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ABSTRACT
The synthesis of maximally-permissive controllers in infinite-state

systems has many practical applications. Such controllers directly

correspond to maximal winning strategies in logically specified

infinite-state two-player games. In this paper, we introduce a tool

called GenSys which is a fixed-point engine for computing maximal

winning strategies for players in infinite-state safety games. A key

feature of GenSys is that it leverages the capabilities of existing

off-the-shelf solvers to implement its fixed point engine. GenSys

outperforms state-of-the-art tools in this space by a significant

margin. Our tool has solved some of the challenging problems in

this space, is scalable, and also synthesizes compact controllers.

These controllers are comparatively small in size and easier to

comprehend. GenSys is freely available for use and is available

under an open-source license.
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1 INTRODUCTION
Reactive systems are control programs that continuously interact

with their environment. Examples range from cyber physical sys-

tems, robot motion planning systems, wireless sensor networks to

bus arbiters, synchronous and distributed programs, to name a few.

Synthesizing such systems automatically from temporal specifica-

tions without human intervention has been a challenge in software

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00

https://doi.org/10.1145/3468264.3473126

engineering for decades. This problem is of much practical impor-

tance, and there are many approaches in the literature that address

it. These approaches can be classified broadly as ones that address

finite-state synthesis [6, 12, 16], and ones that address infinite-state

synthesis [2, 9, 15, 20, 22].

While modelling a reactive system, we can view it as a game

between two non co-operating players, with a given winning con-

dition. The controller is the protagonist player for whom we wish

to find a strategy, such that it can win against any series of moves

by the other player, which is the environment. A play of the game

is an infinite sequence of steps, where each step consists of a move

by each player.

The aim of synthesis is to find a “winning region” and a winning

strategy for the controller if these exist. A winning region consists

of a set of states from which the controller will win if it follows its

strategy.

In addition to scalability, speed, and size of the synthesized con-

trol program, the quality of “maximal permissiveness,” which re-

quires the program to allow as many of its moves as possible while

still guaranteeing a win, has also gained importance in recent ap-

plications. A maximal winning region is one that contains all other

winning regions. For instance, a maximally permissive program

could be used as a “shield” for a neural network based controller

[23], and a maximal control program would serve as the ideal shield.

Another practical application of reactive synthesis for software en-

gineering is in the domain of model based fuzz testing and has been

explored in [14].

In this paper we introduce our tool GenSys, which performs

efficient synthesis of maximal control programs, for infinite-state

systems. Gensys uses a standard fixpoint computation [21] to com-

pute a maximal controller, and does so by leveraging the tactics

provided by off-the-shelf solvers like Z3 [7]. Our approach is guar-

anteed to find a maximal winning region and a winning strategy

for any given game whenever the approach terminates.

GenSys is available on GitHub
1
.

2 MOTIVATING EXAMPLE
A classic example of a game with infinite states is that of Cinderella-

Stepmother [5, 13]. This has been considered a challenging problem

for automated synthesis. The game is practically motivated by the

minimum backlog problem [1], which is an online problem in the

domain of wireless sensor networks.

The game consists of five buckets with a fixed capacity of 𝐶

units each, arranged in a circular way. The two players of the game

are Cinderella, who is the controller, and the Stepmother, who is

1
https://github.com/stanlysamuel/gensys
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Figure 1: GenSys Tool Architecture

the environment. In each step, Cinderella is allowed to empty any

two adjacent buckets, and then the Stepmother tops up the buckets

by arbitrarily partitioning one fresh unit of liquid across the five

buckets. Cinderella wins if throughout the play none of the buckets

overflow; otherwise the Stepmother wins.

The winning region for Cinderella in the Cinderella-StepMother

game with bucket capacity three units comprises states where three

consecutive buckets have at most two units each, with the sum of

the first and third of these buckets being at most 3 (see Table 1).

We will use this game as a running example to illustrate the

components of the tool.

