
Data Flow Analysis of Asynchronous Systems

using In�nite Abstract Domains

Snigdha Athaiya(B)1, Raghavan Komondoor1, and K. Narayan Kumar2

1 Indian Institute of Science, Bengaluru, India
{snigdha,raghavan}@iisc.ac.in

2 Chennai Mathematical Institute, Chennai, India
kumar@cmi.ac.in

Abstract. Asynchronous message-passing systems are employed frequently
to implement distributed mechanisms, protocols, and processes. This pa-
per addresses the problem of precise data �ow analysis for such systems.
To obtain good precision, data �ow analysis needs to somehow skip exe-
cution paths that read more messages than the number of messages sent
so far in the path, as such paths are infeasible at run time. Existing data
�ow analysis techniques do elide a subset of such infeasible paths, but
have the restriction that they admit only �nite abstract analysis domains.
In this paper we propose a generalization of these approaches to admit
in�nite abstract analysis domains, as such domains are commonly used
in practice to obtain high precision. We have implemented our approach,
and have analyzed its performance on a set of 14 benchmarks. On these
benchmarks our tool obtains signi�cantly higher precision compared to
a baseline approach that does not elide any infeasible paths and to an-
other baseline that elides infeasible paths but admits only �nite abstract
domains.

Keywords: Data Flow Analysis · Message-passing systems.

1 Introduction

Distributed software that communicates by asynchronous message passing is
a very important software paradigm in today's world. It is employed in varied
domains, such as distributed protocols and work�ows, event-driven systems, and
UI-based systems. Popular languages used in this domain include Go (https:
//golang.org/), Akka (https://akka.io/), and P (https://github.com/p-org).

Analysis and veri�cation of asynchronous systems is an important problem,
and poses a rich set of challenges. The research community has focused histor-
ically on a variety of approaches to tackle this overall problem, such as model
checking and systematic concurrency testing [25,13], formal veri�cation to check
properties such as reachability or coverability of states [41,3,2,21,18,31,19,1], and
data �ow analysis [29].

Data �ow analysis [32,30] is a speci�c type of veri�cation technique that
propagates values from an abstract domain while accounting for all paths in a

https://golang.org/
https://golang.org/
https://akka.io/
https://github.com/p-org

2 Athaiya S. et al.

program. It can hence be used to check whether a property or assertion always
holds. The existing veri�cation and data �ow analysis approaches mentioned
earlier have a major limitation, which is that they admit only �nite abstract do-
mains. This, in general, limits the classes of properties that can be successfully
veri�ed. On the other hand, data �ow analysis of sequential programs using in�-
nite abstract domains, e.g., constant propagation [32], interval analysis [12], and
octagons [44], is a well developed area, and is routinely employed in veri�cation
settings. In this paper we seek to bridge this fundamental gap, and develop a
precise data �ow analysis framework for message-passing asynchronous systems
that admits in�nite abstract domains.

1.1 Motivating Example: Leader election

1: max := process number; send 〈1,max 〉
2: Process is in active mode
3: while true do
4: if process is in passive mode then
5: receive a mesg and send this same mesg
6: else if message 〈1, i〉 arrives then
7: if i 6= max then
8: Send message 〈2, i〉; left := i
9: else
10: Declare max as the global maximum
11: nr_leaders++; assert(nr_leaders =

1)

12: else if message 〈2, j〉 arrives then
13: if left > j and left > max then
14: max := left

15: Send message 〈1,max 〉
16: else
17: Process enters passive mode

2

4 1

3

<1,4>

<1,3>

<2,3>

<1,4>,<2,4>,<1,2>

Fig. 1. Pseudo-code of each process in leader election, and a partial run

To motivate our work we use a benchmark program3 in the Promela lan-
guage [25] that implements a leader election protocol [17]. In the protocol there
is a ring of processes, and each process has a unique number. The objective is
to discover the �leader�, which is the process with the maximum number. The
pseudo-code of each process in the protocol is shown in the left side of Figure 1.
Each process has its own copy of local variablesmax and left, whereas nr_leaders
is a global variable that is common to all the processes (its initial value is zero).
Each process sends messages to the next process in the ring via an unbounded
FIFO channel. Each process becomes �ready� whenever a message is available

3 �le assertion.leader.prm in www.imm.dtu.dk/~albl/promela-models.zip.

www.imm.dtu.dk/~albl/promela-models.zip

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 3

for it to receive, and at any step of the protocol any one ready process (chosen
non-deterministically) executes one iteration of its �while� loop. (We formalize
these execution rules in a more general fashion in Section 2.1.) The messages
are a 2-tuple 〈x, i〉, where x can be 1 or 2, and 1 ≤ i ≤ max . The right side of
Figure 1 shows a snapshot at an intermediate point during a run of the proto-
col. Each dashed arrow between two nodes represents a send of a message and
a (completed) receipt of the same message. The block arrow depicts the chan-
nel from Process 2 to Process 1, which happens to contain three sent (but still
unreceived) messages.

