
142

Refinement in Object-Sensitivity Points-To Analysis via
Slicing

GIRISH MASKERI RAMA∗, Infosys Limited, India

RAGHAVAN KOMONDOOR, Indian Institute of Science, India

HIMANSHU SHARMA, Indian Institute of Science, India

Object sensitivity analysis is a well-known form of context-sensitive points-to analysis. This analysis is

parameterized by a bound on the names of symbolic objects associated with each allocation site. In this

paper, we propose a novel approach based on object sensitivity analysis that takes as input a set of client

queries, and tries to answer them using an initial round of inexpensive object sensitivity analysis that uses a

low object-name length bound at all allocation sites. For the queries that are answered unsatisfactorily, the

approach then pin points “bad” points-to facts, which are the ones that are responsible for the imprecision.

It then employs a form of program slicing to identify allocation sites that are potentially causing these bad

points-to facts to be generated. The approach then runs object sensitivity analysis once again, this time using

longer names for just these allocation sites, with the objective of resolving the imprecision in this round. We

describe our approach formally, prove its completeness, and describe a Datalog-based implementation of it on

top of the Petablox framework. Our evaluation of our approach on a set of large Java benchmarks, using two

separate clients, reveals that our approach is more precise than the baseline object sensitivity approach, by

around 29% for one of the clients and by around 19% for the other client. Our approach is also more precise on

most large benchmarks than a recently proposed approach that uses SAT solvers to identify allocation sites to

refine.

CCS Concepts: • Software and its engineering → Automated static analysis; Software safety; Object
oriented languages; Software verification;

Additional Key Words and Phrases: Precise and scalable points-to analysis, client-driven refinement, Java

ACM Reference Format:
Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma. 2018. Refinement in Object-Sensitivity

Points-To Analysis via Slicing. Proc. ACM Program. Lang. 2, OOPSLA, Article 142 (November 2018), 27 pages.

https://doi.org/10.1145/3276512

1 INTRODUCTION
Points-to analysis is a fundamental problem in static program analysis, and involves the use of

static abstractions to determine the memory locations that each variable or each field of an object

can point to. Points-to analysis has varied applications, such as in compilation and optimization of

programs, verification of programs, and program understanding and program transformation tools.

A large number of different approaches have been proposed over the last two decades or so for

∗
Part of this work was done when the author was pursuing part-time PhD at Indian Institute of Science, Bangalore.

Authors’ addresses: Girish Maskeri Rama, Infosys Limited, India, girish_rama@infosys.com; Raghavan Komondoor, Indian

Institute of Science, Bangalore, India, raghavan@iisc.ac.in; Himanshu Sharma, Indian Institute of Science, Bangalore, India,

himanshu.ecko@gmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART142

https://doi.org/10.1145/3276512

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

https://doi.org/10.1145/3276512
https://doi.org/10.1145/3276512

142:2 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

points-to analysis, for different languages, and at different points in the precision vs. scalability

tradeoff [Kanvar and Khedker 2016; Smaragdakis and Balatsouras 2015; Sridharan et al. 2013].

An important characteristic of any points-to analysis approach is whether it is context insensitive,
wherein information entering into a method from all call sites are merged and propagated back

to all return-sites, or whether it is context sensitive, wherein different call-sites to a method are

distinguished at least to a partial extent. Context insensitivity leads to significant loss of precision

compared to context sensitivity [Lhoták and Hendren 2006]. Hence, almost all modern points-to

analysis approaches use some form of context sensitivity. There are several broad families of

context-sensitive approaches; for instance, ones that (i) use procedure summaries [Burke et al.

1994; Chatterjee et al. 1999; Emami et al. 1994; Madhavan et al. 2012], or (ii) analyze each method

under different contexts, with each context representing (a portion of) a call stack (also known as

k-CFA) [Guyer and Lin 2003; Whaley and Lam 2004], or (iii) analyze each method under different

contexts via object sensitivity [Milanova et al. 2005], wherein the contexts for an invocation site are

encoded using the static symbolic IDs of possible receiver objects at the invocation site.

Object-sensitivity analysis is designed specifically for object-oriented languages such as Java. This

technique has been found to be both more scalable and more precise than other alternatives [Lhoták

andHendren 2006; Smaragdakis et al. 2011]. Several recently proposed points-to analysis approaches

are based on object sensitivity [Smaragdakis et al. 2011; Tan et al. 2016; Zhang et al. 2014]. It has

also been implemented in popular static analysis tools such as Wala [Wala [n. d.]], Doop [Doop [n.

d.]], and Petablox [Petablox [n. d.]].

The precision (and scalability) of object-sensitivity analysis is parameterized by the lengths of the

names of symbolic objects that are used in the analysis. Using longer names increases the number

of (static) symbolic objects, and hence, the number of different contexts in which each method is

analyzed. This increases precision. However, the increased number of method contexts increases

the time requirement of the analysis, and can adversely impact the scalability of the analysis. In

fact, k-CFA context sensitivity also has a similar property; longer context names can be used to

increase the number of contexts, but at the expense of scalability.

A basic idea that has been employed in the literature to deal with this conundrum is client-

driven refinement [Guyer and Lin 2003; Sridharan and Bodík 2006; Zhang et al. 2014]. The intuition

here is that given a specific client query regarding the points-to set of a given variable, a subset

of method invocations that are pertinent to resolving the query are somehow identified. These

invocations alone are analyzed under greater number of contexts, while other method invocations

are analyzed using their original contexts. In other words, extra effort is spent only on necessary

method invocations, thereby obtaining better precision for the given query without exploding the

expense of the analysis.

Our main contribution in this paper is a new refinement technique for object-sensitivity analysis,

which uses a novel form of program slicing to identify allocation sites that are pertinent to the

given query and that are to be refined. In the remainder of this section we introduce a running

example, give an informal overview of our approach, and contrast our approach with other existing

refinement techniques.

1.1 Motivating Example
Figure 1 depicts a toy Java program that we will be using as a running example throughout this

paper. The program has a class ‘M’, with three methods, namely, ‘main’, ‘foo’, and ‘bar’, and a class

‘Contain’, with two methods, namely, ‘get’ and ‘put’. A, B, and C are three other classes, with B and

C extending A; the definitions of these classes are omitted from the figure in the interest of brevity.

The class ‘Contain’ simulates a container; each object of this class points to a single object of type

A via its ‘f’ field.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:3

1 c l a s s M {

2 s t a t i c vo id main () {

3 M v1 = new M() ; / / s1
4 M v2 = new M() ; / / s2
5 M v3 = new M() ; / / s3
6 M v4 = new M() ; / / s4
7 A t1 ;

8 i f (. .)

9 t 1 = v1 . foo () ;

10 e l s e i f (. .) t 1 = v2 . foo () ;

11 e l s e {

12 A v5 = new B () ; / / s5
13 A v6 = new C () ; / / s6
14 / / B and C bo th e x t e n d A
15 Conta in c1 = v3 . bar (v5) ;

16 Conta in c2 = v4 . bar (v6) ;

17 t 1 = c1 . g e t () ;

18 }

19 (B) t 1 ;

20 } / / end main

21 A foo () {

22 Conta in c f = new Conta in () ; / / s7
23 A vf = new B () ; / / s8
24 c f . put (v f) ;

25 A r f = c f . g e t () ;

26 r e t u r n r f ;

27 }

28

29 Conta in bar (A vb) {

30 Conta in cb = new Conta in () ; / / s9
31 cb . put (vb) ;

32 r e t u r n cb ;

33 }

34 } / / end c l a s s M
35

36 c l a s s Conta in {

37 A f ;

38 A ge t () {

39 A rg = t h i s . f ;

40 r e t u r n rg ;

41 }

42 put (A vp) {

43 t h i s . f = vp ;

44 }

45 }

Fig. 1. Example program

Consider a query about what objects the variable t1 in function ‘main’ can point to. This query

would be useful in verifying whether the downcast in Line 19 is definitely safe. In reality, t1 can

only point to objects allocated at sites s8 and s5. This is the ideal answer to this query, and this

answer would enable the downcast to be declared “safe”.

1.2 Milanova’s Object Sensitivity Analysis
We now consider Milanova et al.’s object-sensitivity analysis, which is our baseline analysis. A

sampling of the steps in this analysis when applied on our running example are illustrated in the

first two columns of Figure 2. We have used the basic mode of the analysis, wherein all symbolic

objects allocated at all sites use names of length 1 (this is also known as “k = 1 object-sensitivity

analysis”). Column (1) shows the points-to facts inferred by the analysis, in the order in which they

are inferred. Symbolic (static) objects are named oi ,oj , etc., with the convention that oi represents
objects allocated at site si , oj represents objects allocated at site sj , and so on. We use the variable

name ‘this_m’ to denote the implicit variable ‘this’ in methodm. Each points-to fact is labeled for

convenience with a number, such as ⟨1⟩, ⟨2⟩, etc. Each row in Column (2) in Figure 2 indicates the

previously inferred facts and the lines of code that cause the facts in the same row in Column (1) to

be inferred. Note that the object-sensitivity analysis is flow-insensitive; this means that all the facts

are associated with all the points in the program. In the rest of this paper, wherever there would be

no confusion, we simply say “object” to mean a (static) symbolic object.

Note that there are two basic kinds of facts that are inferred by the analysis. Facts other than ⟨10⟩

in the figure are of the first kind, and indicate the points-to sets of variables. For any non-static

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:4 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

(1) Points-to fact(s) (2) Caused by (3) Points-to facts(s)

with ki = 1, ∀i with k9=2
1 ⟨1⟩ v4 → o4, ⟨2⟩ v6 → o6, ⟨3⟩ v3 → o3 Lines 6, 13, 5 Same as Column (1)

2 ⟨4⟩ (o4, this_bar)→ o4 Lines 16, 29, ⟨1⟩ Same as Column (1)

3 ⟨5⟩ (o3, this_bar)→ o3 Lines 15, 29, ⟨3⟩ Same as Column (1)

4 ⟨6⟩ (o4, vb) → o6 Lines 16, 29, ⟨1⟩, ⟨2⟩ Same as Column (1)

5 ⟨7⟩ (o4, cb)→ o9 Line 30, ⟨4⟩ (o4, cb)→ o49
6 ⟨8⟩ (o9, this_put)→ o9 Lines 31, 42, ⟨7⟩ (o49, this_put)→ o49
7 ⟨9⟩ (o9, vp) → o6 Lines 31, 42, ⟨6⟩, ⟨7⟩ (o49, vp) → o6
8 ⟨10⟩ o9.f → o6 Line 43, ⟨8⟩, ⟨9⟩ o49.f → o6
9 ⟨11⟩ c2→ o9 Line 32, 16, ⟨7⟩, ⟨1⟩ c2→ o49
10 ⟨12⟩ (o3, cb) → o9 Line 30, ⟨5⟩ (o3, cb)→ o39
11 ⟨13⟩ c1→ o9 Lines 32, 15, ⟨3⟩, ⟨12⟩ c1→ o39
12 ⟨14⟩ (o9, this_get) → o9 Lines 17, 38, ⟨13⟩ (o39, this_get) → o39
13 ⟨15⟩ (o9, rg) → o6 Line 39, ⟨10⟩, ⟨14⟩ -

14 ⟨16⟩ t1→ o6 Lines 40, 17, ⟨15⟩, ⟨13⟩ -

Fig. 2. Points-to facts, and causality between facts, corresponding to example in Figure 1

method, its variables have separate points-to sets for each “receiver” object context under which

the method is invoked. For instance, facts ⟨4⟩ and ⟨6⟩ are for context o4. They arise because at

the invocation site in Line 16 in the program (see Figure 1) the “base” variable v4 points to the

“receiver” object o4. Similarly, facts ⟨8⟩ and ⟨9⟩ are for context o9, because the base variable ‘cb’ in
the invocation in Line 31 points to receiver object o9. ‘cb’ in turn points to o9 (see fact ⟨7⟩) due to
the allocation site in Line 30.