3 TOOL DESIGN
GenSys allows users to model a reactive game, to provide a winning

condition, and to check automatically if a strategy can be synthe-

sized for the controller to win the game. Figure 1 describes the

overall architecture of GenSys. We describe the main components

of the tool below.

3.1 Game Specification
The game specification is given as input by the user, and consists of

four parts: the state space, environment moves, controller moves,

and the winning condition. A sample game specification is depicted

in Figure 2, corresponding to the Cinderella-Stepmother game. The

game specification needs to be Python code, and needs to make

use of certain API features provided by GenSys. In Figure 2 we

have used three buckets for brevity; in our evaluation we use five

buckets as that is the standard configuration used in the literature.

State space: Every game consists of a state space, where a state

consists of a valuation for a set of variables. In the example in

1 from gensys . h e l p e r impor t ∗

2 from gensys . f i x p o i n t s impor t ∗

3 from z3 impor t ∗

4

5 # 1 . Environment moves

6 de f environment ( b1 , b2 , b3 , b1_ , b2_ , b3_ ) :

7 r e t u r n And ( b1_ + b2_ + b3_ == b1 + b2 + b3 + 1 ,

b1_ >=b1 , b2_ >=b2 , b3_ >=b3 )

8

9 # 2 . C o n t r o l l e r moves

10 de f move1 ( b1 , b2 , b3 , b1_ , b2_ , b3_ ) :

11 r e t u r n And ( b1_ == 0 , b2_ == 0 , b3_ == b3 )

12

13 de f move2 ( b1 , b2 , b3 , b1_ , b2_ , b3_ ) :

14 r e t u r n And ( b2_ == 0 , b3_ == 0 , b1_ == b1 )

15

16 de f move3 ( b1 , b2 , b3 , b1_ , b2_ , b3_ ) :

17 r e t u r n And ( b3_ == 0 , b1_ == 0 , b2_ == b2 )

18

19 c on t r o l l e r _move s = [move1 , move2 , move3 ]

20

21 # 3 . S a f e s e t

22 C = sys . argv [ 1 ]

23

24 de f gua r an t e e ( b1 , b2 , b3 ) :

25 r e t u r n And ( b1 <= C , b2 <= C , b3 <= C , b1 >= 0 , b2

>= 0 , b3 >= 0 )

26

27 s a f e t y _ f i x e d p o i n t ( c on t r o l l e r _move s , environment ,

gua r an t e e )

Figure 2: Cinderella Game Specification in GenSys

Figure 2, the variables are named b1, b2, and b3. Intuitively, the

values of these variables represent the amount of liquid in each

bucket currently. GenSys follows the convention that a variable

name of the form “var_” represents the “post” value of “var” after a
move.

Environment move: Lines 6–7 define the state-update permitted to

the environment (which would be the StepMother in the example)

in each of its moves. In Figure 2, this portion indicates that the

StepMother can add a total of one unit of liquid across all three

buckets. Semantically, the environment moves can be encoded as a

binary relation Env(𝑠, 𝑠 ′) on states.

Controller move: This portion defines the state-update permitted to

the controller (which would be Cinderella in the example) in each

of its moves. Lines 10–19 in the code in Figure 2 indicate that the

controller has three alternate options in any of its moves. ‘move1’

corresponds to emptying buckets b1 and b2, and so on. Semantically,

the controller moves can be encoded as a binary relation Con(𝑠, 𝑠 ′)
on states. In Figure 2, Con(𝑠, 𝑠 ′) is a disjunction of each controller

move in the Python list controller_moves.

Safe Set: We support safety winning conditions as of now in GenSys.

A safety winning condition is specified by a set of “safe” states in

which the controller must forever keep the play in, to win the play.

