results produced by the first
round of our approach (i.e., the round that uses k; = 1 uniformly at all allocation sites). This round
terminates quite quickly on all benchmarks.

Finally the precision gain of our approach over the base object sensitivity approach is shown
in Column 12. Downcast sites that resolved as safe by CI are considered “easy”, and are excluded
from consideration while calculating gain. In other words, the gain in each row is calculated using
the following formula, where the numbers mentioned are column numbers. Note that previous
researchers [Zhang et al. 2014] have also excluded queries resolved by CI from their gain calculations.

gain = ((9) = (4))/((7) - (4))

We observed that with the baseline object sensitivity approach, as the value of k increases, the
time taken increased substantially. Indeed, none of the benchmarks could be analyzed within the
time budget of 10 hours with k, set to 3 at all allocation sites. Since our approach uses k; = 3 at
selected allocation sites, it scales much better. In particular, on two benchmarks, namely, ‘pmd’ and
‘sunflow’, the baseline approach did not terminate within the time budget with even k4 = 2 at all
sites, whereas our approach terminates. And on 5 other benchmarks, both approaches terminate,
but our approach is 2 to 7 times faster.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:19

Table 1. Precision and scalability for downcast safety client analysis

(1)) @] @ 6 |© M| @ | O q)| 1y | (12)
program | total | #alloc | CI| CI | base | base | base | our | our | our | gain
casts sites R | time k R | time R | sites | time

antlr 187 8933 39 | 0:02 2 123 | 6:11 | 132 | 1977 | 1:31 1.11
bloat 1323 10053 | 222 | 0:02 2 452 | 9:48 | 291 | 3534 | DNT | 0.30
chart 665 13861 96 | 0:04 1 139 | 2:02 | 139 | 3599 | DNT | 1.00
pmd 925 11774 | 408 | 0:04 1 432 | 0:44 | 555 | 2702 | 9:24 6.12
xalan 49 12052 16 | 0:04 2 36 | 8:01 38 | 1695 | 1:04 1.10
avrora 337 11252 42 | 0:03 2 140 | 6:03 | 149 | 3777 | 2:47 1.09
sunflow 138 13642 43 | 0:04 1 63 | 1:05 | 101 | 2505 | 5:31 2.90
luindex 215 9025 99 | 0:02 2 141 | 4:34 | 155 | 1980 | 2:00 1.33
lusearch 237 8700 | 67 | 0:02 2 150 | 4:31 | 154 | 1963 | 1:32 | 1.05

Geometric mean: | 1.29

Our approach is significantly more precise than the baseline approach. On 7 of the benchmarks,
namely, all the ones other than ‘bloat’ and ‘chart’, our approach was able to resolve more queries
as safe than the object sensitivity analysis was able to using the highest feasible value of k within
the budget of 10 hours. In the extreme case of ‘pmd’, the precision of our approach is more than 6
times that of the baseline approach. The geometric mean of the gain of our approach across all the
benchmark programs is 1.29.

We now make a few extra observations about our approach and implementation. We measured
the contribution to the total running time of our approach by the backward slicing component (i.e.,
the causality rules traversal). We found that this was close to two hours for the two benchmarks
‘bloat’ and ‘chart’ (where our approach exhausted its time budget), and was in the range of 25-56
minutes for the remaining 7 benchmarks.

We also measured the “gain” of our approach over a simple baseline that uses k; = 1 at all
allocation sites. This was just to see the effect of the higher value of k; = 3 at some sites. The mean
gain of our approach with this calculation works out to 2.91 (contrast this with the gain of 1.29
mentioned above).

Finally, we also experimented with two rounds of refinement (see Section 4.1) on the benchmarks
on which the first round finished relatively quickly. These are the benchmarks antlr, xalan, luindex,
and lusearch. On all these benchmarks, unfortunately, the second round of refinement marked
no extra downcast sites as safe that the previous round did not mark as safe. Note, however, that
this is not a definitive confirmation that higher values of k (above 3) are not helpful at all. With
unlimited time budgets, and with values of k even higher than 5, it is possible that the approach
could potentially provide higher precision on some of the benchmarks.

