
Handling Memory Pointers in Communication
between Microservices

1st Vini Kanvar
IBM Research, India

vkanv031@in.ibm.com

2nd Srikanth Tamilselvam
IBM Research, India

srikanth.tamilselvam@in.ibm.com

3rd Raghavan Komondoor
Indian Institute of Science, India

raghavan@iisc.ac.in

Abstract—When microservices are written from scratch, APIs
are usually made stateless. However, when an existing monolith
application is decomposed into microservices, it may not be possi-
ble to make all the APIs stateless. Therefore, objects transferred
via APIs may contain pointers. Consequently, data transfer via
an API i.e., from a client address space to a server address space,
reconstruction at the server, and returning to the client become
non-trivial operations.

Conventionally, data transfer between microservices is done
using JSON, which serializes pointers to values that they point
to. Once the data in JSON reaches the server, deserialization
creates objects of the original types on the server. However,
deserialization is unable to return the same objects passed
by the client because serialization leads to loss of pointer
information. We propose to apply pointer swizzling to solve this
problem. Pointer swizzling modifies the definition of the class by
introducing ID of the object and by replacing all pointers with
IDs of the objects it refers. These IDs help to maintain correct
reference in the server. After the server API operates on the
objects, the server returns new objects of the same types to the
client. These new objects need to be plugged back in the client
address space i.e., pointers to the old objects in the client need
to now point to the corresponding new objects. This plugging
back is non-trivial because we do not know how the old objects
map to the new objects. We propose creating memory maps at
runtime to overcome this challenge.

Index Terms—pointers, API, monolith, refactoring, swizzling

I. INTRODUCTION

Automating decomposition of monolith into microservices
is an active area of research [1]–[5]. These work perform static
code analysis or use runtime logs to infer the implementation
structure and represent the monolith as a graph where all the
programs become nodes and their dependencies with other
programs become edges. The decomposition task can thus
be deduced as a graph clustering task. To achieve functional
independence, they cluster programs in such a way that
connections within the clusters are maximised and connections
across clusters are minimized. Therefore, each cluster can be
considered as a candidate microservice. But none of these
work discuss how data should be communicated via APIs
between microservices.

Memory address spaces of such decomposed microservices
are not shared. Therefore, we cannot pass objects as it is
via APIs. Usually, JSON of each object is passed between
microservices via the APIs. Objects with pointers when trans-
ferred in JSON format, lose information. In the presence of
pointers, JSON serializes pointers to values that they point to.

Fig. 1. Code snippets from DayTrader application to motivate the need
of handling pointers and aliases in communication between microservices.
Refactored code in Figure 2 shows how to handle the communication.

Two microservices can be thought of acting as a client and
a server, if one calls the APIs of the other, respectively. The
communication via APIs needs to handle the following:

• Accurate transfer of objects containing pointers between
client and server address space.

• Plugging i.e., copying objects from server back to the
client address space to update the state.



Fig. 2. Refactoring of class TradeSLSBBean of Figure 1 to show how pointers and aliases are handled in communication via APIs between microservices.
Algorithms 1 and 2 are proposed by us to handle pointers in microservices architecture.

To motivate the need of solving this problem, we show
code snippets from a public application, DayTrader [6] in
Figure 1. The application emulates an online stock trading
system. It is written as a monolith i.e., it is a single deployable
unit. It contains a class OrderDataBean which holds a pointer
to class HoldingDataBean using field holding. Both these
classes hold pointers to class AccountDataBean using the
field account. Class AccountDataBean stores the balance in-
formation. Class TradeSLSBBean contains methods buy(.) and
completeOrder(.), which are invoked from the user interface
to update the balance information. Objects order, account,
newHolding are created in these methods. Field account of
order is accessed using a dot notation as order.account in Java.
Method buy(.) makes order.account point to object account.
It calls setBalance(.) of AccountDataBean. Method complete-
Order(.) makes order.account and newHolding.account point
to object account. It calls setHolding(.) of OrderDataBean.
Updated order is returned by the methods.

Existing clustering techniques [1] recommend class
TradeSLSBBean in one cluster and AccountDataBean, Hold-
ingDataBean, and OrderDataBean classes in another cluster
because of the functional properties of the classes. The affinity
i.e., edges between the classes across these two clusters are
less compared to the ones within the cluster. Each of the cluster
therefore becomes a candidate microservice supporting a com-
mon functionality through the classes it contains. Although the
clustering algorithm works with an objective function to be
self dependent, dependency with other microservices cannot
be completely avoided and might be required to complete
a business function. Therefore, communication between the
two microservices needs to be happen via APIs. In this case
setBalance(.) and setHolding(.) methods needs to be converted
to APIs.