In Lines 24–25, the safe set of states is given by the condition that

each bucket’s content must be at most the bucket capacity𝐶 , which

is a command-line parameter to the tool. In other words, there

should be no overflows. Semantically, the safe set is a predicate

𝐺 (𝑠) on states.
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To solve the safety game, the user should call the safety_fixedpoint
function which implements the fixed-point procedure for this win-

ning condition. This function takes as input moves of both players

and the safe set and returns a strategy for the controller, if it exists.

More details regarding the procedure is explained in Sections 3.2,

3.3 and 3.4 respectively.

In this prototype version, there is no formal specification lan-

guage and the game specification needs to be python functions in

a specific format, as shown in Fig 2. More details can be found on

our tool page
2
. Support for initial variables is not incorporated but

is a trivial extension.

3.2 Game Formulation
From the given game specification, this module of our tool formu-

lates one step of the game. This step is represented as the following

equation:

WP (𝑋 ) ≡ ∃𝑠 ′(𝐶𝑜𝑛(𝑠, 𝑠 ′) ∧𝐺 (𝑠 ′) ∧
∀𝑠 ′′(𝐸𝑛𝑣 (𝑠 ′, 𝑠 ′′) =⇒ 𝑋 (𝑠 ′′))) .

A step consists of a move of the controller followed by a move

of the environment. The formula above has the state variable 𝑠 as

the free variable. The solution to this formula is the set of states

starting from which the controller has a move such that if the

environment subsequently makes a move, the controller’s move

ends in a state that satisfies the given winning condition 𝐺 , and

the environment’s move ends in a state that is in a given set of

states 𝑋 . The formula above resembles the weakest pre-condition

computation in programming languages. Note that the controller

makes the first move
3
.

3.3 Fixed-Point Engine
The winning region of the game is the greatest solution to the

equation in Section 3.2 and can be represented by the greatest

fixed-point expression:

a𝑋 . (WP (𝑋 ) ∧𝐺)
It should be noted that for soundness, we require that 𝑋 be

initialized to𝐺 as opposed to𝑇𝑟𝑢𝑒 in the standard gfp computation.

The winning region represents the set of states starting from

which the controller has a way to ensure that only states that satisfy

the winning condition 𝐺 are visited across any infinite series of

steps. Our tool computes the solution to the fixed-point equation

above using an iterative process (which we describe later in the

paper).

Our formulation above resembles similar classical formulations

for finite state systems [17, 21]. Those algorithms were guaranteed

to terminate due to the finiteness of the state space. This is not

true in the case of an infinite state space. Thus, it is possible our

approach will not terminate for certain systems. In Figure 1, this

possibility is marked with the “Unknown” output. Thus, we are

incomplete but sound. We note that due to the uncomputable nature

of the problem [9] there cannot exist a terminating procedure for

the problem. However, we have empirically observed that if we

bound the variables in𝐺 (𝑠), the procedure terminates. For example,

2
https://github.com/stanlysamuel/gensys

3
We also support the scenario where the environment plays first but this is beyond

the scope of this paper.

Table 1: Strategy Synthesized by GenSys for the Cindrella
game with bucket size 3