5.2 RQ 2: What Is the Scalability and Precision Of Our Approach For Immutability?

We conducted a similar evaluation for the immutable site client as we did for downcast safety. The
results are summarized in Table 2. The columns have similar meanings as the similarly named
columns in Table 1. Column 2 alone has a distinct meaning, which is the number of allocation sites
that are in the application layer that are checked by the various analyses. Another thing to note is
that the numbers under the ‘R’ (Resolved) columns in this table are the number of allocation sites
(from among the sites referred to in Column 2) that are declared as immutable by the respective
analyses.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:20 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

Table 2. Precision and scalability for immutable site client analysis

1 @ G| @] 6) | ® @] ©® ©) | (10)| (11)
program | # app alloc CI CI | base | base | base | our our | our | gain
sites R | time | &k R |time | R | sites | time

antlr 1462 340 | 0:13 1 824 0:35 | 937 | 4269 | 6:25 | 1.23
bloat 2552 478 | 0:20 1 1087 | 0:53 | 1087 | 5348 | DNT | 1.00
chart 3671 | 1999 | 0:32 1 1817 | 1:18 | 1817 | 6691 | DNT | 1.00
pmd 1809 432 | 0:26 1 691 1:48 | 691 | 5369 | DNT | 1.00
xalan 2356 | 2094 | 0:16 2 2188 | 7:13 | 2188 | 4036 2:32 | 1.00
avrora 3712 | 1335 | 0:18 1 1630 | 0:37 | 2375 | 6089 | 6:25 | 3.52
sunflow 1151 717 | 0:22 1 646 2:45 | 646 | 6546 | DNT | 1.00
luindex 1417 334 | 0:16 1 633 0:55 | 648 | 4725 6:24 | 1.05
lusearch 1125 | 290 | 0:14 | 2 549 | 8:39 | 553 | 4513 | 4:18 | 1.01

Geometric mean: | 1.19

Both analyses take more running time for this client than they do for the downcast client. This
is primarily due to the increased number of queries to check (contrast the numbers in Column 2 in
the two tables). The baseline approach scales to k = 2 on only two benchmarks, namely, ‘xalan’ and
‘lusearch’. On these two benchmarks, the baseline analysis takes at least 2 times more than running
time than our approach. On three benchmarks, namely, ‘antlr’, ‘avrora’, and ‘luindex’, the baseline
approach hits the timeout with k = 2 at all allocation sites, whereas our approach completes both
rounds. On four other benchmarks, the baseline approach does not scale to k = 2 and our approach
hits the timeout. Therefore, to conclude, our approach was faster than the baseline approach on 5
benchmarks, while neither approach scaled to the four remaining benchmarks using values of k
greater than 1.

Regarding precision, our approach gave better precision than the baseline approach on 4 bench-
marks, and the same precision on 5 benchmarks. The geometric mean of the gain in precision of
our approach over the baseline is 1.19. In the extreme case of ‘avrora’, the precision of our approach
is 3.52 times the precision of the baseline approach. It is notable that the comparatively poorer
performance of our approach on this client vis-a-vis its performance on the downcast safety client
is due to the increased number of queries, which cause an increased number of allocation sites to
be refined, which in turn causes the timeout to be hit for more benchmarks.

As with RQ 1, we now make a few extra observations. The contribution to the total running
time of our approach by the backward slicing component (i.e., the causality rules traversal) was
in the range of 20-45 minutes across all nine benchmarks. The “gain” of our approach over the
simple baseline that uses k;, = 1 at all allocation sites was 1.22 (contrast this with the gain of
1.19 mentioned above). Finally, we tried two rounds of refinement (see Section 4.1) on the two
benchmarks on which the first round finished relatively quickly, namely, xalan and lusearch. On
both these benchmarks, unfortunately, the second round of refinement marked no extra allocation
sites as immutable that the previous round did not mark as safe.