Facts ⟨10⟩ is of the second kind. It indicates that the ‘f’ field of object o9 points to object o6. This
was inferred due to the “put-field” in Line 43, in conjunction with the points-to sets of ‘this_put’

and ‘vp’ (as indicated by facts ⟨8⟩ and ⟨9⟩).

Note the imprecision in fact ⟨16⟩. Variable t1 actually cannot point to (concrete) objects allocated

at site s6. This imprecision causes the analysis to declare the downcast as potentially unsafe. The

imprecision is fundamentally because in the analysis variables c1 and c2 both point to the same

(symbolic) object, namely, o9 (see facts ⟨11⟩ and ⟨13⟩). Therefore, the invocation sequence via Line 16
and then Line 31 causes o9.f to point to what v6 points to, namely, o6 (see fact ⟨10⟩). Subsequently,
the invocation at Line 17 causes t1 to be assigned to what is pointed to by o9.f, which includes o6 (as
well as o5). Whereas, in reality, the invocations at Lines 16 and 17 cannot interact with each other,

because c1 and c2 necessarily point to different ‘Contain’ objects (although both these objects are

allocated at site s9).

1.3 Our Proposal: Refinement Via Program Slicing
Our proposal is a query-driven refinement approach for the object sensitivity analysis. The pre-

liminary step is to run the object-sensitivity approach in a suitably efficient mode, such as k = 1

(i.e., all symbolic objects having names of length 1). Our approach is applied only if the initial

analysis mentioned above returns an unsatisfactory outcome for the given query. For instance, for

a downcast-safety query, an unsatisfactory outcome would be one where the downcast is declared

potentially unsafe. In this case our approach is applied. The starting point of our approach is the

points-to fact that caused the unsatisfactory outcome. We call such a fact a “bad” fact, and the

object that occurs in this fact a “bad” object. The core of our approach is to perform a form of

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:5

backward traversal among the set of points-to facts inferred by the preliminary analysis, along a

causality relation, to identify the facts that directly or transitively caused the analysis to infer the

seed “bad” fact. We call these facts the “causing” facts of the bad fact. Then, the allocation sites that

are involved in the inference of these causing facts are marked for refinement. A second round

of the object sensitivity analysis is now applied, this time using longer object names for objects

allocated at the marked allocation sites (and names of length 1 at the remaining allocation sites).

This round of the analysis is likely to be more precise than the preliminary analysis, and could

potentially yield a satisfactory answer to the query. In case it does not, the steps mentioned above

can be iterated as many time as desired, using the facts derived by the object-sensitivity analysis in

any iteration as the basis for the next iteration.

For instance, consider the facts generated by the preliminary analysis, as shown in Column (1)

of Figure 2. Fact ⟨16⟩ (in the last row) is the “bad” fact, as it causes the downcast in Line 19 of

the program (see Figure 1) to be declared as potentially unsafe. Our backward traversal basically

starts from the bad fact, and finds the facts that cause, directly or transitively, the bad fact to be

inferred. These causality relationships are captured in Column (2) of Figure 2. For instance, fact ⟨16⟩

is directly caused by facts ⟨15⟩ and ⟨13⟩ (see the last row, Column (2)). Fact ⟨15⟩ is caused by

facts ⟨10⟩ and ⟨14⟩, and so on. Basically, the backward traversal eventually reaches all the facts

that are mentioned in Column (1) in Figure 2 other than fact ⟨11⟩. Of these facts, facts ⟨1⟩, ⟨2⟩, ⟨3⟩,

and ⟨7⟩ are directly caused by allocation sites, namely, sites s4, s6, s3, and s9, respectively. Therefore,
these allocation statements are marked for refinement.

In the next round of the object-sensitivity analysis, we use longer names (say, of length 2) at

site s9 (sites s3, s4 and s6 are in ‘main’, and cannot use names of length more than 1). The facts that

would be inferred by the second round of object-sensitivity analysis and that correspond to the facts

in Column (1) are shown in Column (3) in Figure 2. Note, the object o9 has been refined into two

distinct objects, namely, o49 and o39. o49 represents objects created at site s9 when the containing

method (i.e., ‘bar’) is called with o4 as the receiver object (i.e., from Line 16 in the program). Whereas,

o39 represents objects created at site s9 when ‘bar’ is called with o3 as the receiver object (i.e., from
Line 15 in the program). With this refinement, c1 and c2 point to distinct objects, namely, o39 and
o49. This eliminates the inter-dependence between Lines 16 and 17 in the program, and hence helps

infer that t1 does not point to o6. Note, we have depicted a ‘-’ in Row 13, Column (3). This is because

o39.f points to o5 alone, which causes the fact (o39, rg)→ o5 to be obtained in this round of analysis,

which does not correspond to the fact in Row 13, Column (1) (because that fact involves a points-to

edge to o6, which is not allocated at the same site as o5). Also, since the fact in Row 14 is dependent

on the fact in Row 13, we depict a ‘-’ in Row 14, Column (3) as well.

1.4 Precision Of Our Approach
The precision of any refinement approach is the extent towhich allocation sites are not unnecessarily

marked for refinement. Higher precision is desirable, because refinement of an allocation site that

cannot help any of the given queries to be resolved satisfactorily only increases the cost of the

analysis with no benefit derived.

Our approach uses two principle ideas to avoid marking allocation sites unnecessarily for

refinement. These are:

• Perform the backwards traversal of the causality relationship among the points-to facts

context sensitively.
• Perform a focused form of backwards traversal that reaches only the facts that had caused

the points-to analysis to infer the “bad” fact.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:6 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

In our example, the bad fact is ‘t1→ o6’. Traversing back from this fact causes site s9 (among

others) to get refined, but does not mark site s7 for refinement. If our backward traversal had

been done starting from other facts in which t1 is involved, such as ‘t1→ o8’, then even sites

s7 and s8 would have gotten refined. This would cause, e.g., object o7 to get split into two

objects, namely, o17 and o27. This would in turn cause methods ‘get’ and ‘put’ to get analyzed

under separate contexts o17 and o27, instead of just o7. This would increase the expense of

the analysis. However, this would have no impact on the precision with which the downcast

safety query is answered, because the refinement (or not) of s7 does not affect the points-to
sets of the variables that are actually relevant to the query, namely, c1 and c2.

We discuss both these aspects in more detail in Section 3 of this paper. However, it is notable

that if our backwards traversal approach did not possess either one of the two features above, then

it would lose precision, and would mark certain allocation sites unnecessarily for refinement, such

as site s7 in the running example.

The primary objective of our backwards traversal is to identify points-to facts that directly

or indirectly cause a given seed (or “bad”) points-to fact to be inferred by the points-to analysis.

However, because each points-to fact is generated by the points-to analysis due to the presence of

one or more specific statements in the program, the statements corresponding to the facts that are

reached in the backward traversal effectively form a slice of the program when the seed (i.e., “bad”)

fact is treated as the slicing criterion. We discuss the connection of our approach with backward

slicing in a more detailed manner in Section 3.

1.5 Novelty Of Our Approach
Several other approaches exist that selectively refine the precision of points-to analysis in accordance

with the needs of a given client analysis [Guyer and Lin 2003; Sridharan and Bodík 2006; Zhang et al.

2014]. Our approach is empirically more scalable than some of these approaches. It is potentially

simpler to implement than almost all these approaches, because these approaches are based on

an intertwining of the actual points-to analysis with the client analysis. Finally, some of these

approaches do not target refinement of object sensitivity in particular, which is our focus. We

discuss related work in more detail in Section 6.

1.6 Contributions
In summary, the main contributions of this paper are as follows:

• A novel, program-slicing based approach to refine object-sensitivity analysis to answer user

queries more precisely.

• Our context-sensitive program-slicing approach, viewed standalone, could be of interest to

the community. It is a generalization of the “def-use” analysis in Milanova et al.’s paper. Our

slicing technique differs from most standard techniques for context-sensitive slicing of Java

programs, which are based on system dependence graphs [Horwitz et al. 1990; Liang and

Harrold 1998], and which do not scale readily to larger programs [Sridharan et al. 2007].

• An implementation of our refinement approach, based on the Petablox [Petablox [n. d.]]

program analysis framework.

• An evaluation of our implementation on nine benchmarks from the Dacapo 2006 benchmark

suite [Blackburn et al. 2006], using two separate client analyses. Our evaluation reveals that

for a given time budget (10 hours per benchmark), our approach gives 29% more precise

results than then baseline object-sensitivity analysis for one of the clients, and and 19% more

precise results for the other client.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:7

“v = w” ∈ S, ((c,w) → o) ∈ F

((c, v) → o) ∈ F
[M-Asgn]

“v = w.f” ∈ S, ((c,w) → o1) ∈ F

(o1. f → o2) ∈ F

((c, v) → o2) ∈ F

[M-Get]

“v.f = w” ∈ S, ((c, v) → o1) ∈ F

((c,w) → o2) ∈ F

(o1. f → o2) ∈ F

[M-Put]
“sq : v = new” in methmj

, ((c , this_mj
) → c) ∈ F

((c , v)→ mkName(c,q,kq)) ∈ F
[M-New]

“v = w.m(z)” ∈ S, {(c , z) → o1, (c , w) → c1 } ⊆ F ,mj
(p) = dispatch(c1,m),

((c1, p) → o1) ∈ F , ((c1, this_m
j) → c1) ∈ F

[M-Call]

“v = w.m(z)” ∈ S, ((c , w)→ c1) ∈ F ,mj
(p) = dispatch(c1,m), ((c1, ret_m

j
) → o2) ∈ F

((c , v) → o2) ∈ F
[M-Ret]

Fig. 3. Object sensitivity approach

Our approach also gives higher precision on all nine benchmarks when compared with Zhang

et al.’s query-driven refinement approach [Zhang et al. 2014].

• A proof of “completeness” of our approach. That is, every allocation site that, upon refinement,

can possibly improve the precision of a query, is definitely marked for refinement by our

slicing approach. In other words, the approach will not fail to answer a query satisfactorily if

at all it can be answered satisfactorily by refining some set of allocation sites.

Note that in general our approach does not guarantee that only allocation sites that can

possibly impact the precision of a query will be refined. In other words, our approach identifies

an over-approximation of the allocation sites that need to be refined.