Condition Move

0 ≤ 𝑏1, 𝑏2 ≤ 3 ∧ 0 ≤ 𝑏3, 𝑏4, 𝑏5 ≤ 2 ∧ 𝑏3 + 𝑏5 ≤ 3 𝑏1_, 𝑏2_ = 0

0 ≤ 𝑏2, 𝑏3 ≤ 3 ∧ 0 ≤ 𝑏4, 𝑏5, 𝑏1 ≤ 2 ∧ 𝑏4 + 𝑏1 ≤ 3 𝑏2_, 𝑏3_ = 0

0 ≤ 𝑏3, 𝑏4 ≤ 3 ∧ 0 ≤ 𝑏5, 𝑏1, 𝑏2 ≤ 2 ∧ 𝑏5 + 𝑏2 ≤ 3 𝑏3_, 𝑏4_ = 0

0 ≤ 𝑏4, 𝑏5 ≤ 3 ∧ 0 ≤ 𝑏1, 𝑏2, 𝑏3 ≤ 2 ∧ 𝑏1 + 𝑏3 ≤ 3 𝑏4_, 𝑏5_ = 0

0 ≤ 𝑏5, 𝑏1 ≤ 3 ∧ 0 ≤ 𝑏2, 𝑏3, 𝑏4 ≤ 2 ∧ 𝑏2 + 𝑏4 ≤ 3 𝑏5_, 𝑏1_ = 0

for the cinderella specification in Fig 2, if we use the constraint∨
3

𝑖=1 𝑏𝑖 <= 𝐶 for 𝐺 (𝑠), the procedure does not terminate.

Maximality: If the procedure terminates, the winning region

is maximal i.e., it contains the exact set of states from where the

controller can win. For the proof sketch, assume that the region is

not maximal. Then there exists a state which was missed or added

to the exact winning region. This is not possible due to the fact that

at every step, the formulation in Section 3.2 computes the weakest

set of states for the controller to stay in the safe region, against

any move of the environment. The detailed proof can be found in

Section 8.

3.4 Strategy Extraction
The game is said to be winnable for the controller, or a winning

strategy for the controller is said to be realizable, if the winning
region (computed above) is non-empty.

From the winning region, the strategy can be emitted using a

simple logical computation. The strategy is a mapping from subsets

of the winning region to specific alternative moves for the controller

as given in the game specification, such that every state in the

winning region is present in at least one subset, and such that upon

taking the suggested move from any state in a subset the successor

state is guaranteed to be within the winning region.

In the Cinderella-StepMother game, when there are five buckets

and the bucket size 𝐶 is 3, the strategy that gets synthesized is

shown in Table 1.

It is interesting to note that a sound and readable strategy has

been synthesized automatically, without any human in the loop.

4 IMPLEMENTATION DETAILS
GenSys is currently in a prototype implementation stage, and serves

as a proof of concept for the experimental evaluation that follows.

The current version is 0.1.0. Currently GenSys supports safety win-

ning conditions; immediate future work plans include adding sup-

port for other types of temporal winning conditions.

GenSys is implemented in Python, and depends on the Z3 theo-

rem prover [7] from Microsoft Research. GenSys has a main loop,

in which it iteratively solves for the fixed-point equation in Sec-

tion 3.3. It first starts with an over-approximation 𝑋 = 𝐺 , where

𝐺 is the given safe set, and computes using Z3 a formula that en-

codes WP (𝑋 ). It then makes 𝑋 refer to the formula just computed,

re-computesWP (𝑋 ) again, and so on iteratively, until the formulas

denoted by 𝑋 do not change across iterations. This procedure is

described in Section 8.

https://github.com/stanlysamuel/gensys
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The iterative process above, if carried out naively, can quickly

result in very large formulas. To mitigate this issue, we make use of

Z3’s quantifier elimination tactics. Z3 provides many such tactics;

our studies showed that the ‘qe2’ [4] strategy showed the best

results. We believe the quantifer elimination power of Z3 is one of

the main reasons for the higher scalability of our approach over

other existing approaches.

5 EXPERIMENTAL RESULTS
To evaluate our tool GenSys, we consider the benchmark suite

from the paper of Beyene et al. [2], which introduces the Cinderella

game as well as some program repair examples. We also consider

the robot motion planning examples over an infinite state space

introduced by Neider et al. [19].

The primary baseline tool for our comparative evaluation is JSyn-

VG [15], whose approach is closely related to ours. Their approach

also uses a weakest-precondition like formulation and an iterative

approach to compute a fix-point solution. However, their approach

uses a “forall-there-exists” formulation of a single step, in contrast

to the “there-exists-forall” formulation that we adopt (see theWP
formulation in Section 3.2). Also, their tool uses a dedicated solver

called AE-VAL [10, 11], whereas GenSys uses the standard solver

Z3.