5.3 RQ 3: What Is the Contribution Of Our Modified-Naming Scheme, Described in
Section 4.2, To the Effectiveness Of Our Approach?

The main contribution of this paper is a backward slicing technique to determine important
allocation sites where extra precision is required to rule out a bad fact. The modified naming
scheme that we use (which we abbreviate as “MNS”), described in Section 4.2, is another important

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:21

component in our implementation. In this RQ we evaluate the importance and interplay of these
two features.

Our first attempt to answer this question was to incorporate MNS into the baseline object
sensitivity approach also, and run it with k = 2 and with MNS at all allocation sites. The idea was
that if the thus-enhanced baseline approach performed as well as our approach, then selective
refinement using slicing would be shown to be not very useful. However, we discovered that this
enhanced baseline approach did not terminate on even the smallest of the Dacapo benchmarks,
even after 24 hours of running. We surmise that the reason for this is that MNS implicitly has a
similar effect as using a higher value of k, while actually using a lower value of k. In other words,
using MNS with k = 2 at all allocation sites may have a similar effect as using k = 3 at all allocation
sites. An exponentially greater number of contexts is hence generated, resulting in non-scalability.

We then tried another experiment, which was to run a variant of our approach, which incorporates
MNS, but using k = 2 (instead of k = 3) at allocation sites that are reached in the slice. k = 1 was
used at all other sites. We tried this variant on 6 benchmarks for the downcast client, and on 4
benchmarks for the immutability client. This variant of our approach obviously scaled well (as it
uses a lower of k at refined allocation sites than the main variant of our approach). However, the
surprising finding was that on 7 of the 10 analysis runs mentioned above, this variant generated
the exact same number of warnings as our main variant, which uses k = 3 at refined allocation
sites (along with MNS). And on 5 of the 10 runs, the baseline analysis with k = 2 at all allocation
sites terminated and generated more warnings than this variant.

The experiments above lead us to the following empirical conclusions:

e k = 2 at refined sites with MNS gave higher precision than k = 2 at all sites without MNS. In
fact, its precision was close to that obtainable by using k = 3 at all refined sites. This implies
that MNS has a similar effect as using a value of k that is effectively higher than the value
actually used. This was a surprising but interesting conclusion for us.

e Our slicing based approach to determine allocation sites that are pertinent to the generation
of the bad fact is equally useful in the context of applying MNS as it is in the context of
explicitly using higher values of k. The slicing basically enables MNS overall to scale by
allowing us to use k = 1 (and hence, not use MNS) at allocation sites that are not relevant to
the bad facts. This is clearly evidenced by the fact that MNS does not scale when applied in
conjunction with k = 2 at all allocation sites, but scales when applied in conjunction with
k = 2 at allocation sites that are in the slice.

5.4 RQ4: How Does Our Approach Compare With a Recently Proposed
Approach [Zhang et al. 2014]?

This recently proposed approach is closely related to our approach. Their approach is also iterative,
in the sense that in each iteration it adds allocation sites to the set of sites to refine. However, in
each iteration they use a precise (but expensive) MaxSAT based approach to identify a few sites
that are definitely relevant to the imprecision in solving the queries (in our approach this relevance
is established only conservatively). They then increase the k, values for these sites q to a relatively
high value, namely, 10. Another difference from our approach is that their initial analysis is the CI
analysis, whereas our initial analysis is k = 1 object sensitivity analysis.