Due to the presence of pointers and aliases, we need to
ensure the following:

• Accurate transfer of objects order and newHolding con-

taining pointers via API setHolding(.) of OrderDataBean.
• Plugging i.e., copying object account from server mi-

croservice containing AccountDataBean back to the client
address space of microservice containing TradeSLS-
BBean. Object account is updated by API setBalance(.)
of AccountDataBean.

Figure 2 also shows method completeOrder(.) makes or-
der.account and newHolding.account point to object account.
It creates a REST API call to setHolding(.) and passes object
order and newHolding. API postForObject(.) that transfers
information, serializes objects into JSON. However, JSON
does not preserve alias information. It loses that order.account
and newHolding.account are aliased. Therefore, we propose to
override postForObject(.) that transfers pointer swizzled JSON
to preserve the aliases during transfer.

Serialization into JSON loses alias information. We solve
the problem of inaccurate serialization using pointer swizzling.
Instead of serializing the pointers to values, it creates ids of
pointers; thereby maintaining alias information.

Figure 2 shows how refactored methods setBalance(.) and
setHolding(.) have been exposed as APIs and how pointers
are communicated between the microservices. Method buy(.)
makes order.account point to object account. It creates a
REST API call to setBalance(.) and passes object account and
balance information. The API returns newAccount containing
the updated account. We need to plug newAccount from server
back to account in the client. In other words, we need to set
account = newAccount and we need to set all existing aliases
i.e., order.account = newAccount. This plugging of returned
objects in the client is a non-trivial task because we do not
know how the old objects map to the returned objects. Any
static alias analysis is imprecise [7] and may not be able to
discover this. Therefore, we propose to use memory map to
plug newAccount back to account.

A memory map is a map between the old and the returned
group of linked objects. This allows to copy information from



the returned objects to the old objects, delete the old objects
that got deleted by the server API, and create objects that were
created by the server API.

We assign a unique global ID to each object; the ID could
be formed by concatenating the owning microservice name of
the object with an ID that is unique within that microservice.
We need the IDs to be globally unique for memory map; they
need not be globally unique for pointer swizzling. However,
since we any way maintain globally unique IDs for memory
map, we may as well use the same IDs for pointer swizzling.

The rest of the paper is organized as follows. The inaccuracy
of serialization and its solution using pointer swizzling is
presented in Section II. The need of plugging back and
creating memory maps is presented in Section III. Experiments
and empirical measurements are in Section IV. Related work
is in Section V. We conclude the paper with future work in
Section VI.

II. SERIALIZATION AND DESERIALIZATION

JSON (JavaScript Object Notation) is a format commonly
used to exchange data between microservices. It consists of
attribute–value pairs. If the data contains pointers, the pointers
are serialized into values that they point to. An example of
serialization of objects is shown in Figure 3(a). In this section,
we show the inaccuracy in serialization of pointers and we
solve this using pointer swizzling.

We represent memory using graphs [8] where nodes denote
memory locations and edges denote memory links representing
the address of a target location stored in a pointer. Edges are
of two types: (i) unlabeled edges from variables like obj to
nodes and (ii) labeled edges from nodes to nodes, whose label
is the field name that stores the pointer.

A. Loss of Pointer Information During Serialization

JSON replaces pointers with values of the objects they point
to; it does not save the addresses of the pointers. Therefore,
alias information is lost. Figure 3(a) shows this problem.
Structure pointed by obj is shown; value of field n is written
inside nodes. The structure has an alias where obj.f.f and
obj.g.f point to the same node ”d”. The JSON i.e., serialization
of obj contains {”n”:”d”,...} twice. Therefore, when this JSON
is deserialized on the server, it cannot be determined whether
{”n”:”d”,...} appearing twice, refers to the same object or not.
Deserialization inaccurately creates two objects for this JSON.

B. Solution: Pointer Swizzling

Pointer swizzling/unswizzling [9], [10] is a technique to
deserialize/serialize, respectively. Pointer unswizzling replaces
pointers with ids, and pointer swizzling does the reverse.