We used the latest version of the JSyn-VG, which is available

within the JKind model checker (https://github.com/andrewkatis/

jkind-1/releases/tag/1.8), for our comparison.

To serve as secondary baselines, we compare our tool with sev-

eral other tools on the same set of benchmarks as mentioned above.

These tools include SimSynth [9] and ConSynth [2], which are

based on logic-based synthesis, just like GenSys and JSyn-VG. We

also consider the tool DT-Synth [18], which is based on decision

tree learning, and the tools SAT-Synth and RPI-Synth, which are

based on automata based learning [19]. The numbers we show for

SimSynth and ConSynth are reproduced from [9] and [18] respec-

tively, while the numbers for all other tools mentioned above were

obtained by us using runs on a machine with an Intel i5-6400 pro-

cessor and 8 GB RAM.
4
Results for the Cinderella game are not

available from the learning-based approaches (i.e., they time out af-

ter 900 seconds). SimSynth results are available only for Cinderella

among the benchmarks we consider.

Table 2 contains detailed results for the Cinderella game, by

considering various values for the bucket size𝐶 . It was conjectured

by the ConSynth tool authors [2] that the range of bucket sizes

between ≥ 1.5 and < 2.0 units is challenging, and that automated

synthesis may not terminate for this range. They also mention

that this problem was posed by Rajeev Alur as a challenge to the

software synthesis community. However, GenSys terminated with

a sound result throughout this range. In fact, GenSys was able to

scale right upto bucket-size 1.9(20) (i.e., the digit 9 repeated 20

times after the decimal), whereas the state of the art tools time

out much earlier. The number of iterations for the fixed-point loop

4
We were unable to build SimSynth from source due to the dependency on a very

specific version of OCaml.Wewere unable to get access to ConSynth even after mailing

the authors. Thus, we used the numbers for ConSynth from the DT-Synth [18] paper

which is the latest paper that evaluates ConSynth. They also describe the difficulty in

reproducing the original ConSynth results. We expect the ConSynth results that we

have reproduced from the other paper [18] to be accurate, as the numbers for the other

tools given in that paper match the numbers we obtained when we ran those tools.

Table 2: Running times for the Cinderella game for various
values of bucket size 𝐶. "-" indicates unavailability of data,
while ">𝑥m" denotes a timeout after 𝑥 minutes. R denotes
Realizable and U denotes Unrealizable.

𝐶 Out SimSynth ConSynth JSyn-VG GenSys

Time Iter

3.0 R 2.2s 12m45s 1m26s 0.6s 3

2.5 R 53.8s >15m 1m19s 0.7s 3

2.0 R 68.9s - 1m6s 0.6s 3

1.9(20) U - - >16m 31.0s 69

1.8 U >10m - >16m 0.6s 5

1.6 U 1.5s - >16m 0.4s 4

1.5 U 1.4s - 14m34s 0.3s 4

1.4 U 0.2s - 17s 0.2s 3

Table 3: Results on remaining benchmarks. Times are in sec-
onds. >15m denotes a timeout after 15 minutes. Tool name
abbreviations: C for ConSynth, J for JSyn-VG, D for DT-
Synth, S for SAT-Synth, R for RPI-Synth, G for GenSys.

Benchmark C J D S R G

Repair-Lock 2.5 1.5 0.5 0.6 0.2 0.3

Box 3.7 0.6 0.3 0.3 0.1 0.3

Box Limited 0.4 1.7 0.1 0.4 0.5 0.2

Diagonal 1.9 4.0 2.4 1.34 0.5 0.2

Evasion 1.5 0.5 0.2 81 0.1 0.7

Follow >15m 1.2 0.3 88.9 >15m 0.7

Solitary Box 0.4 0.9 0.1 0.3 0.1 0.3

Square 5x5 >15m 6.5 2.5 0.6 0.2 0.3

to terminate, i.e., 69, and the time taken to solve, i.e., 31 seconds,

affirm that it was indeed challenging to solve for this bucket size.