The rest of this paper is structured as follows. Section 2 provides key background that is necessary

for us to present our approach. We describe our approach in Section 3. This section also discusses

certain key properties of our approach, and also contains a proof of completeness. Sections 4 and 5

describe our implementation, and our empirical evaluation, respectively. Section 6 discusses related

work. Finally, Section 7 concludes the paper.

2 BACKGROUND
In this section we give a brief introduction to the object-sensitivity points-to analysis [Milanova

et al. 2005], on which our approach is based. We give the points-to analysis rules for this analysis

in Figure 3. Our notation and formulation of these rules differs from that in the original paper

mentioned above, in order to make it easier for us to subsequently describe our backward traversal

rules (in Section 3). However, despite the modified formulation, the analysis essentially remains the

same as in the original paper, and infers the exact same facts conceptually. In the rules, we use the

symbol S to denote the set of all statements in the given program P , and the symbol F to denote

the set of points-to facts that is being currently inferred. Recall from the introduction that we had

given to this analysis in Section 1.2, that in this analysis symbolic objects serve as contexts. Thus,

if we have a fact of the form (c , v) → o, it means the following: (a) c and o are symbolic objects, (b)

when the methodmj
within which v is declared is invoked with c as the receiver object, then v may

point to o. There is also another kind of fact used in the analysis, namely, of the form o1. f → o2.
Rules M-Asgn, M-Get, and M-Put in Figure 3 are self-evident. We now focus on the rule M-New.

Say the allocation statement “v = new” with label sq is currently being processed (e.g., see labels s1,
s2, etc., in the program in Figure 1). Say this statement is in a methodmj

, and let c be a context
under which this method is invoked. That is, c is one of the receiver objects for this method (see the

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:8 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

fact ‘(c , this_mj
) → c’ in the antecedent of the rule). This rule allots a symbolic object to represent

objects allocated at this site under context c , by appending the site ID q after c . This is handled by

the utility function mkName, which is as defined below.

mkName(oi j ...p ,q,kq) = oi j ...pq , if |ij . . .p | < kq
= oj ...pq , otherwise

Note, kq is a user parameter, which indicates the maximum allowed name-length at site sq (in the

baseline ‘k = 1 analysis’, this bound is 1 for all allocation sites). Therefore, the function mkName
drops the leftmost side ID from the concatenated name if the concatenated name has length more

than kq .
The logic above is illustrated in Row 5 in Figure 2, which shows the points-to fact for variable

cb inferred due to the allocation site s9. The invocation context of ‘bar’ is o4 in (see the fact ‘(o4,
this_bar)→ o4’ in Row 2, Column (1), which is due to Line 16 in the program). In Row 5, Column (3),

k9 is 2, resulting in the concatenated name o49. Whereas, in Row 5, Column (1), k9 is 1, which causes

o49 to become just o9.
We now focus on the rule M-Call. Say the invocation statement “v = w.m(z)” occurs in some

method under invocation context c . The object c1 that is pointed to by the base variable “w” under

context c is first recovered. Thus, c1 is the receiver object of this invocation. dispatch(c1,m) returns

the methodmj
in the program that the invocation mentioned above dispatches to when w points

to c1. Say ‘p’ is the formal parameter ofmj
(for simplicity of presentation we assume that each

method has a single formal parameter). The rule now infers that under the receiver context c1, the
variable this_mj

points to c1 itself. The rule also infers that under the same context c1, the formal

parameter ‘p’ points to the same object that the actual parameter ‘z’ points to, namely, o1.
As an illustration of the rule M-Call, consider Rows 5-7 in Column (3) in Figure 2. Also, in

conjunction, consider the call to ‘put’ in Line 31 in the program (see Figure 1). The base variable at

the call-site, namely, cb, points to o49 (see Row 5, Column (3) in Figure 2). From the last digit ‘9’

in the name of this object, the analysis infers that this object was allocated at site s9. Therefore,
its type is inferred to be ‘Contain’. Therefore, dispatch(o49, put) returns the ‘put’ method in class

‘Contain’. The actual parameter in the call site, namely, vb, points to o6 (see Fact ⟨6⟩ in Row 4,

Column (1)). Therefore, the rule infers the two facts shown in Rows 6-7, Column (3).

The Rule M-Ret is analogous to the Rule M-Call, and deals with the scenario of a function

returning an object to a caller. ret_mj
is a placeholder, and denotes the variable in method mj

that holds the return value from the method. Notice the context sensitivity in this rule: if the

return variable ret_mj
in methodmj

points to an object o2 under a context c1, then the lhs v at an

invocation statement is made to point to this object o2 only if the receiver object at that invocation

statement is also c1.
Note, all “static” methods, including ‘main’ are always analyzed under an empty (or ‘ϵ ’) context.

Also, if ‘g’ is a global variable, its points-to facts are always of the form ‘(ϵ , g) → o’. In the interest

of brevity we have omitted these details from Figure 3.

3 OUR APPROACH
Our approach for refinement in object sensitivity is summarized in Figure 4. In Line 1, for all

allocation sites i , the name-length bound ki is initialized to 1. Line 2 invokes object sensitivity

analysis, which returns a set of points-to facts F .

The approach is given a set of queries Q as input. The queries need to be such that:

• They can be answered directly using points-to facts.

• There is a notion of a satisfactory answer for every query.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:9

Procedure: Refine object sensitivity

Require: Program P . Set of queries Q .
1: Initialize ki = 1, for alloc sites i .
2: Analyze P using object-sensitivity. Let F be the resulting points-to facts.

3: Answer the queries in Q using the facts F .

4: while time budget not exhausted and some queries in Q not yet answered satisfactorily do
5: Identify the bad facts corresponding to the queries that are not yet answered satisfactorily.

Let Fb be the set of all such bad facts.

6: Apply rules in Figure 5 on F , to obtain the causality relationship ‘{’ on the facts in F .

7: for all facts of the form f1 = ‘((c , v) → o)’ in F such that there exists some allocation

statement “ sq : v = new”, and o is an object allocated at sq , and there exists some fact fb in

Fb such that f1 {
∗ fb do

8: Increase the value of kq by some non-negative number (following some policy).

9: end for
10: Analyze P using object-sensitivity. Let F be the resulting points-to facts.

11: Answer the queries in Q using the facts F .

12: end while

Fig. 4. Our refinement approach

• For any query for which the answer is unsatisfactory, the set of “bad” facts that are the cause

of the unsatisfactory answer can be identified.

How to perform the last step above is not a feature of our approach per se, but is a client-specific

feature (i.e., depends on what the queries are asking for). For instance, if the safety of a downcast

‘(B) t1’ is being checked by a query, and if it is declared as potentially unsafe due to the points-to

set of t1, then every fact of the form ‘(c , t1)→ oi ’, where oi ’s type is not B or a sub-type of B, is a

bad fact for this query.

As another example, if a call-site ‘v.m(z)’ is being checked whether it dispatches to a unique

method in the program (this is called the “monosite” analysis), then, all facts in which the variable

v occurs are bad provided there are at least two different facts ‘(ci , v) → oi ’ and ‘(c j , v) → oj ’ such
that oi and oj are of types such that these types have different implementations of the method ‘m’.

Note that even though all facts in which v occurs need to be considered as bad facts, the approach

could still be beneficial, because in general even in this scenario only a subset of all allocation sites

in the program would impact the bad facts by causality and would get assigned a higher value of

kq .
As a third example, consider the static data-race detection client. Here, one needs to check using

points-to analysis whether a statement of the form “t = v.f” executing in one thread and a statement

of the form “w.f = s” executing in another thread could refer to a common object. For this analysis,

only points-to facts that involve common symbolic objects that both v and w point to need to serve

as bad facts.

Line 3 in Figure 4 answers all the queries using the points-to facts F . Line 5 in our approach

collects together all bad facts pertaining to all unsatisfactory queries. Line 6 applies the rules in

Figure 5 to infer a causality relation ‘{’ among the facts in F . There is a very close correspondence

between these rules and the object-sensitivity analysis rules in Figure 3. Intuitively, whenever a set

S of antecedent facts are used by a rule in Figure 3 to infer a consequent fact f , the corresponding
rule in Figure 5 includes (f1, f) in the relationship ‘{’ for every fact f1 in S . Hence, the rules in
Figure 5 are self-explanatory.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:10 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

“v = w” ∈ S, {(c,w) → o, (c, v) → o} ⊆ F

((c,w) → o) { ((c, v) → o)
[C-Asgn]

“v = w.f” ∈ S, ((c,w) → o1) ∈ F

{(c, v) → o2, o1. f → o2} ⊆ F

((c,w) → o1) { ((c, v) → o2)
(o1. f → o2) { ((c, v) → o2)

[C-Get]

“v.f = w” ∈ S, ((c, v) → o1) ∈ F

{(c,w) → o2, o1. f → o2} ⊆ F

((c, v) → o1) { (o1. f → o2)
((c,w) → o2) { (o1. f → o2)

[C-Put]
“sq : v = new” in methmj

, ((c , thism j)→ c) ∈ F

((c , thism j) → c){ ((c , v)→ mkName(c,q,kq))
[C-New]

“v = w.m(z)” ∈ S, {(c , z) → o1, (c , w)→ c1 } ⊆ F ,mj
(p) = dispatch(c1,m),

{(c1, p)→ o1, (c1, thism j) → c1 } ⊆ F

((c , w)→ c1){ {(c1, p) → o1, (c1, thism j) → c1}, ((c, z) → o1) { ((c1, p) → o1)
[C-Call]

“v = w.m(z)” ∈ S, {(c , w)→ c1, (c , v) → o2} ⊆ F ,mj
(p) = dispatch(c1,m), ((c1, ret_m

j
) → o2) ∈ F

((c1, ret_m
j
) → o2){ ((c , v) → o2), ((c , w)→ c1){ ((c , v) → o2)

[C-

Ret]

Fig. 5. Rules for the causality relationship

Reverting back to the summary of the approach in Figure 4, Lines 7 and 8 identify allocation

sites that result in facts from which bad facts are reachable along the causality relationship. This

reachability computation is the same as the backward traversal that we had introduced in Section 1.3.

Basically, the allocation sites identified here are the ones that need to be refined. The kq value for

each such site sq is incremented by a certain value (the policy to determine this increment can be

provided to our approach). Lines 10 and 11 perform object-sensitivity analysis again, using the

updated kq values, and answer the queries again. The loop in lines 4-12 is repeated as long as the

user is willing to wait and as long as queries exist that are yet to be answered satisfactorily. Note,

there is no guarantee that all queries will be answered satisfactorily eventually.

3.1 Illustration Of Our Approach
We now illustrate our overall approach. Let us consider the downcast in Line 19 in the running

example (see Figure 1) as the query. From the initial “k=1” object sensitivity analysis (in Line 2 of

Figure 4), the facts that are produced regarding the downcasted variable t1 are t1→ o6, t1→ o5,
and t1→ o8. Of these, the latter two facts are “harmless”, since sites s5 and s8 allocate objects of
type B. t1→ o6 is the only bad fact, and is hence the only element of Fb (see Line 5 in Figure 4).