This technique is used in object-databases. When an in-
memory object is serialized and persisted, the pointers in it are
converted to unique IDs. When the object is deserialized and
loaded back to memory from the persistent store, the IDs are
swizzled back to normal pointers. The communication channel
between the microservices is analogous to the database. Fig-
ure 3(b) shows how pointer swizzling solves the problem on

our example. Pointer swizzling modifies the definition of class
T by including ID of the object and by replacing all pointers
with IDs of the target objects viz. fID, gID. The graph in the
middle denotes ID, fID in superscript, gID in subscript of each
node. Edges denote pointer unswizzled references. Nodes with
ID 2 and 3 both have fID as 4, which accurately denotes the
alias. Therefore, serialization does not lose any information
and deserialization on server obtains the same information sent
by the client.

Advantages of pointer unswizzling over JSON serialization:
• JSON serialization of recursive data structures throws

exception. However, pointer unswizzling allows this se-
rialization.

• In the presence of aliases, pointer swizzled JSON is more
efficient to compute. Without pointer swizzling, JSON
requires serialization of all pointers for each path in the
graph.

III. PLUGGING BACK

In this section, we explain the problem of plugging back
and give its solution using memory maps.

A. Loss of Alias Information After State Update

If a parameter of an API represents an object containing
pointers, the client needs to pass the group of linked objects
reachable from the parameter to the server. However, external
pointers i.e., objects that point externally to the objects, are
not passed to the server. After the server API performs its
operations on the group of linked objects, it returns these to
the client. The client needs to replace the old objects with
the updated objects returned by the server. Further we need
to update the external pointers i.e., objects at the client that
pointed to the old objects and were not passed to the server.
These external pointers need to now point to the corresponding
returned objects. This plugging of the returned objects in the
client is a non-trivial task because we do not know how the
old objects map to the returned objects. Figure 4(a) shows the
problem of plugging external pointers x and y.f to the new
objects on return to the client.

In Figure 4(a), structure pointed by parameter obj before
API call on client microservice is shown with dotted lines. This
is passed to the server. Structure obtained after API operations
is shown after API on server microservice. After returning the
structure to the client, it is unknown how to plug back i.e.,
which nodes should x and y.f now point to? Two possible
structures are shown after API on client microservice.

In order to map the old object with the new object obtained
from deserialization of JSON, we propose to create a memory
map.

B. Solution: Memory Map

Since static pointer analysis [7] is inaccurate in mapping
old objects with the new objects, we perform the mapping at
runtime. For this, we add an ID field to each object and replace
pointers with IDs using pointer unswizzling (Section II-B).
We assign a unique global ID to each object; the ID could be



(a) Problem with serialization of structures containing aliases.

(b) Pointer swizzling to transfer objects containing pointers.

Fig. 3. Problem with serialization of structures containing aliases is shown in (a) which is solved using pointer swizzling in (b).

Algorithm 1 Map old and new group of linked objects
Input: Roots of old and new group of linked objects, respectively
Output: Map of each old object to its new object
Procedure computeMap (oldRoot, newRoot)

∀ old ∈ objects reachable from oldRoot,
∃ new ∈ objects reachable from newRoot,

s.t. old.ID = new.ID ⇐⇒ (old,new) ∈ memoryMap
∀ old ∈ objects reachable from oldRoot,

̸ ∃ new ∈ objects reachable from newRoot,
s.t. old.ID = new.ID ⇐⇒ (old,ϕ) ∈ memoryMap

∀ new ∈ objects reachable from newRoot,
̸ ∃ old ∈ objects reachable from oldRoot,

s.t. old.ID = new.ID ⇐⇒ (ϕ,new) ∈ memoryMap
return memoryMap

formed by concatenating the owning microservice name of the
object with an ID that is unique within that microservice. With
this, when the new objects are returned to the client, their IDs
can help us map the old objects with the returned objects. We
copy the fields of each returned object to the old object, and
delete the returned object on the client. If any object contains
a new ID that did not exist before the API call, then it can
be determined that the object has been newly created by the
server. Such an object should not be deleted on the client.

We discuss the approach using algorithms 1 and 2. Algo-
rithm 1 takes the old group of linked objects on the client
before the API call and the new group of linked objects
received from the server, and maps the two. Algorithm 2 then
copies the fields of each new object to the old object, and

Algorithm 2 Update old objects with mapped new objects
Input: Map of each old object to its new object (from Algorithm 1)
Procedure updateOldObjects (memoryMap)

∀ (old, ϕ) ∈ memoryMap,
Delete old

∀ (ϕ, new) ∈ memoryMap,
Do nothing

∀ (old, new) ∈ memoryMap,
∀ field ∈ fields of pointer unswizzled type of old,

Update old.field = new.field
Delete new

deletes the new object. If the new object does not map to any
old object, it retains the new object because it would have been
created by the API. If the old object does not map to any new
object, it deletes the old object because it would have been
deleted by the API. An example of client address space is
shown in Figure 4(b).