This empirically proves that we can scale to large formula sizes.

This is challenging because the formula sizes keep increasing with

every iteration of the fixed-point computation.

Table 3 shows the results on the other benchmarks. Here also it

is clear that GenSys outperforms the other tools in most situations.

SimSynth supports reachability, which is a dual of safety. Con-

Synth supports safety, reachability and general LTL specifications.

The rest of the tools that we consider, including GenSys, natively

support safety (and its dual, reachability) winning conditions only.

Regarding maximality, it should be noted that JSyn-VG is the

only tool apart from us that synthesizes a maximal controller.

6 FUTUREWORK
The scalability of our approach hints at the potential for addressing

more complex winning conditions apart from safety. It would be

interesting to address synthesis ofmaximal controllers for𝜔-regular

specifications, which is a strict superclass of safety, and compare

scalability, synthesis time, and controller size for such properties.

https://github.com/andrewkatis/jkind-1/releases/tag/1.8
https://github.com/andrewkatis/jkind-1/releases/tag/1.8
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7 CONCLUSION
We have presented the prototype implementation of our tool Gen-

Sys. We discussed the design of the tool using a motivating example,

and demonstrated scalability of strategy synthesis and the read-

ability of synthesizied strategies. One of the key takeaways is that

with the advances in SMT algorithms for quantifier elimination

and formula simplification, it is possible to expect scalability for

fundamental problems. Tools such as ConSynth, JSyn-VG and Sim-

Synth use external solvers such as E-HSF [3], AE-VAL [10, 11], and

SimSat [8] respectively, which appear to slow down the synthesis

process. E-HSF requires templates for skolem relations, while AE-

VAL restricts the game allowing only the environment to play first.

Although SimSynth does not require external templates as a man-

ual input, it follows a two step process where it first synthesizes a

template automatically using SimSat, followed by the final strategy

synthesis. Our approach does not require an external human in

the loop to provide templates, does not pose restrictions on the

starting player and is a relatively intuitive approach. Thus, we show

an elegant solution that works well in practice. More information

about our approach, running the tool and reproducing the results

can be found on GitHub
5
.
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8 APPENDIX
8.1 Safety Procedure
Algorithm 1 computes the greatest solution to the equation in

Section 3.2.

Algorithm 1: Safety Procedure

Input :Game formulation WP , Safe region 𝐺
Output :Winning region 𝑋 , if algorithm terminates

𝑋 := 𝐺 ;

𝑊 :=WP (𝑋 ) ∧𝐺 ;

while 𝑋 ⇏𝑊 do
𝑋 :=𝑊 ;

𝑊 :=WP (𝑋 ) ∧𝐺

end
return 𝑋 ;

Algorithm 1 takes the game formulation as input and returns

the winning region for the controller, if it terminates. The winning

region is a quantifier free formula in the base theory. At every iter-

ation, the formula WP (𝑋 ) ∧𝐺 is projected to eliminate quantifiers

to return an equivalent quantifier free formula𝑊 . The projection

operation is intrinsic to the Z3 solver.

8.2 Proof:
We prove the correctness of the Algorithm 1 by reasoning over 𝑋 .

Lemma 8.1. At the 𝑖’th step of Algorithm 1, 𝑋𝑖 is the exact set of
states from where the controller has a strategy to keep the game in G
for at least 𝑖 steps.

Proof:We prove this by induction over the valuations of predicate

𝑋 at every step in Algorithm 1.

Base case: 𝑖 = 0 and 𝑋0 = 𝐺 . Trivially, the game stays in 𝐺 and

hence it is the set of states from where the controller has a strategy

to keep the game in G for at least 0 steps. This is also the weakest

(and hence exact) set of states as there are no other states from

where the controller can from without making a move.

Inductive step: Assume that the IH holds i.e., 𝑋𝑖−1 is the exact
set of states from where the controller has a strategy to keep the

game in G for at least 𝑖 − 1 steps.