Line 6 of the approach is now applied. The causality relationship that is inferred in this line

is basically represented in the first two columns in Figure 2. The format of this figure is that in

each row, for the fact appearing in Column (1), its immediate causality predecessors are shown in

Column (2) of the same row. For instance, Row 9 in Figure 2 represents the following pairs in the

causality relationship ‘{’: ⟨1⟩ { ⟨11⟩ and ⟨7⟩ { ⟨11⟩. These pairs are inferred by Rule C-Ret in

Figure 5, triggered by the ‘return’ statement in Line 32 in the program.

From the format mentioned above about Figure 2, it follows that every fact that appears in

Column (1) in Figure 2 except fact ⟨11⟩ is a direct or transitive predecessor, via the causality

relationship, of the bad fact t1 → o6 (this bad fact appears in Row 14, Column (1), in Figure 2).

Moving on to the loop in lines 7-9 in Figure 4, the allocation site s9 satisfies the condition in

Line 7; this is due to the fact ⟨7⟩ in Figure 2, which is a transitive predecessor of the bad fact

t1 → o6. Sites s3, s4 and s6 also satisfy the condition in Line 7; this happens due to facts ⟨3⟩, ⟨1⟩

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:11

and ⟨2⟩, respectively, in Row 1, Column 1 of Figure 2. Other allocation sites in the program, and

in particular, sites s7 and s8, are not causality predecessors of the bad fact. Therefore, k3, k4, k6,
and k9 get incremented; say all these get incremented to 2 (from 1). The next round of the object

sensitivity analysis, which happens in Line 10 in Figure 4, results in more refined points-to facts.

Some of these facts were shown in Figure 2, Column (3). This refinement causes the variables c1

and c2 to now point to two distinct objects, namely, o39 and o49. Earlier, they used to point to the

same object, namely, o9 (see Column (1) in the same figure). As earlier discussed in Section 1.3,

this “non-aliasing” of c1 and c2 suffices to eliminate the bad fact t1 → o6 from this (second) round

of object sensitivity analysis. At this point, the downcast query has been answered satisfactorily

(since the bad fact has disappeared). Therefore, on this example, the approach terminates after just

the first iteration of the loop in lines 4-12 in Figure 4.

3.2 Key Properties Of Our Approach, and Relation To Program Slicing
In this part we discuss certain key aspects of the causality relationship ‘{’ that we infer on the

points-to facts. We argue that traversal of the points-to facts using this relationship amounts to a

form of program slicing. We also discuss the key properties of this slicing approach, and novelty of

this approach over other forms of program slicing in the literature.

3.2.1 Relation To Program Slicing. The backward slicing problem [Weiser 1981], which has been

well-studied in the literature, is to identify a subset of statements in the program that are relevant to

producing values at a specified memory location of interest and/or at a specified program location

of interest. The specification mentioned above is typically called a “slicing criterion”. There also

exists the analogous problem of forward slicing.

Our fact-traversal approach also effectively acts like a slicing approach. This is because any pair

f 1 { f 2 in the causality relationship is inferred by some rule in Figure 5, and any application of

any rule is with reference to a specific statement in the program (as mentioned in the antecedent

of the rule). Therefore, any traversal of the causality relationship also effectively traverses the

program statements that are associated with the causality pairs.

In our setting, the slicing criterion is a points-to fact, while the backward traversal from this

fact identifies statements that are responsible for the generation of this fact. In other words, our

traversal basically computes a data-dependence slice [Ferrante et al. 1987] of the given program,

using a given points-to fact as a criterion, ignoring all reads and writes of non-pointer memory

locations. Viewed another way, in a hypothetical program that makes use of only pointer values,

our approach would compute a complete data-dependence slice.

Our program slicing approach is a generalization of the “def-use analysis” presented by Milanova

et al. [Milanova et al. 2005]. Their approach determines which definitions in “put” statements reach

which uses “get” in statements. Our approach generalizes to all flows of data, including ones that

involve local variables, parameters, return values, etc. The precision of our approach is identical to

that of their approach when only writes to and reads from object fields are considered.

3.2.2 Relation to conditioned program slicing. In our approach, the slicing criterion need not be

just a variable, but is a points-to fact in general. That is, the criterion can be of the form ‘(c , v)→ o’
or of the form ‘o1. f → o2’. In the first case, the criterion indicates that we are only interested in

statements that cause the variable v to point to object o under a context c . Therefore, statements

that cause the variable v to point to other objects, or cause v to point to o but only in contexts other

than c , will not be included in the slice. Similarly, the second form of criterion mentioned above

identifies statements that cause field ‘f ’ of object o1 to point to o2. For this reason, at a high-level
our approach can be considered as a form of conditioned slicing [Canfora et al. 1998; Field et al.

1995; Harman et al. 2001].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:12 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

To the best of our knowledge, our slicing approach is the first practical slicing approach to

employ the notion of pointing to a specific symbolic object as a slicing criterion. The previous

conditioned approaches mentioned above were typically concerned about conditions on primitive

values, and hence used expensive techniques like symbolic execution to compute the slices.

In our application, which is refinement of allocation sites for object sensitivity, slicing back from

specific facts can prevent allocation sites that cannot possibly help with the answering a query

satisfactorily from being refined. In our running example, if one were to simply slice back from the

variable t1 at Line 19 in the program (which is the downcast site), then all allocation sites in the

program will be reached (and hence, refined). However, if the bad fact ‘t1→ o6’ alone is used as the
slicing criterion, then allocation site s7 is not reached in the backward traversal. We had already

discussed in Section 1.4 how refinement of site s7 would increase the cost of the analysis without

having any effect on the solution to the given downcast-safety query.

3.2.3 Precision and context-sensitivity of our slicing approach. In our slicing approach, a fact f2
would be reachable from a fact f1 during a forward traversal along the causality relationship iff f1
is a direct or transitive ancestor of f2 according to the antecedent-consequent relationship that

arises during the production of the points-to facts by the object sensitivity analysis (whose rules are

given in Figure 3). In other words, the context sensitivity of our slicing approach is based directly

on object sensitivity.

Context sensitivity has long been recognized to be important for precision [Horwitz et al. 1990].

The same is true in our application, where we identify allocation sites to refine. For instance, on

our running example, if our approach were not context sensitive, then even if we traversed back

only from the bad fact ‘t1→ o6’ along the causality relationship, we would still reach site s7 and
refine it. In the interest of brevity we omit a detailed discussion of this phenomenon.

3.2.4 Contrast with SDG based slicing. Our slicing approach can be thought of as employing object

sensitivity to attain context sensitivity, as discussed in Section 3.2.3. In contrast, existing tools and

research approaches that we are aware of that provide support for program slicing [Chen and Xu

2001; Hammer and Snelting 2004; Liang and Harrold 1998; Sridharan et al. 2007; Wala [n. d.]] are

based on the traditional context-sensitive slicing approach that uses System Dependence Graphs

(SDGs) [Horwitz et al. 1990]. SDGs are an inter-procedural extension of program dependence

graphs (PDGs). SDG slicing is in principle fully context sensitive. Consider the partial example

program shown in Figure 6. The call to ‘fun1’ basically results in the value in v4 getting copied into

v5.m. Similarly, the call to ‘fun2’ results in the value in v6 getting copied into v7.m. SDG slicing has

the potential to determine these flows precisely
1
.

SDG slicing is based on building PDGs procedures for individual procedures. The PDG for

procedure fun1 is shown to the right in Figure 6 (the PDG for fun2 would be identical in structure).

The ovals represent variables or objects, the dashed arrows represent points-to edges, while the

two curved arrows indicate value flows that occur within the procedure. Note that the PDG of

fun1 needs its own copies of the heap objects o1,o2, and o3 (we have labeled these copies o11,o12,
and o13). Similarly, fun2’s PDG (not shown in the figure), would need its own copies of these same

three objects. In short, the PDG of each procedure contains copies of all symbolic objects that are

potentially referred to in the procedure.

It has been observed in the literature that due to the reason mentioned above, SDG-based slicing

with data flows through heap objects tracked context-sensitively does not terminate successfully on

large programs [Sridharan et al. 2007]. Our own initial experiments with the Wala tool confirmed

the same. It were these observations that motivated us to come up with the alternative “object

1
Provided the writes to the object fields in the functions fun1 and fun2 are somehow treated as strong updates.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:13

1 vo id fun1 (b , c) {

2 b . f . g . h = t h i s ;

3 c .m = b . f . g . h ;

4 }

5 / / fun2 i s i d e n t i c a l t o f o o 1
6

7 main () {

8 / / v1 → o1, o1 .f → o2, o2 .д → o3
9 / / v4 → o4 , v5 → o5 , v6 → o6 , v7 → o7
10 v4 . fun1 (v1 , v5) ;

11 v6 . fun2 (v1 , v7) ;

12 }

13

fun1

cthis b

o
11

o
12

o
13

f

g

h

m

Fig. 6. SDG slicing

sensitive” approach for context sensitive slicing that we actually propose in this work. On paper,

our approach is less precise than the SDG approach. In the example in Figure 6, our approach

would determine that v5.m and v7.m could both get their values from both v4 and v6. However, in

practice, SDG-based slicing does not terminate at all on large benchmarks; whereas our approach

terminates on large programs, and provides good precision for many code idioms, such as the ones

that are used in our running example.

3.3 Proof Of Completeness
Our approach is complete, in the sense that every allocation site that can possibly help answer any

of the given queries satisfactorily will necessarily be reached and marked for refinement during

the backward traversal. We provide an argument for this below.

3.3.1 Basic Definitions. An “allocation-site to length” mapK is a function that maps each allocation

site q to a length bound kq . That is, K(q) = kq , for any allocation site q. K1 denotes the “initial” map,

which maps all allocation sites to 1. A step in the object-sensitivity analysis is an application of a

rule in Figure 3, which uses some facts and produces some facts. A derivation that is “based on” a

given map K is a sequence of steps such (a) any antecedent fact used by any step is produced in an

earlier step, and (b) any step that processes any allocation site q uses kq = K(q) as the name-length

bound.

3.3.2 When Is an Allocation-Site sc To Be Considered Relevant To Answering a Query Satisfactorily?
It is important to formalize this notion in order to eventually prove completeness. We claim that

an allocation-site sc is relevant to answering a query satisfactorily if there exists a “bad” fact f ′b
corresponding to this query, and there exist maps K2 and K3 such that:

• K2(q) ≥ K1(q), for all allocation sites q.
• K3(sc) > K2(sc), and K3(q) = K2(q) for all allocation sites q other than sc .
• f ′b ∈ F1, f

′
b ∈ F2, and f ′b < F3, where each Fi is the set of all points-to facts derived by the

object-sensitivity analysis by using the map Ki .

Basically, the points above imply that (i) sc , possibly in conjunction with some other allocation

sites, when refined, can rule out the bad fact f ′b , (ii) those other facts when refined alone without sc
being refined alongside do not rule out f ′b .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:14 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

R1 R2

Step 1 Step 1

.
Step j: processes site sc , produces fc Step j: processes site sc , produces f

′
c

.
Last step: produces bad fact fb Last step: produces bad fact f ′b

Fig. 7. Corresponding derivations

3.3.3 Proof. If an allocation sc exists that satisfies the property above, then (1) there must exist a

derivation R2 based on map K2 that finally infers f ′b . Wolog, we assume that this derivation has no

“useless” steps. That is, every step (except the last step) produces output facts that are used by some

subsequent step.