In Figure 4(b)., on the client, new objects pointed by
newRoot need to be plugged in place of objects pointed
by oldRoot. An example with addresses (0x10 – 0x60) is
shown. Algorithm 1 constructs the memory map. Algorithm 2
typecasts the objects and copies their fields to the old objects.
The plugged group of objects is shown at the bottom.

We generate Java functions statically for computeMap(.)
(Algorithm 1) and updateOldObjects(.) (Algorithm 2) and
call them after every API call in the Java code. In the Java
implementation, we save both the data and the type in the
objects so that depending on the runtime type of each object,



(a) Problem of plugging the objects returned from the server to the client. (b) Plugging back using Algorithms 1 and 2.

Fig. 4. Problem of plugging back objects returned by the server into the client address space is shown in (a). Solution is shown in (b).

Dataset Description ms Classes Methods Fields APIs Pointers
DayTrader Trading App 8 111 952 530 331 159
PBW Online plant store 6 36 424 276 96 83
Acme-Air Airline App 4 38 196 117 25 0
Petclinic Vet-Clinic 4 37 138 57 7 0
Mayocat E-Commerce 7 667 3042 1276 142 0

Fig. 5. Monolith applications studied for presence of pointers in data passing
via APIs between microservices. Columns denote number of microservices,
classes, methods, fields, APIs, and APIs with pointers, respectively.

reachable objects can be computed in computeMap(.) and its
fields can be accessed and updated in updateOldObjects(.).

IV. EXPERIMENTS AND EMPIRICAL MEASUREMENTS

We study how prevalent is pointer communication while
converting monolith to microservices.

A. Benchmarks

We study five publicly-available web-based monolith java
applications, viz. Daytrader [6], Plantsbywebsphere [11],
Acme-Air [12], Petclinic [13] and Mayocat [14]. These ap-
plications have been used in industry for converting monolith
to microservices [1], [4].

B. Methodology

For each API, we check if the caller object, any parameter
object, or return object or their field is referenced by any other
object. We detect this using type analysis [7].

C. Empirical Measurements

Figure 5 records number of microservices (ms) recom-
mended by clustering tool [1], number of classes, methods,
fields, and APIs in the five monolith applications. Under the
column labeled ”Pointers”, the table records the number of

APIs that need communication of pointers. Larger the number
of such APIs, more grave is the need of solving this problem.
The table shows that several APIs pass objects containing
pointers in DayTrader and PBW (Plantsbywebsphere). These
objects require special handling (i) during serialization i.e.,
when objects are passed between client and server and (ii)
during plugging back i.e. after the objects are returned from
server to client.

V. RELATED WORK

Microservices-based application follows distributed archi-
tecture, exposes different modules as services. Based on the
load, services instances are scaled. Villamizar et al. presented
a case study where they developed an enterprise applica-
tion using both monolithic and microservice architecture and
showed the benefits of microservices [15]. Broadly there
are two ways to handle communication between services,
synchronous and asynchronous message passing [16], [17].
Several protocols exist to support the communication. Remote
Procedure Call used to be a popular choice that allows remote
execution of a function in a different context. Even though it
started with XML datatype, they extended to support other
data formats like JSON, Protobuf, Thrift etc. Soon SOAP
which is a purely XML-formatted, highly standardized web
communication protocol became popular. It introduced Web
Service Description Language (WSDL) where the endpoints
are defined. REST based web services became popular and got
used for information exchange. This is because it is compar-
atively lightweight and heavily tied with HTTP protocol [18].
Tihomirovs and Grabis present a performance review of REST
and SOAP based web services where REST is shown to have



better performance [19]. Though REST based web services
can be used with XML, binary objects, REST over JSON is
the most popular implementation choice for developing mi-
croservices. Since microservices advocate functional indepen-
dence, stateless messaging between microservices is preferred
irrespective of the synchronous/asynchronous communication
type. But this is difficult to achieve while translating monolith
to microservices since the transferred data may container
pointers. Our techniques of pointer swizzling and building a
memory map are applicable for data transfer via any mode of
communication.