We used as-is their implementation of their approach, which is included within Petablox [Petablox
[n. d.]]. In fact, in addition to the structural similarity between our approach and theirs, the other
reason why we chose to compare our approach with theirs was the opportunity to perform an
apples-to-apples comparison using the same front-end, same underlying implementation of object
sensitivity analysis, etc. We ran their approach with their default configuration settings, which

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:22 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

Table 3. Precision and scalability comparison with Zhang et al’s analysis

) @ & @ ©G) | (©)
program | total | their | their their | our
casts R | time | # iterations R

antlr 187 131 1:06 16 | 132
pmd 925 413 | DNT 555

xalan 49 25 | DNT
avrora 337 51 | DNT
sunflow 138 51 | 2:57*
luindex 215 107 | 1:46*
lusearch 237 76 | DNT

toba-s 62 13 | 2:27
javasrc 110 41 | 2:47

154

0| O || WU W
—
ol
o

were shared with us by the Petablox developers via private communication. However, we did make
one change to their default configuration. By default they exclude certain libraries from the scope of
the analysis. We changed this configuration in their analysis in order to not exclude anything from
the scope of analysis; this is to ensure a uniform comparison with the results from our approach.
We had discussed in Section 4.1 the reason why it is undesirable to exclude libraries from the scope
of the analysis.

For this experiment, we used only the downcast safety client. This is because their code already
includes support for this client. Applying their analysis on a new client like immutability analysis
would have required more work from us. This is because in their approach the queries are resolved
in conjunction with the points-to analysis in each iteration; this necessitates addition of non-trivial
code to their approach to deal with each separate client.

The results from their approach are summarized in Table 3. Column 2 in Table 3 shows the
total number of downcasts checked. The numbers in this column match the numbers in Column 2
in Table 1. Note, the benchmarks ‘bloat’ and ‘chart’ are excluded from Table 3, because of some
difficulties we faced in running their tool on these benchmarks.

Column 3 in Table 3 shows the number of downcasts resolved to “safe” by their approach, while
Column 4 shows the time taken by their approach. Benchmarks on which their analysis did not
terminate within the time budget are indicated using a ‘DNT’ in Column 4. Benchmarks on which
their analysis terminated abnormally before hitting the timeout are indicated by an asterix (“*”).
Column 5 shows the number of iterations completed successfully by their analysis before normal
termination or abnormal termination or before the timeout was reached. A zero here means that
only the initial CI round was completed. Note, the numbers in Column 3 indicate the number of
queries resolved to “safe” in the last successful iteration before normal termination or abnormal
termination or timeout. Column 6 shows the number of downcasts resolved as safe by our approach
(these numbers are simply taken from the ‘our R’ column in Table 1). In addition to the seven
Dacapo benchmarks, for this comparison we also included two smaller benchmarks which they
refer to in their paper [Zhang et al. 2014]. These are toba-s and javasrc.

Note that on two of the seven Dacapo benchmarks, their approach terminates abnormally within
the time budget. This was likely due to certain memory usage issues in the MaxSAT solver. Their
implementation by default uses the “mifumax” MaxSAT solver, which appears to work well on
small-to-medium sized instances. But on larger instances, since the problem is fundamentally
computational challenging, mifumax does not scale.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:23

With regard to precision, it can be noted that our approach gives equal or more precision than
their approach on all the benchmarks. On the larger benchmarks, the main reason for this appears
to be the non-scalability of MaxSAT solving to larger instances. On the smaller benchmarks, we
believe that our approach is able to match their approach on precision because values of k as high
as 10 are not required to obtain as much precision as is possible by increasing object-name lengths
alone.

5.5 Limitations and Discussion

We are very encouraged by the precision and scalability of our approach. Within the given time
budget of 10 hours, our approach exhibited better precision than the baseline object sensitivity
analysis on all benchmarks other than ‘bloat’ for the downcast client, and on four benchmarks for
the immutability client. The baseline approach outperformed our approach in only one instance — on
‘bloat’, for the downcast client. Our approach also equals or out-performs the recent MaxSAT-based
refinement approach [Zhang et al. 2014] on all benchmarks.