(2) Secondly, this derivation must process site sc in some step j, and must produce a fact of the

form f ′c = ((c ′, v)→ o′) in that step, where v is the variable at the lhs of the allocation site sc and o
′

is an object allocated at this site. The reason being, if this was not the case, then R2 would also be a

valid derivation based on K3, which contradicts the assumption that f ′b < F3.

(3) There exists a derivation R1 based on K1 such that: (a) R1 has the same number of steps as R2.

(b) R1 processes the same sequence of statements as R2. (c) in each step i , each fact f1 that is used in
step i of R1 is a “suffix” of the corresponding fact f ′

1
that is used in step i of R2, and each fact f2 that

is produced in step i of R1 is a “suffix” of the corresponding fact f ′
2
that is produced in step i of R2.

A fact f1 is said to be a “suffix” of another fact f ′
1
if both facts refer to the same variable name (or

field name), and the name of each object mentioned in f1 is a suffix of the name of the corresponding

object mentioned in f ′
1
.

In this setting, we say that R1 corresponds to R2.

Due to space constraints, we are unable to argue why such a derivation R1 must exist. The

argument is conceptually straightforward, but needs a detailed case-by-case analysis of each

inference rule of the object-sensitivity analysis. This result is available as a separate proof on the

home page of the second author of this paper.

As an illustration of the correspondence of a derivation to amore refined derivation, the derivation

of any of the facts in Column (3), Figure 2 can be taken asR2, with the derivation of the corresponding

fact in Column (1) serving as the corresponding derivation R1. As further illustration, fact ‘(o4, cb)
→ o9’ corresponds to fact ‘(o4, cb)→ o49’ in Row 5 of the figure, with fact ‘(o4, cb)→ o9’ being a
suffix of fact ‘(o4, cb)→ o49’.
Recall that run R2 infers the bad fact f ′b in its final step. Let fb be the corresponding last fact

inferred by R1. Let fc be the fact corresponding to f ′c , produced in step j in R1. This entire situation

is represented schematically in Figure 7. In this figure, every step under the R1 column corresponds

to the same step under R2.

We make the following assumption about any client query: if any fact f ′b is a bad fact for the

query, then any fact that is a suffix of f ′b is also a bad fact for the query. This assumption is naturally

satisfied by commonly known clients. For instance, if ‘(oi j , t1)→ okl ’ is a bad fact for a hypothetical
downcast safety query, then ‘(oj , t1)→ ol ’ would be a bad fact, too. This is because (a) ol is allocated
at the same site as okl , and hence has the same type, and (b) a downcast site is potentially unsafe if

in any context the downcasted variable points to an object of the wrong type.

Therefore, fb is also a bad fact. Since sc is processed in step j in R2, by correspondence sc is
processed in step j by R1 also. Since R1 corresponds to R2, R1 cannot have any useless steps, either.

That is, the fact fc produced in step j in R1 is a direct or transitive ancestor of the final fact fb

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:15

Obj Sens
Analysis

Client
ℱ𝑖Program P

Backward
Traversal

ℱ𝑏

ℱ𝑖

Obj Sens
Analysis

𝑘𝑞=1, for all sites 𝑞

Sites to
refine ℛ

𝑘𝑞 = 3, ∀𝑞 ∈ ℛ

𝑘𝑞 = 1, ∀𝑞 ∉ ℛ

Client

ℱ𝑗

Solution

Fig. 8. Tool architecture

according to the antecedent-consequent relationship that arises due to the rules of the object-

sensitivity analysis (Figure 3) during the production of the points-to facts by the steps of R1. Now,

by the argument at the beginning of Section 3 (before Section 3.1), fc must be a direct or transitive

predecessor of fb as per the causality relationship ‘{’ on the facts generated by R1. Therefore,

fc would be reached in a backward traversal from fb along the causality relationship on the facts

produced by R1. Since fc corresponds to f ′c , and since f ′c is of the form ((c ′, v)→ o′), where o′ is an
object allocated at sc , fc must be of the form ((c , v)→ o), where o is a suffix of o′. Therefore, o must

also be allocated at site sc . Therefore, fc (with sc) satisfies the condition required to be satisfied by

f1 (with sq) mentioned in Line 7 of our approach (see Figure 4). Therefore, site sc would be marked

for refinement. This completes our argument.

4 IMPLEMENTATION
We have implemented our approach using the Petablox [Petablox [n. d.]] program analysis frame-

work. Petablox in turn uses Soot [Soot [n. d.]] as a front-end, and uses “bddbddb” [bddbddb [n. d.]]

as the backend Datalog engine.

4.1 Overall Tool Architecture
Our tool architecture is as shown in Figure 8. The overall workflow is achieved using Java code

(as an extension of the ‘JavaAnalysis’ class defined in Petablox). The individual steps are either

implemented in Datalog or in Java. The basic object sensitivity step (invoked two times in our

tool) is already available in Petablox (in the file ‘CtxtsAnalysis.java’). We modified this code to

take as an additional input a relation that specifies the ‘kq ’ value to be used at each allocation site

q. The initial round of object sensitivity analysis (which is the first occurrence of the rectangle

labeled “Obj Sens Analysis”) uses kq = 1 at all allocation sites q. The output set of facts from this,

namely, Fi , is fed into the client analysis. We have implemented two different client analyses for

our evaluation (discussed in further detail later in this section). A client analysis uses the set of

points-to facts given to it, and emits a “satisfactory” or ”unsatisfactory” result for each query. It also

emits the set of all “bad” facts Fb corresponding to all queries that were not answered satisfactorily.

We have implemented our client analyses using Datalog.

The set of all facts Fi as well as the set of bad facts Fb are fed as input to our backwards traversal

algorithm (see the rectangle labeled “Backward Traversal” in Figure 8). We have implemented this

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:16 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

traversal in Datalog. Note that our tool does not actually create and persist the causality relationship

‘{’. Instead, our Datalog rules access the points-to facts Fi , and starting from the facts that are

also in Fb , find the direct and transitive predecessors of these facts along the causality relation

via a fix-point computation. In other words, effectively, in each step of this computation, a set of

facts that are already in the growing fix-point set are taken, are considered as an antecedent of one

of the rules in Figure 5, and the source fact(s) in the causality relationship that is present in the

consequent of this rule are added to the growing fix-point set.

For instance, our Datalog rule to process an assignment statement of the form ‘v = w’ is as

follows:

TRCD(c0,w,c1) :- MobjVarAsgnInst(_,v,w), TRCD(c0,v,c1), CVC(c0,w,c1).

The relation TRCD is a part of the growing fix-point set that we compute. A tuple (c0,w,c1) being

added to the relation ‘TRCD’ means that points-to fact ‘(c0, w)→ c1’ is reached in the backward

traversal. ‘MobjVarAsgnInst(_,v,w)’ is a reference to a built-in Petablox relation, and evaluates to

true if ‘v = w’ is an assignment statement in some method in the program. ‘CVC(c0,w,c1)’ is also a

reference to a built-in relation, and evaluates to true if fact ‘(c0, w)→ c1’ is in Fi . The rule above

basically implements Rule C-Asgn in Figure 5.

From all the facts reached in this traversal, the ones caused by allocation statements are identified,

and the corresponding allocation sites are placed in the output set R (which is the set of allocation

sites to refine). The object sensitivity analysis is applied again now (see the second occurrence of

the rectangle labeled “Obj Sens Analysis”). In this second round of analysis, we set kq to 3 for all

allocation sites in the set R. Note, we have chosen the value 3 as a compromise, as higher values

tended to increase the time requirement quite a lot. The resultant points-to facts from this round

(i.e., Fj) are fed to the same client analysis again. This time, the solutions to the queries from the

client are taken as the final solutions.

By default, our implementation performs only iteration of the outer loop in our approach (see

Figure 4). In other words, it performs only one round of refinement. We do have an optional

component in our implementation which performs a second round of refinement, using kq = 5 at

allocation sites that are marked for refinement in this round of refinement (and using kq = 1 at all

other allocation sites).

Petablox allows certain parts of the application (or libraries) to be excluded from the scope of

the analysis if high efficiency is required. Excluding parts of the code from analysis can introduce

unsoundness. Hence, in our experiments we do not exclude any parts of the application or libraries

from the scope of the analysis.

4.2 Modified Object Naming Scheme
We made another modification within the core object sensitivity analysis, which is orthogonal

to our primary contribution of refinement. This is in cognizance of the fact that programs often

go through deep layers of calls through library code. Since the names of objects are suffixes of

their true contexts, this process ends up removing allocation site IDs in the “application layer”

from the object’s names. This ends up reducing precision in the application layer, while preserving

precision in the library layer. Whereas, developers might prefer more precision in the application

layer, where the code that they wrote themselves resides.

Therefore, we adopt amodified object naming scheme as a heuristic.Whenevermultiple allocation

sites from the library layer appear consecutively in an object’s name, we retain only the last (i.e.,

deepest) site among these library sites. The skipped library site names then do not count towards the

name-length of the object. For instance, say oabclmn is a full context name. Say a,b, c are allocation
sites in the application layer, and l ,m,n are allocation sites in the library layer. Say the name-length

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:17

bound kn at site n is 3. Instead of using the pure suffix olmn , we use the modified name obcn . Note
how this modification increases the portion of the name that is devoted to application sites and

reduces the portion of the name that is devoted to library-layer sites.

This heuristic is easily seen to be sound. Note, we always retain the deepest allocation site’s

name in any object’s name, because this site indicates the allocation site where this object was

allocated, which is a required information for most client analyses.

Our implementation segregates application allocation sites from library allocation sites using a

set of patterns. The allocation sites that occur in packages whose names match java.*, sun.*, javax.*,

com.sun.*, com.ibm.* or org.apache.harmony.* are considered library allocation sites, while all other

allocation sites are considered application allocation sites.

It is notable that the same intuition has been earlier exploited in the context of k-CFA by

Medicherla et al. [Medicherla and Komondoor 2015]. Also, this intuition is exploited in a more

general way in the work of Tan et al. [Tan et al. 2016], which also introduces “holes” in object

names to reduce unnecessary context information.

4.3 Client Analyses
The first client analysis that we implemented is checking safety of downcasts. This is a commonly

used client in various research papers [Lhoták and Hendren 2006; Sridharan and Bodík 2006; Zhang

et al. 2014].

The second client we implemented is one that identifies “immutable” allocation sites. These are

allocation sites that produce objects such that after execution returns from the constructor, the

“root” object created at the site as well as other objects reachable from the root object (which would

have been linked to the root object within the constructor) are not mutated further anywhere in

the program. Identifying immutable allocation sites has various applications [Haack et al. 2007;

Marinov and O’Callahan 2003; Porat et al. 2000], such as assisting program understanding, and

enabling code optimizations and refactorings.