𝑋𝑖 is computed as 𝑋𝑖 := WP (𝑋𝑖−1) ∧𝐺 . From any state 𝑠 ∈ 𝑋𝑖 ,

the controller can stay in the safe region and ensure reaching 𝑋𝑖−1
in one step ensuring the fact that it can keep the game in 𝐺 for at

least 𝑖 steps. Hence, 𝑋𝑖 is sound.

Claim: 𝑋𝑖 is the weakest.
Proof: Assume a state 𝑠 ∉ 𝑋𝑖 and from where the controller can

ensure a win. This is not possible because 𝑠 must be a solution to

WP ∧𝐺 .

Theorem 8.2 (Soundness). The predicate 𝑋 returned by Algo-
rithm 1 is a winning region for the controller.

Proof: Let 𝑋𝑘+1 = 𝑋𝑘 for some step 𝑘 in Algorithm 1. Let 𝑠 ∈
𝑋𝑘+1. From Lemma 8.1, 𝑋𝑘 is the exact set of states from where the

controller has a strategy to keep the game in G for at least 𝑘 steps.

Similarly, the lemma holds for 𝑋𝑘+1. Since 𝑋𝑘+1 = WP (𝑋𝑘 ), from
𝑠 , the controller can ensure a move to reach 𝑋𝑘 in one step. Since

𝑋𝑘+1 = 𝑋𝑘 , the controller can ensure a move to reach 𝑋𝑘+1 in one

step as well. As this process can be repeated forever, 𝑋𝑘 (and hence,

𝑋 ) is a winning region.

Theorem 8.3 (Maximality). 𝑋 returned by Algorithm 1 is the
weakest region i.e., no state from where controller can win, is missed.

Proof: Assume not. Then there exists a state 𝑠 ∉ 𝑋 from which

the controller can keep the game in the safe region for infinite steps.

Let the algorithm terminate at some step 𝑘 . By Lemma 8.1, 𝑋𝑘 is

the exact set of states from where the controller has a strategy to

keep the game in G for at least 𝑘 steps. Infinite steps also include

the 𝑘’th step of the algorithm, since 𝑘 is arbitrary. Hence 𝑠 ∈ 𝑋𝑘 .

Contradiction.

From the above two theorems, 𝑋 is sound and the weakest set

of states from where the controller can ensure a move.

8.3 Strategy Extraction:
Once the winning region𝑋 has been computed, the strategy for the

controller can be extracted in one step. In this paper, we assume

that the controller is a disjunction of finite number of moves. Thus,

for 𝑛 moves:

𝐶𝑜𝑛(𝑠, 𝑠 ′) =
𝑛∨
𝑖=1

𝑀𝑜𝑣𝑒𝑖 (𝑠, 𝑠 ′)

Let

WP𝑖 (𝑋 ) ≡ ∃𝑠 ′(𝑀𝑜𝑣𝑒𝑖 (𝑠, 𝑠 ′) ∧𝐺 (𝑠 ′) ∧
∀𝑠 ′′(𝐸𝑛𝑣 (𝑠 ′, 𝑠 ′′) =⇒ 𝑋 (𝑠 ′′))) .

Given the winning region 𝑋 , the strategy extraction step computes

the condition under which each move of the controller should be

played, as follows:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖 = WP𝑖 (𝑋 ) ∧𝐺

For 𝑛 moves, the strategy returned is a map from conditions to

moves as follows:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖 ↦→ 𝑀𝑜𝑣𝑒𝑖 , 𝑖 ∈ {1...𝑛}
Soundness and Maximality of the synthesized strategy: This fol-

lows from from the soundness and maximality of the winning

region 𝑋 . The nuance is that the argument now depends on each

move𝑀𝑜𝑣𝑒𝑖 (𝑠, 𝑠 ′) of the controller instead of 𝐶𝑜𝑛(𝑠, 𝑠 ′).
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