This said, there exist certain limitations in our implementation and experimentation methodology.
A clear limitation is due to the implementation of the Milanova approach that is available within
the Petablox tool, which we use. This efficiency of this implementation is somewhat low. We
surmise that its efficiency could be improved, which would benefit both our analysis as well as the
baseline analysis. Another limitation is with regard to using multiple rounds of refinement. We
have tried this to some extent, with no observed increase in precision, but could have tried it more
systematically for all benchmarks.

The default implementation of the approach of Zhang et al., which we used in our compar-
ative evaluation, uses precise MaxSAT solving. An open question is how their approach would
perform using approximate solvers. We have not explored so far whether and how to make their
implementation of their approach use approximate solvers.

6 RELATED WORK

There is a very large body of work that has been reported in the literature about points-to analysis
in general. In this section we focus our discussion primarily on client-driven refinement approaches
that are closely related to our approach. Towards the end of the section we also touch upon other
approaches that refine abstractions, although not necessarily in the context of a given client.

The approach of Guyer et al. [Guyer and Lin 2003] is one of the early approaches that proposed
client driven refinement of points-to analysis. A client analysis and an inexpensive variant of
points-to analysis are initially performed side-by-side. Both analyses are assumed to be specified as
data-flow analyses. During this joint analysis, pointers that happen to pollute the client analysis
because they have potentially imprecise points-to sets are identified. This is done using a form of
slicing. Polluting pointers identified in this way are then refined, either by tracking value flows into
them flow sensitively, or by refining the depth of context sensitivity of procedures in which these
pointers are set. The analysis is then repeated again, to see if better results are obtained. Some
other differences between their approach and ours are that (a) the form of slicing they use appears
to be context insensitive, which can be imprecise, (b) they target refinement of call-site sensitivity,
and not of object sensitivity, and (c) they target C programs.

Sridharan et al. [Sridharan and Bodik 2006] propose a CFL (Context Free Language) reachability
based approach to perform a points-to analysis jointly with the analysis required for a query. A
CFL-annotated graph is used, wherein paths encode value flows. Initially extra edges are present in
the graph, which speeden up the analysis but reduce precision. Precision is reduced by not insisting
on balanced calls and returns, and not insisting when there is a path from a statement of the form
“v.f = w” to a statement of the form “t = s.f” that v and s point to a common object. This is hence a

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:24 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

coarse abstraction. For queries that cannot be resolved satisfactorily using coarse abstractions, the
imprecision-inducing edges are removed in a stagewise, iterative manner, to see if the precision
improves. Our approach differs from this approach in being based quite directly on program slicing,
and in targeting refinement of object sensitivity rather than call-site sensitivity.

The approach of Liang et al. [Liang and Naik 2011] is quite closely related to our approach.
Their approach works on a Datalog analysis that jointly performs points-to analysis and answers
the queries. In an initial round of analysis, a cheaper abstraction is used. The approach then
traverses the Datalog derivation in the backward direction to identify all instances of abstraction
in the analysis that are potentially contributing to the unsatisfactory resolution of the queries.
These abstractions are then refined in subsequent rounds. The authors of this paper note that
their traversal is analogous to slicing. However, their approach needs the points-to analysis to be
implemented in Datalog. In fact, they add instrumentation rules to the Datalog analysis, and use
the output from these instrumentation rules to traverse the primary derivation in the backward
direction. In contrast, our approach does not assume that the points-to analysis is written in Datalog,
and does not rely on instrumenting the analysis. Furthermore, in their empirical evaluation, Liang
et al. use mostly smaller programs, and use only two of the programs from the Dacapo benchmark
suite, namely, lusearch and avrora. They also do not report running times for their analysis.

Zhang et al. [Zhang et al. 2014] extend upon the work mentioned above. Instead of refining all
abstractions that appear to contribute to imprecision, they refine abstraction instances iteratively.
In each iteration they identify, using a MaxSAT solver, a small number of abstraction instances that
necessarily induce imprecision across all possible derivations, and refine only these abstraction
instances. In this way, they are able to refine more deeply certain abstraction instances that are
definitive causes of imprecision. We presented in Section 5 a comparative empirical evaluation of
their approach and our approach on a range of benchmarks.