To check the mutability of any allocation site sq conservatively, we check if there is any “put”

statement anywhere in the program (but not inside the constructor corresponding to the allocation

site) of the form “v.f = w”, and any points-to fact of the form (c , v) → o, where o is either an object

allocated at site sq , or is reachable from any (symbolic) object allocated at sq via a sequence of one or
more field dereferences as per the points-to facts. If such “put” statements exist, we conservatively

declare the site sq as being possibly mutable, and include all facts such as the one mentioned above

into the set of bad facts Fb .

5 EMPIRICAL RESULTS
For our evaluations, we considered 9 real-world large programs from the DaCapo 2006 benchmark

suite [Blackburn et al. 2006]. We analyzed these programs using our approach, using both the

downcast safety as well as the immutable site client analyses. For the downcast safety client,

following previous researchers [Sridharan and Bodík 2006], we checked only downcast sites in

the application layer. For the immutability client also we checked only the allocation sites in the

application layer. In both cases, we distinguished the application layer from the library layer using

the library package patterns that we had mentioned in Section 4.2.

To serve as a baseline, we also applied the plain object sensitivity analysis for each client, which

uses a uniform value of k at all allocation sites. We tried different values for k , such as 1, 2, and 3.

All experiments were performed on desktop computers with Intel i7 processors, with 40 GB allot-

ted to the VM for each analysis. We used a uniform time budget of 10 hours in all our experiments,

and stopped any run of any analysis on any benchmark if it did not complete within that time.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:18 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

Before we report our actual empirical results, we mention an empirical validation of the com-

pleteness of our slicing approach (see Section 3.3), which we performed. For this, we compared the

precision of our approach with kq set to 2 (instead of 3) at all sites that are marked for refinement

by the slicing, with the precision of the baseline approach (which uses kq = 2 at all allocation
sites). For this validation, we disabled our modified object naming scheme (Section 4.2), because

this scheme is not incorporated in the baseline approach and because we want an apples-to-apples

comparison. We did the comparison mentioned above on 6 benchmarks, and observed that the

number of downcast warnings from both approaches were identical in all six cases. This serves as

an empirical validation that our slicing marks for refinement all allocation sites that could possibly

impact the precision of the answer to the given query.

We structure the rest of this discussion in the form of four research questions (RQs).

5.1 RQ 1: What Is the Scalability and Precision Of Our Approach For Downcast Safety?
The results for the downcast safety analysis are summarized in Table 1. Column 1 shows the

benchmark program on which the analysis was performed. Column 2 shows the total number of

application-layer downcasts sites (these are the downcasts that were checked by the analyses).

Column 3 shows the total number of allocation sites in the program. Column 4 shows the number of

downcasts in the program that were proved as safe using a simple, inexpensive context-insensitive

(CI) points-to analysis. Column 5 shows the time taken by the CI analysis. All timings we report

are in ‘H:MM’ format, and are end-to-end timings, inclusive of all rounds and steps. Note, in

columns 4, 7, and 9, ‘R’ means number of downcasts (R)esolved as safe.

Column 6 shows the highest value of k for which the baseline object sensitivity analysis ter-

minated in the allocated time budget. Columns 7 and 8 show the number of downcasts that were

resolved as safe and time taken, by this baseline approach, when the value in Column 6 is used

uniformly as the value of k at all allocation sites.

Similarly, Columns 9 and 11 show the number of downcasts resolved as safe and time taken

by our approach, respectively. Column 10 shows the number of allocation sites refined by our

approach (i.e., given a value kq = 3 in the second round of object sensitivity analysis). Note, for

any benchmark for which our approach hit the 10-hour timeout, we record a ‘DNT’ (i.e., Did Not

Terminate) in Column 11. In this scenario, we record in Column 9 the results produced by the first

round of our approach (i.e., the round that uses kq = 1 uniformly at all allocation sites). This round

terminates quite quickly on all benchmarks.

Finally the precision gain of our approach over the base object sensitivity approach is shown

in Column 12. Downcast sites that resolved as safe by CI are considered “easy”, and are excluded

from consideration while calculating gain. In other words, the gain in each row is calculated using

the following formula, where the numbers mentioned are column numbers. Note that previous

researchers [Zhang et al. 2014] have also excluded queries resolved by CI from their gain calculations.

дain = ((9) − (4))/((7) − (4))

We observed that with the baseline object sensitivity approach, as the value of k increases, the

time taken increased substantially. Indeed, none of the benchmarks could be analyzed within the

time budget of 10 hours with kq set to 3 at all allocation sites. Since our approach uses kq = 3 at

selected allocation sites, it scales much better. In particular, on two benchmarks, namely, ‘pmd’ and

‘sunflow’, the baseline approach did not terminate within the time budget with even kq = 2 at all

sites, whereas our approach terminates. And on 5 other benchmarks, both approaches terminate,

but our approach is 2 to 7 times faster.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:19

Table 1. Precision and scalability for downcast safety client analysis

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

program total # alloc CI CI base base base our our our gain

casts sites R time k R time R sites time

antlr 187 8933 39 0:02 2 123 6:11 132 1977 1:31 1.11

bloat 1323 10053 222 0:02 2 452 9:48 291 3534 DNT 0.30

chart 665 13861 96 0:04 1 139 2:02 139 3599 DNT 1.00

pmd 925 11774 408 0:04 1 432 0:44 555 2702 9:24 6.12

xalan 49 12052 16 0:04 2 36 8:01 38 1695 1:04 1.10

avrora 337 11252 42 0:03 2 140 6:03 149 3777 2:47 1.09

sunflow 138 13642 43 0:04 1 63 1:05 101 2505 5:31 2.90

luindex 215 9025 99 0:02 2 141 4:34 155 1980 2:00 1.33

lusearch 237 8700 67 0:02 2 150 4:31 154 1963 1:32 1.05

Geometric mean: 1.29

Our approach is significantly more precise than the baseline approach. On 7 of the benchmarks,

namely, all the ones other than ‘bloat’ and ‘chart’, our approach was able to resolve more queries

as safe than the object sensitivity analysis was able to using the highest feasible value of k within

the budget of 10 hours. In the extreme case of ‘pmd’, the precision of our approach is more than 6

times that of the baseline approach. The geometric mean of the gain of our approach across all the

benchmark programs is 1.29.

We now make a few extra observations about our approach and implementation. We measured

the contribution to the total running time of our approach by the backward slicing component (i.e.,

the causality rules traversal). We found that this was close to two hours for the two benchmarks

‘bloat’ and ‘chart’ (where our approach exhausted its time budget), and was in the range of 25-56

minutes for the remaining 7 benchmarks.

We also measured the “gain” of our approach over a simple baseline that uses kq = 1 at all

allocation sites. This was just to see the effect of the higher value of kq = 3 at some sites. The mean

gain of our approach with this calculation works out to 2.91 (contrast this with the gain of 1.29

mentioned above).

Finally, we also experimented with two rounds of refinement (see Section 4.1) on the benchmarks

on which the first round finished relatively quickly. These are the benchmarks antlr, xalan, luindex,

and lusearch. On all these benchmarks, unfortunately, the second round of refinement marked

no extra downcast sites as safe that the previous round did not mark as safe. Note, however, that

this is not a definitive confirmation that higher values of k (above 3) are not helpful at all. With

unlimited time budgets, and with values of k even higher than 5, it is possible that the approach

could potentially provide higher precision on some of the benchmarks.

5.2 RQ 2: What Is the Scalability and Precision Of Our Approach For Immutability?
We conducted a similar evaluation for the immutable site client as we did for downcast safety. The

results are summarized in Table 2. The columns have similar meanings as the similarly named

columns in Table 1. Column 2 alone has a distinct meaning, which is the number of allocation sites

that are in the application layer that are checked by the various analyses. Another thing to note is

that the numbers under the ‘R’ (Resolved) columns in this table are the number of allocation sites

(from among the sites referred to in Column 2) that are declared as immutable by the respective

analyses.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:20 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

Table 2. Precision and scalability for immutable site client analysis

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

program # app alloc CI CI base base base our our our gain

sites R time k R time R sites time

antlr 1462 340 0:13 1 824 0:35 937 4269 6:25 1.23

bloat 2552 478 0:20 1 1087 0:53 1087 5348 DNT 1.00

chart 3671 1999 0:32 1 1817 1:18 1817 6691 DNT 1.00

pmd 1809 432 0:26 1 691 1:48 691 5369 DNT 1.00

xalan 2356 2094 0:16 2 2188 7:13 2188 4036 2:32 1.00

avrora 3712 1335 0:18 1 1630 0:37 2375 6089 6:25 3.52

sunflow 1151 717 0:22 1 646 2:45 646 6546 DNT 1.00

luindex 1417 334 0:16 1 633 0:55 648 4725 6:24 1.05

lusearch 1125 290 0:14 2 549 8:39 553 4513 4:18 1.01

Geometric mean: 1.19

Both analyses take more running time for this client than they do for the downcast client. This

is primarily due to the increased number of queries to check (contrast the numbers in Column 2 in

the two tables). The baseline approach scales to k = 2 on only two benchmarks, namely, ‘xalan’ and

‘lusearch’. On these two benchmarks, the baseline analysis takes at least 2 times more than running

time than our approach. On three benchmarks, namely, ‘antlr’, ‘avrora’, and ‘luindex’, the baseline

approach hits the timeout with k = 2 at all allocation sites, whereas our approach completes both

rounds. On four other benchmarks, the baseline approach does not scale to k = 2 and our approach

hits the timeout. Therefore, to conclude, our approach was faster than the baseline approach on 5

benchmarks, while neither approach scaled to the four remaining benchmarks using values of k
greater than 1.

Regarding precision, our approach gave better precision than the baseline approach on 4 bench-

marks, and the same precision on 5 benchmarks. The geometric mean of the gain in precision of

our approach over the baseline is 1.19. In the extreme case of ‘avrora’, the precision of our approach

is 3.52 times the precision of the baseline approach. It is notable that the comparatively poorer

performance of our approach on this client vis-a-vis its performance on the downcast safety client

is due to the increased number of queries, which cause an increased number of allocation sites to

be refined, which in turn causes the timeout to be hit for more benchmarks.

As with RQ 1, we now make a few extra observations. The contribution to the total running

time of our approach by the backward slicing component (i.e., the causality rules traversal) was

in the range of 20-45 minutes across all nine benchmarks. The “gain” of our approach over the

simple baseline that uses kq = 1 at all allocation sites was 1.22 (contrast this with the gain of

1.19 mentioned above). Finally, we tried two rounds of refinement (see Section 4.1) on the two

benchmarks on which the first round finished relatively quickly, namely, xalan and lusearch. On

both these benchmarks, unfortunately, the second round of refinement marked no extra allocation

sites as immutable that the previous round did not mark as safe.

5.3 RQ 3: What Is the Contribution Of Our Modified-Naming Scheme, Described in
Section 4.2, To the Effectiveness Of Our Approach?

The main contribution of this paper is a backward slicing technique to determine important

allocation sites where extra precision is required to rule out a bad fact. The modified naming

scheme that we use (which we abbreviate as “MNS”), described in Section 4.2, is another important

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:21

component in our implementation. In this RQ we evaluate the importance and interplay of these

two features.