Pointer swizzling [9], [10] is an old concept. It is used
in object-databases. When an in-memory object is serialized
and persisted, the pointers in it are converted to unique IDs.
When the object is deserialized and loaded back to memory
from the persistent store, the IDs are swizzled back to normal
pointers. However, it has not been used to solve the problem
highlighted in this paper. We use the database analogous to
the communication channel between the microservices.

VI. CONCLUSIONS AND FUTURE WORK

Several work exist that propose how to break a monolith
application into microservices. However, no solution exists to
enable communication of objects containing pointers between
microservices. Unlike a monolith application, memory address
space is not shared between microservices. Therefore, sharing
of objects containing pointers cannot be done using their
memory addresses. The presence of aliases makes the problem
non-trivial.

In this work, we highlight two requirements: (i) accurate
transfer of objects containing pointers between client and
server address space, and (ii) plugging i.e., copying objects
from server back to the client address space to update the
state. JSON cannot be used for accurate transfer of objects
because serialization into JSON loses alias information. Static
alias analysis is imprecise and cannot be used to solve the
problem of plugging back. We assign a unique global ID
to each object. We apply pointer swizzling to solve the first
problem. We propose creation of memory maps to solve the
second problem.

In the future, we wish to study the performance impact
due to proposed algorithms and how often non-trivial aliasing
occurs on the client and server side.

REFERENCES

[1] U. Desai, S. Bandyopadhyay, and S. Tamilselvam, “Graph neural net-
work to dilute outliers for refactoring monolith application,” in Pro-
ceedings of 35th AAAI Conference on Artificial Intelligence (AAAI’21),
2021.

[2] S. Agarwal, R. Sinha, G. Sridhara, P. Das, U. Desai, S. Tamilselvam,
A. Singhee, and H. Nakamuro, “Monolith to microservice candidates
using business functionality inference,” in 2021 IEEE International
Conference on Web Services (ICWS). IEEE, 2021, pp. 758–763.

[3] A. Mathai, S. Bandyopadhyay, U. Desai, and S. Tamilselvam, “Monolith
to microservices: Representing application software through heteroge-
neous gnn,” arXiv preprint arXiv:2112.01317, 2021.

[4] A. K. Kalia, J. Xiao, C. Lin, S. Sinha, J. Rofrano, M. Vukovic,
and D. Banerjee, “Mono2micro: an ai-based toolchain for evolving
monolithic enterprise applications to a microservice architecture,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 1606–1610.

[5] L. Nunes, N. Santos, and A. R. Silva, “From a monolith to a microser-
vices architecture: An approach based on transactional contexts,” in
European Conference on Software Architecture. Springer, 2019, pp.
37–52.

[6] “Java ee7: Daytrader7 sample,” https://github.com/WASdev/ sam-
ple.daytrader7.

[7] V. Kanvar and U. P. Khedker, “Heap abstractions for static analysis,”
ACM Comput. Surv., vol. 49, no. 2, jun 2016. [Online]. Available:
https://doi.org/10.1145/2931098

[8] V. Kanvar and U. Khedker, “What’s in a name? going beyond allocation
site names in heap analysis,” Proceedings of the 2017 ACM SIGPLAN
International Symposium on Memory Management, pp. 92–103, 2017.

[9] A. Kemper and D. Kossmann, “Adaptable pointer swizzling strategies in
object bases: Design, realization, and quantitative analysis,” The VLDB
Journal, vol. 4, no. 3, p. 519–567, jul 1995.

[10] S. J. White and D. Dewitt, “Pointer swizzling techniques for object-
oriented database systems,” Ph.D. dissertation, 1994, aAI9434146.

[11] “Plants by websphere,” https://github.com/WASdev/ sam-
ple.plantsbywebsphere.

[12] “Acme-air,” https://github.com/acmeair/acmeair.
[13] “Spring petclinic sample application,” https://github.com/spring-

projects/spring-petclinic.
[14] “Mayocat shop,” https://github.com/jvelo/mayocat-shop.
[15] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casal-

las, and S. Gil, “Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud,” in 2015 10th
Computing Colombian Conference (10CCC). IEEE, 2015, pp. 583–590.

[16] P. Johansson, “Effcient communication with microservices,” 2017.
[17] C. Richardson., “Building microservices: Inter-process communication

in a microservices architecture.” https://www.nginx.com/blog/building-
microservices-inter-process-communication/, 2014.

[18] R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000.

[19] J. Tihomirovs and J. Grabis, “Comparison of soap and rest based web
services using software evaluation metrics,” Information technology and
management science, vol. 19, no. 1, pp. 92–97, 2016.