All the approaches mentioned above have some common characteristics that our approach does
not share. One, they intertwine the points-to analysis with the query solving. Secondly, they need
certain forms of instrumentation to be applied into the points-to analysis itself. These features make
for good conceptual elegance, and can increase precision at least for smaller programs. However,
our approach would be simpler to implement, because we do not make any assumptions on how
the points-to analysis is implemented, and do not need to instrument it to observe its steps in
a fine-grained manner. Our backward traversal is a pure post-pass on the facts that result from
points-to analysis.

For a given client analysis, the approach of Oh et al. [Oh et al. 2014] relies on a given, less precise
but more efficient pre-analysis that is a sound abstraction of the main analysis. Their approach
performs the pre-analysis with full context sensitivity, and uses the results of this analysis to identify
calling contexts (and their suffixes) that may need to be distinguished to achieve good precision in
the main analysis. The main analysis is then performed using appropriate refinement such that the
identified contexts are distinguished, and other contexts are not necessarily distinguished.

We now briefly mention two recent approaches that perform selective refinement of abstractions,
but not necessarily in the context of a client analysis. In “introspective analysis” [Smaragdakis
et al. 2014], the idea is to perform an initial context insensitive analysis, and then use certain
metrics to identify regions of the program where high context sensitivity would cause explosion
in analysis time. A subsequent round of context sensitive analysis is then performed, with high
context sensitivity employed at the remaining regions. The “still k-limiting” approach of Tan et
al. [Tan et al. 2016] also uses a fast context-insensitive prepass. In this pass they identify portions
of context strings that can be elided, without reducing the distinguishing power of the context
strings. The resulting context strings (that could have “holes” in them) are used in a subsequent
context sensitive analysis.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:25

A paper by Reps [Reps 1995] is interesting to mention, even though it does not relate to points-to
analysis or to refinement. This paper provides a Datalog analysis for inter-procedural slicing.
However, heap objects are not addressed.

7 CONCLUSIONS AND FUTURE WORK

In this paper we presented a program slicing based approach for refinement in object sensitivity
analysis. The approach is based on performing an initial low context-sensitivity analysis, and then
identifying points-to facts that are potential contributors to imprecision in answering the given
queries. The allocation sites that potentially cause these “bad” facts are then identified. These sites
are refined to greater context depths, and the analysis re-applied. Our approach has similarities with
certain previous approaches. Its main novelty, however, is in using a form of slicing on the facts
themselves, to find the impacting allocation sites. We feel this approach is simpler than previous
approaches, and potentially more scalable. We also feel that our slicing sub-routine could be of
interest standalone, because previous slicing approaches are predominantly SDG-based, which does
not appear to be a scalable technique. We have also proved the completeness of our refinement
approach theoretically.

An evaluation of our approach empirically on a set of large benchmarks revealed that our
approach scales readily to large benchmarks, while providing more precision than a baseline
approach as well as a recently proposed refinement approach.

Several improvements to the implementation and the experimentation methodology used in this
paper are possible; we had mentioned some of these in Section 5.5. Conceptual advances to the
approach are also possible. Our approach still marks a lot of sites for refinement, which prevents
very long object names to be used at refined sites. A staged approach for refinement could be tried,
that somehow ranks the sites that have been identified in descending order of their likelihood that
they will positively impact the query. Now, sites can be refined in rank order, either one by one,
or in groups, using higher values of k;. More “refined” notions of refinement itself could also be
explored; for instance, instead of just increasing the name-length at an allocation site that is to be
refined, perhaps some important contexts that need to be distinguished at that site could also be
identified. It would be interesting future work to explore all these directions. An ambitious target
for any future points-to analysis approach would be to be very precise, while being so efficient in
terms of both running time and memory requirement that it could be used interactively within
a development environment while a develop is writing new code or making changes to existing
code.