Our first attempt to answer this question was to incorporate MNS into the baseline object

sensitivity approach also, and run it with k = 2 and with MNS at all allocation sites. The idea was

that if the thus-enhanced baseline approach performed as well as our approach, then selective

refinement using slicing would be shown to be not very useful. However, we discovered that this

enhanced baseline approach did not terminate on even the smallest of the Dacapo benchmarks,

even after 24 hours of running. We surmise that the reason for this is that MNS implicitly has a

similar effect as using a higher value of k , while actually using a lower value of k . In other words,

using MNS with k = 2 at all allocation sites may have a similar effect as using k = 3 at all allocation

sites. An exponentially greater number of contexts is hence generated, resulting in non-scalability.

We then tried another experiment, whichwas to run a variant of our approach, which incorporates

MNS, but using k = 2 (instead of k = 3) at allocation sites that are reached in the slice. k = 1 was

used at all other sites. We tried this variant on 6 benchmarks for the downcast client, and on 4

benchmarks for the immutability client. This variant of our approach obviously scaled well (as it

uses a lower of k at refined allocation sites than the main variant of our approach). However, the

surprising finding was that on 7 of the 10 analysis runs mentioned above, this variant generated

the exact same number of warnings as our main variant, which uses k = 3 at refined allocation

sites (along with MNS). And on 5 of the 10 runs, the baseline analysis with k = 2 at all allocation

sites terminated and generated more warnings than this variant.

The experiments above lead us to the following empirical conclusions:

• k = 2 at refined sites with MNS gave higher precision than k = 2 at all sites without MNS. In

fact, its precision was close to that obtainable by using k = 3 at all refined sites. This implies

that MNS has a similar effect as using a value of k that is effectively higher than the value

actually used. This was a surprising but interesting conclusion for us.

• Our slicing based approach to determine allocation sites that are pertinent to the generation

of the bad fact is equally useful in the context of applying MNS as it is in the context of

explicitly using higher values of k . The slicing basically enables MNS overall to scale by

allowing us to use k = 1 (and hence, not use MNS) at allocation sites that are not relevant to

the bad facts. This is clearly evidenced by the fact that MNS does not scale when applied in

conjunction with k = 2 at all allocation sites, but scales when applied in conjunction with

k = 2 at allocation sites that are in the slice.

5.4 RQ 4: How Does Our Approach Compare With a Recently Proposed
Approach [Zhang et al. 2014]?

This recently proposed approach is closely related to our approach. Their approach is also iterative,

in the sense that in each iteration it adds allocation sites to the set of sites to refine. However, in

each iteration they use a precise (but expensive) MaxSAT based approach to identify a few sites

that are definitely relevant to the imprecision in solving the queries (in our approach this relevance

is established only conservatively). They then increase the kq values for these sites q to a relatively

high value, namely, 10. Another difference from our approach is that their initial analysis is the CI

analysis, whereas our initial analysis is k = 1 object sensitivity analysis.

We used as-is their implementation of their approach, which is included within Petablox [Petablox

[n. d.]]. In fact, in addition to the structural similarity between our approach and theirs, the other

reason why we chose to compare our approach with theirs was the opportunity to perform an

apples-to-apples comparison using the same front-end, same underlying implementation of object

sensitivity analysis, etc. We ran their approach with their default configuration settings, which

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:22 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

Table 3. Precision and scalability comparison with Zhang et al.’s analysis

(1) (2) (3) (4) (5) (6)

program total their their their our

casts R time # iterations R

antlr 187 131 1:06 16 132

pmd 925 413 DNT 3 555

xalan 49 25 DNT 5 38

avrora 337 51 DNT 4 149

sunflow 138 51 2:57* 3 101

luindex 215 107 1:46* 4 155

lusearch 237 76 DNT 4 154

toba-s 62 13 2:27 8 13

javasrc 110 41 2:47 8 41

were shared with us by the Petablox developers via private communication. However, we did make

one change to their default configuration. By default they exclude certain libraries from the scope of

the analysis. We changed this configuration in their analysis in order to not exclude anything from

the scope of analysis; this is to ensure a uniform comparison with the results from our approach.

We had discussed in Section 4.1 the reason why it is undesirable to exclude libraries from the scope

of the analysis.

For this experiment, we used only the downcast safety client. This is because their code already

includes support for this client. Applying their analysis on a new client like immutability analysis

would have required more work from us. This is because in their approach the queries are resolved

in conjunction with the points-to analysis in each iteration; this necessitates addition of non-trivial

code to their approach to deal with each separate client.

The results from their approach are summarized in Table 3. Column 2 in Table 3 shows the

total number of downcasts checked. The numbers in this column match the numbers in Column 2

in Table 1. Note, the benchmarks ‘bloat’ and ‘chart’ are excluded from Table 3, because of some

difficulties we faced in running their tool on these benchmarks.

Column 3 in Table 3 shows the number of downcasts resolved to “safe” by their approach, while

Column 4 shows the time taken by their approach. Benchmarks on which their analysis did not

terminate within the time budget are indicated using a ‘DNT’ in Column 4. Benchmarks on which

their analysis terminated abnormally before hitting the timeout are indicated by an asterix (“*”).

Column 5 shows the number of iterations completed successfully by their analysis before normal

termination or abnormal termination or before the timeout was reached. A zero here means that

only the initial CI round was completed. Note, the numbers in Column 3 indicate the number of

queries resolved to “safe” in the last successful iteration before normal termination or abnormal

termination or timeout. Column 6 shows the number of downcasts resolved as safe by our approach

(these numbers are simply taken from the ‘our R’ column in Table 1). In addition to the seven

Dacapo benchmarks, for this comparison we also included two smaller benchmarks which they

refer to in their paper [Zhang et al. 2014]. These are toba-s and javasrc.

Note that on two of the seven Dacapo benchmarks, their approach terminates abnormally within

the time budget. This was likely due to certain memory usage issues in the MaxSAT solver. Their

implementation by default uses the “mifumax” MaxSAT solver, which appears to work well on

small-to-medium sized instances. But on larger instances, since the problem is fundamentally

computational challenging, mifumax does not scale.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:23

With regard to precision, it can be noted that our approach gives equal or more precision than

their approach on all the benchmarks. On the larger benchmarks, the main reason for this appears

to be the non-scalability of MaxSAT solving to larger instances. On the smaller benchmarks, we

believe that our approach is able to match their approach on precision because values of k as high

as 10 are not required to obtain as much precision as is possible by increasing object-name lengths

alone.

5.5 Limitations and Discussion
We are very encouraged by the precision and scalability of our approach. Within the given time

budget of 10 hours, our approach exhibited better precision than the baseline object sensitivity

analysis on all benchmarks other than ‘bloat’ for the downcast client, and on four benchmarks for

the immutability client. The baseline approach outperformed our approach in only one instance – on

‘bloat’, for the downcast client. Our approach also equals or out-performs the recent MaxSAT-based

refinement approach [Zhang et al. 2014] on all benchmarks.

This said, there exist certain limitations in our implementation and experimentation methodology.

A clear limitation is due to the implementation of the Milanova approach that is available within

the Petablox tool, which we use. This efficiency of this implementation is somewhat low. We

surmise that its efficiency could be improved, which would benefit both our analysis as well as the

baseline analysis. Another limitation is with regard to using multiple rounds of refinement. We

have tried this to some extent, with no observed increase in precision, but could have tried it more

systematically for all benchmarks.

The default implementation of the approach of Zhang et al., which we used in our compar-

ative evaluation, uses precise MaxSAT solving. An open question is how their approach would

perform using approximate solvers. We have not explored so far whether and how to make their

implementation of their approach use approximate solvers.

6 RELATEDWORK
There is a very large body of work that has been reported in the literature about points-to analysis

in general. In this section we focus our discussion primarily on client-driven refinement approaches

that are closely related to our approach. Towards the end of the section we also touch upon other

approaches that refine abstractions, although not necessarily in the context of a given client.

The approach of Guyer et al. [Guyer and Lin 2003] is one of the early approaches that proposed

client driven refinement of points-to analysis. A client analysis and an inexpensive variant of

points-to analysis are initially performed side-by-side. Both analyses are assumed to be specified as

data-flow analyses. During this joint analysis, pointers that happen to pollute the client analysis

because they have potentially imprecise points-to sets are identified. This is done using a form of

slicing. Polluting pointers identified in this way are then refined, either by tracking value flows into

them flow sensitively, or by refining the depth of context sensitivity of procedures in which these

pointers are set. The analysis is then repeated again, to see if better results are obtained. Some

other differences between their approach and ours are that (a) the form of slicing they use appears

to be context insensitive, which can be imprecise, (b) they target refinement of call-site sensitivity,

and not of object sensitivity, and (c) they target C programs.

Sridharan et al. [Sridharan and Bodík 2006] propose a CFL (Context Free Language) reachability

based approach to perform a points-to analysis jointly with the analysis required for a query. A

CFL-annotated graph is used, wherein paths encode value flows. Initially extra edges are present in

the graph, which speeden up the analysis but reduce precision. Precision is reduced by not insisting

on balanced calls and returns, and not insisting when there is a path from a statement of the form

“v.f = w” to a statement of the form “t = s.f” that v and s point to a common object. This is hence a

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

142:24 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

coarse abstraction. For queries that cannot be resolved satisfactorily using coarse abstractions, the

imprecision-inducing edges are removed in a stagewise, iterative manner, to see if the precision

improves. Our approach differs from this approach in being based quite directly on program slicing,

and in targeting refinement of object sensitivity rather than call-site sensitivity.

The approach of Liang et al. [Liang and Naik 2011] is quite closely related to our approach.

Their approach works on a Datalog analysis that jointly performs points-to analysis and answers

the queries. In an initial round of analysis, a cheaper abstraction is used. The approach then

traverses the Datalog derivation in the backward direction to identify all instances of abstraction

in the analysis that are potentially contributing to the unsatisfactory resolution of the queries.

These abstractions are then refined in subsequent rounds. The authors of this paper note that

their traversal is analogous to slicing. However, their approach needs the points-to analysis to be

implemented in Datalog. In fact, they add instrumentation rules to the Datalog analysis, and use

the output from these instrumentation rules to traverse the primary derivation in the backward

direction. In contrast, our approach does not assume that the points-to analysis is written in Datalog,

and does not rely on instrumenting the analysis. Furthermore, in their empirical evaluation, Liang

et al. use mostly smaller programs, and use only two of the programs from the Dacapo benchmark

suite, namely, lusearch and avrora. They also do not report running times for their analysis.

Zhang et al. [Zhang et al. 2014] extend upon the work mentioned above. Instead of refining all

abstractions that appear to contribute to imprecision, they refine abstraction instances iteratively.

In each iteration they identify, using a MaxSAT solver, a small number of abstraction instances that

necessarily induce imprecision across all possible derivations, and refine only these abstraction

instances. In this way, they are able to refine more deeply certain abstraction instances that are

definitive causes of imprecision. We presented in Section 5 a comparative empirical evaluation of

their approach and our approach on a range of benchmarks.