REFERENCES

bddbddb [n. d.]. bddbddb: BDD-Based Deductive Database. http://bddbddb.sourceforge.net/. ([n. d.]).

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,
Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanovi¢, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006.
The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proc. 21st Annual ACM SIGPLAN Conf. on
Object-oriented Programming Systems, Languages, and Applications (OOPSLA °06). 169-190.

Michael Burke, Paul Carini, Jong-Deok Choi, and Michael Hind. 1994. Flow-insensitive interprocedural alias analysis in the
presence of pointers. In International Workshop on Languages and Compilers for Parallel Computing. Springer, 234-250.

G. Canfora, A. Cimitile, and A. De Lucia. 1998. Conditioned program slicing. Information and Software Technology 40, 11
(1998), 595-607.

Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. 1999. Relevant Context Inference. In Proc. ACM Symposium
on Principles of Programming Languages (POPL ’99). ACM, 133-146.

Zhengiang Chen and Baowen Xu. 2001. Slicing Object-oriented Java Programs. SIGPLAN Not. 36, 4 (April 2001), 33-40.

Doop [n. d.]. Doop program analysis framework. https://bitbucket.org/yanniss/doop. ([n. d.]).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

http://bddbddb.sourceforge.net/
https://bitbucket.org/yanniss/doop

142:26 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. 1994. Context-sensitive Interprocedural Points-to Analysis in the
Presence of Function Pointers. In Proc. ACM Conference on Programming Language Design and Implementation (PLDI *94).
ACM, 242-256.

Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program dependence graph and its use in optimization.
ACM Transactions on Programming Languages and Systems (TOPLAS) 9, 3 (1987), 319-349.

John Field, G. Ramalingam, and Frank Tip. 1995. Parametric Program Slicing. In Proc. Int. Symp. on Principles of Prog. Langs.
(POPL). 379-392.

Samuel Z Guyer and Calvin Lin. 2003. Client-driven pointer analysis. In International Static Analysis Symposium (SAS).
Springer, 214-236.

Christian Haack, Erik Poll, Jan Schéfer, and Aleksy Schubert. 2007. Immutable objects for a Java-like language. In European
Symposium on Programming. Springer, 347-362.

Christian Hammer and Gregor Snelting. 2004. An Improved Slicer for Java. In Proc. 5th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering (PASTE "04). ACM, 17-22.

M. Harman, R. Hierons, C. Fox, S. Danicic, and J. Howroyd. 2001. Pre/post conditioned slicing. In Proc. Int. Conf. on Software
Maintenance (ICSM). 138-147.

Susan Horwitz, Thomas Reps, and David Binkley. 1990. Interprocedural slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems (TOPLAS) 12, 1 (1990), 26—-60.

Vini Kanvar and Uday P Khedker. 2016. Heap abstractions for static analysis. ACM Computing Surveys (CSUR) 49, 2 (2016),
29.

Ondfej Lhotak and Laurie Hendren. 2006. Context-sensitive points-to analysis: is it worth it?. In International Conference on
Compiler Construction. Springer, 47-64.

Donglin Liang and Mary Jean Harrold. 1998. Slicing objects using system dependence graphs. In Proc. International Conference
on Software Maintenance. IEEE, 358-367.

Percy Liang and Mayur Naik. 2011. Scaling Abstraction Refinement via Pruning. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’11). ACM, 590-601.

Ravichandhran Madhavan, Ganesan Ramalingam, and Kapil Vaswani. 2012. Modular heap analysis for higher-order
programs. In International Static Analysis Symposium. Springer, 370-387.

D. Marinov and R. O’Callahan. 2003. Object equality profiling. In Proc. Conf. on Object-Oriented programing, Systems,
languages, and applications.

R. K. Medicherla and R. Komondoor. 2015. Precision vs. scalability: Context sensitive analysis with prefix approximation. In
2015 IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER). 281-290.

Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2005. Parameterized object sensitivity for points-to analysis for Java.
ACM Transactions on Software Engineering and Methodology (TOSEM) 14, 1 (2005), 1-41.

Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014. Selective Context-sensitivity Guided by
Impact Pre-analysis. In Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14).
ACM, 475-484.

Petablox [n. d.]. Petablox program analysis platform. https://github.com/petablox-project/petablox/wiki. ([n. d.]).

Sara Porat, Marina Biberstein, Larry Koved, and Bilha Mendelson. 2000. Automatic Detection of Immutable Fields in Java. In
Proc. of the 2000 Conference of the Centre for Advanced Studies on Collaborative Research (CASCON °00). IBM Press, 10-.

Thomas W Reps. 1995. Demand interprocedural program analysis using logic databases. In Applications of Logic Databases.
Springer, 163-196.

Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations and TrendsAG in Programming Languages
2,1(2015), 1-69.

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhotak. 2011. Pick Your Contexts Well: Understanding Object-sensitivity.
In Proc. ACM Symposium on Principles of Programming Languages (POPL °11). ACM, 17-30.

Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective Analysis: Context-sensitivity, Across
the Board. In Proc. ACM Conference on Programming Language Design and Implementation (PLDI '14). ACM, 485-495.
Soot [n. d.]. Soot: A framework for analyzing and transforming Java and Android applications. http://sable.github.io/soot.

([n.d]).

Manu Sridharan and Rastislav Bodik. 2006. Refinement-based Context-sensitive Points-to Analysis for Java. In Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI "06). ACM, 387-400.

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J Fink, and Eran Yahav. 2013. Alias analysis for object-oriented
programs. In Aliasing in Object-Oriented Programming. Types, Analysis and Verification. Springer, 196-232.

Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. 2007. Thin slicing. In PLDI °07: Proc. Conference on Programming
Language Design and Implementation. 112-122.

Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-object-sensitive pointer analysis more precise with still k-limiting. In
International Static Analysis Symposium. Springer, 489-510.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

https://github.com/petablox-project/petablox/wiki
http://sable.github.io/soot

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:27

Wala [n. d.]. T.J. Watson Libraries for Analysis (WALA). http://wala.sf.net

Mark Weiser. 1981. Program slicing. In Proc. International Conference On Software Engineering. IEEE Press, 439-449.

John Whaley and Monica S Lam. 2004. Cloning-based context-sensitive pointer alias analysis using binary decision diagrams.
In PLDI °04: Proc. Conference on Programming Language Design and Implementation. ACM, 131-144.

Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On Abstraction Refinement for Program
Analyses in Datalog. In Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14).

ACM, 239-248.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

http://wala.sf.net

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Milanova's Object Sensitivity Analysis
	1.3 Our Proposal: Refinement Via Program Slicing
	1.4 Precision Of Our Approach
	1.5 Novelty Of Our Approach
	1.6 Contributions

	2 Background
	3 Our approach
	3.1 Illustration Of Our Approach
	3.2 Key Properties Of Our Approach, and Relation To Program Slicing
	3.3 Proof Of Completeness

	4 Implementation
	4.1 Overall Tool Architecture
	4.2 Modified Object Naming Scheme
	4.3 Client Analyses

	5 Empirical Results
	5.1 RQ 1: What Is the Scalability and Precision Of Our Approach For Downcast Safety?
	5.2 RQ 2: What Is the Scalability and Precision Of Our Approach For Immutability?
	5.3 RQ 3: What Is the Contribution Of Our Modified-Naming Scheme, Described in Section 4.2, To the Effectiveness Of Our Approach?
	5.4 RQ 4: How Does Our Approach Compare With a Recently Proposed Approach mayurRefine2014?
	5.5 Limitations and Discussion

	6 Related work
	7 Conclusions and future work
	References