All the approaches mentioned above have some common characteristics that our approach does

not share. One, they intertwine the points-to analysis with the query solving. Secondly, they need

certain forms of instrumentation to be applied into the points-to analysis itself. These features make

for good conceptual elegance, and can increase precision at least for smaller programs. However,

our approach would be simpler to implement, because we do not make any assumptions on how

the points-to analysis is implemented, and do not need to instrument it to observe its steps in

a fine-grained manner. Our backward traversal is a pure post-pass on the facts that result from

points-to analysis.

For a given client analysis, the approach of Oh et al. [Oh et al. 2014] relies on a given, less precise

but more efficient pre-analysis that is a sound abstraction of the main analysis. Their approach

performs the pre-analysis with full context sensitivity, and uses the results of this analysis to identify

calling contexts (and their suffixes) that may need to be distinguished to achieve good precision in

the main analysis. The main analysis is then performed using appropriate refinement such that the

identified contexts are distinguished, and other contexts are not necessarily distinguished.

We now briefly mention two recent approaches that perform selective refinement of abstractions,

but not necessarily in the context of a client analysis. In “introspective analysis” [Smaragdakis

et al. 2014], the idea is to perform an initial context insensitive analysis, and then use certain

metrics to identify regions of the program where high context sensitivity would cause explosion

in analysis time. A subsequent round of context sensitive analysis is then performed, with high

context sensitivity employed at the remaining regions. The “still k-limiting” approach of Tan et

al. [Tan et al. 2016] also uses a fast context-insensitive prepass. In this pass they identify portions

of context strings that can be elided, without reducing the distinguishing power of the context

strings. The resulting context strings (that could have “holes” in them) are used in a subsequent

context sensitive analysis.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:25

A paper by Reps [Reps 1995] is interesting to mention, even though it does not relate to points-to

analysis or to refinement. This paper provides a Datalog analysis for inter-procedural slicing.

However, heap objects are not addressed.

7 CONCLUSIONS AND FUTUREWORK
In this paper we presented a program slicing based approach for refinement in object sensitivity

analysis. The approach is based on performing an initial low context-sensitivity analysis, and then

identifying points-to facts that are potential contributors to imprecision in answering the given

queries. The allocation sites that potentially cause these “bad” facts are then identified. These sites

are refined to greater context depths, and the analysis re-applied. Our approach has similarities with

certain previous approaches. Its main novelty, however, is in using a form of slicing on the facts

themselves, to find the impacting allocation sites. We feel this approach is simpler than previous

approaches, and potentially more scalable. We also feel that our slicing sub-routine could be of

interest standalone, because previous slicing approaches are predominantly SDG-based, which does

not appear to be a scalable technique. We have also proved the completeness of our refinement

approach theoretically.

An evaluation of our approach empirically on a set of large benchmarks revealed that our

approach scales readily to large benchmarks, while providing more precision than a baseline

approach as well as a recently proposed refinement approach.

Several improvements to the implementation and the experimentation methodology used in this

paper are possible; we had mentioned some of these in Section 5.5. Conceptual advances to the

approach are also possible. Our approach still marks a lot of sites for refinement, which prevents

very long object names to be used at refined sites. A staged approach for refinement could be tried,

that somehow ranks the sites that have been identified in descending order of their likelihood that

they will positively impact the query. Now, sites can be refined in rank order, either one by one,

or in groups, using higher values of kq . More “refined” notions of refinement itself could also be

explored; for instance, instead of just increasing the name-length at an allocation site that is to be

refined, perhaps some important contexts that need to be distinguished at that site could also be

identified. It would be interesting future work to explore all these directions. An ambitious target

for any future points-to analysis approach would be to be very precise, while being so efficient in

terms of both running time and memory requirement that it could be used interactively within

a development environment while a develop is writing new code or making changes to existing

code.

REFERENCES
bddbddb [n. d.]. bddbddb: BDD-Based Deductive Database. http://bddbddb.sourceforge.net/. ([n. d.]).

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,

Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.

Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006.

The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proc. 21st Annual ACM SIGPLAN Conf. on
Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’06). 169–190.

Michael Burke, Paul Carini, Jong-Deok Choi, and Michael Hind. 1994. Flow-insensitive interprocedural alias analysis in the

presence of pointers. In International Workshop on Languages and Compilers for Parallel Computing. Springer, 234–250.
G. Canfora, A. Cimitile, and A. De Lucia. 1998. Conditioned program slicing. Information and Software Technology 40, 11

(1998), 595–607.

Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. 1999. Relevant Context Inference. In Proc. ACM Symposium
on Principles of Programming Languages (POPL ’99). ACM, 133–146.

Zhenqiang Chen and Baowen Xu. 2001. Slicing Object-oriented Java Programs. SIGPLAN Not. 36, 4 (April 2001), 33–40.
Doop [n. d.]. Doop program analysis framework. https://bitbucket.org/yanniss/doop. ([n. d.]).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

http://bddbddb.sourceforge.net/
https://bitbucket.org/yanniss/doop

142:26 Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. 1994. Context-sensitive Interprocedural Points-to Analysis in the

Presence of Function Pointers. In Proc. ACM Conference on Programming Language Design and Implementation (PLDI ’94).
ACM, 242–256.

Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program dependence graph and its use in optimization.

ACM Transactions on Programming Languages and Systems (TOPLAS) 9, 3 (1987), 319–349.
John Field, G. Ramalingam, and Frank Tip. 1995. Parametric Program Slicing. In Proc. Int. Symp. on Principles of Prog. Langs.

(POPL). 379–392.
Samuel Z Guyer and Calvin Lin. 2003. Client-driven pointer analysis. In International Static Analysis Symposium (SAS).

Springer, 214–236.

Christian Haack, Erik Poll, Jan Schäfer, and Aleksy Schubert. 2007. Immutable objects for a Java-like language. In European
Symposium on Programming. Springer, 347–362.

Christian Hammer and Gregor Snelting. 2004. An Improved Slicer for Java. In Proc. 5th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering (PASTE ’04). ACM, 17–22.

M. Harman, R. Hierons, C. Fox, S. Danicic, and J. Howroyd. 2001. Pre/post conditioned slicing. In Proc. Int. Conf. on Software
Maintenance (ICSM). 138–147.

Susan Horwitz, Thomas Reps, and David Binkley. 1990. Interprocedural slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems (TOPLAS) 12, 1 (1990), 26–60.

Vini Kanvar and Uday P Khedker. 2016. Heap abstractions for static analysis. ACM Computing Surveys (CSUR) 49, 2 (2016),
29.

Ondřej Lhoták and Laurie Hendren. 2006. Context-sensitive points-to analysis: is it worth it?. In International Conference on
Compiler Construction. Springer, 47–64.

Donglin Liang andMary Jean Harrold. 1998. Slicing objects using system dependence graphs. In Proc. International Conference
on Software Maintenance. IEEE, 358–367.

Percy Liang and Mayur Naik. 2011. Scaling Abstraction Refinement via Pruning. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’11). ACM, 590–601.

Ravichandhran Madhavan, Ganesan Ramalingam, and Kapil Vaswani. 2012. Modular heap analysis for higher-order

programs. In International Static Analysis Symposium. Springer, 370–387.

D. Marinov and R. O’Callahan. 2003. Object equality profiling. In Proc. Conf. on Object-Oriented programing, Systems,
languages, and applications.

R. K. Medicherla and R. Komondoor. 2015. Precision vs. scalability: Context sensitive analysis with prefix approximation. In

2015 IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER). 281–290.
Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2005. Parameterized object sensitivity for points-to analysis for Java.

ACM Transactions on Software Engineering and Methodology (TOSEM) 14, 1 (2005), 1–41.
Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014. Selective Context-sensitivity Guided by

Impact Pre-analysis. In Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14).
ACM, 475–484.

Petablox [n. d.]. Petablox program analysis platform. https://github.com/petablox-project/petablox/wiki. ([n. d.]).

Sara Porat, Marina Biberstein, Larry Koved, and Bilha Mendelson. 2000. Automatic Detection of Immutable Fields in Java. In

Proc. of the 2000 Conference of the Centre for Advanced Studies on Collaborative Research (CASCON ’00). IBM Press, 10–.

Thomas W Reps. 1995. Demand interprocedural program analysis using logic databases. In Applications of Logic Databases.
Springer, 163–196.

Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations and TrendsÂő in Programming Languages
2, 1 (2015), 1–69.

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your ContextsWell: Understanding Object-sensitivity.

In Proc. ACM Symposium on Principles of Programming Languages (POPL ’11). ACM, 17–30.

Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective Analysis: Context-sensitivity, Across

the Board. In Proc. ACM Conference on Programming Language Design and Implementation (PLDI ’14). ACM, 485–495.

Soot [n. d.]. Soot: A framework for analyzing and transforming Java and Android applications. http://sable.github.io/soot.

([n. d.]).

Manu Sridharan and Rastislav Bodík. 2006. Refinement-based Context-sensitive Points-to Analysis for Java. In Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’06). ACM, 387–400.

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J Fink, and Eran Yahav. 2013. Alias analysis for object-oriented

programs. In Aliasing in Object-Oriented Programming. Types, Analysis and Verification. Springer, 196–232.
Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. 2007. Thin slicing. In PLDI ’07: Proc. Conference on Programming

Language Design and Implementation. 112–122.
Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-object-sensitive pointer analysis more precise with still k-limiting. In

International Static Analysis Symposium. Springer, 489–510.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

https://github.com/petablox-project/petablox/wiki
http://sable.github.io/soot

Refinement in Object-Sensitivity Points-To Analysis via Slicing 142:27

Wala [n. d.]. T.J. Watson Libraries for Analysis (WALA). http://wala.sf.net

Mark Weiser. 1981. Program slicing. In Proc. International Conference On Software Engineering. IEEE Press, 439–449.

JohnWhaley and Monica S Lam. 2004. Cloning-based context-sensitive pointer alias analysis using binary decision diagrams.

In PLDI ’04: Proc. Conference on Programming Language Design and Implementation. ACM, 131–144.

Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On Abstraction Refinement for Program

Analyses in Datalog. In Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14).
ACM, 239–248.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 142. Publication date: November 2018.

http://wala.sf.net

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Milanova's Object Sensitivity Analysis
	1.3 Our Proposal: Refinement Via Program Slicing
	1.4 Precision Of Our Approach
	1.5 Novelty Of Our Approach
	1.6 Contributions

	2 Background
	3 Our approach
	3.1 Illustration Of Our Approach
	3.2 Key Properties Of Our Approach, and Relation To Program Slicing
	3.3 Proof Of Completeness

	4 Implementation
	4.1 Overall Tool Architecture
	4.2 Modified Object Naming Scheme
	4.3 Client Analyses

	5 Empirical Results
	5.1 RQ 1: What Is the Scalability and Precision Of Our Approach For Downcast Safety?
	5.2 RQ 2: What Is the Scalability and Precision Of Our Approach For Immutability?
	5.3 RQ 3: What Is the Contribution Of Our Modified-Naming Scheme, Described in Section 4.2, To the Effectiveness Of Our Approach?
	5.4 RQ 4: How Does Our Approach Compare With a Recently Proposed Approach mayurRefine2014?
	5.5 Limitations and Discussion

	6 Related work
	7 Conclusions and future work
	References