It is notable that in any run of the protocol, Lines 10-11 happen to get
executed only by the actual leader process, and that too, exactly once. Hence,
the assertion never fails. The argument for this claim is not straightforward, and
we refer the reader to the paper [17] for the details.

1.2 Challenges in property checking

Data �ow analysis could be used to verify the assertion in the example above, e.g.,
using the Constant Propagation (CP) abstract domain. This analysis determines
at each program point whether each variable has a �xed value, and if yes, the
value itself, across all runs that reach the point. In the example in Figure 1, all
actual runs of the system that happen to reach Line 10 come there with value
zero for the global variable nr_leaders.

A challenge for data �ow analysis on message-passing systems is that there
may exist infeasible paths in the system. These are paths with more receives of a
certain message than the number of copies of this message that have been sent so
far. For instance, consider the path that consists of two back-to-back iterations
of the �while� loop by the leader process, both times through Lines 3,6,9-11.
This path is not feasible, due to the impossibility of having two copies of the
message 〈1,max 〉 in the input channel [17]. The second iteration would bring the
value 1 for nr_leaders at Line 10, thus inferring a non-constant value and hence
declaring the assertion as failing (which would be a false positive).

Hence, it is imperative in the interest of precision for any data �ow analysis or
veri�cation approach to track the channel contents as part of the exploration of
the state space. Tracking the contents of unbounded channels precisely is known
to be undecidable even when solving problems such as reachability and cover-
ability (which are simpler than data �ow analysis). Hence, existing approaches
either bound the channels (which in general causes unsoundness), or use sound
abstractions such as unordered channels (also known as the Petri Net or VASS
abstraction) or lossy channels. Such abstractions su�ce to elide a subset of infea-
sible paths. In our running example, the unordered channel abstraction happens
to su�ce to elide infeasible paths that could contribute to a false positive at
the point of the assertion. However, the analysis would need to use an abstract
domain such as CP to track the values of integer variables. This is an in�nite do-
main (due to the in�nite number of integers). The most closely related previous
data�ow analysis approach for distributed systems [29] does use the unordered

4 Athaiya S. et al.

channel abstraction, but does not admit in�nite abstract domains, and hence
cannot verify assertions such as the one in the example above.

1.3 Our Contributions

This paper is the �rst one to the best of our knowledge to propose an approach for
data �ow analysis for asynchronous message-passing systems that (a) admits in-
�nite abstract domains, (b) uses a reasonably precise channel abstraction among
the ones known in the literature (namely, the unordered channels abstraction),
and (c) computes maximally precise results possible under the selected channel
abstraction. Every other approach we are aware of exhibits a strict subset of the
three attributes listed above. It is notable that previous approaches do tackle
the in�nite state space induced by the unbounded channel contents. However,
they either do not reason about variable values at all, or only allow variables
that are based on �nite domains.

Our primary contribution is an approach that we call Backward DFAS. This
approach is maximally precise, and admits a class of in�nite abstract domains.
This class includes well-known examples such as Linear Constant Propagation
(LCP) [51] and A�ne Relationships Analysis (ARA) [46], but does not include
the full (CP) analysis. We also propose another approach, which we call Forward
DFAS, which admits a broader class of abstract domains, but is not guaranteed
to be maximally precise on all programs.

We describe a prototype implementation of both our approaches. On a set of
14 real benchmarks, which are small but involve many complex idioms and paths,
our tool veri�es approximately 50% more assertions than our implementation of
the baseline approach [29].

The rest of the paper is structured as follows. Section 2 covers the back-
ground and notation that will be assumed throughout the paper. We present
the Backward DFAS approach in Section 3, and the Forward DFAS approach
in Section 4. Section 5 discusses our implementation and evaluation. Section 6
discusses related work, and Section 7 concludes the paper.

2 Background and Terminology

Vector addition systems with states or VASS [27] are a popular modelling tech-
nique for distributed systems. We begin this section by de�ning an extension to
VASS, which we call a VASS-Control Flow Graph or VCFG.

De�nition 1. A VASS-Control Flow Graph or VCFG G is a graph, and is

described by the tuple 〈Q, δ, r, q0, V, π, θ〉, where
Q is a �nite set of nodes, δ ⊆ Q×Q is a �nite set of edges,

r ∈ N, q0 is the start node, V is a set of variables or memory locations,

π : δ → A maps each edge to an action, where A ≡ ((V → Z)→ (V → Z)),
θ : δ → Zr maps each edge to a vector in Zr.

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 5

For any edge e = (q1, q2) ∈ δ, if π(e) = a and θ(e) = w, then a is called
the action of e and w is called the queuing vector of e. This edge is depicted as

q1
a,w−−→ q2. The variables and the actions are the only additional features of a

VCFG over VASS.
A con�guration of a VCFG is a tuple 〈q, c, ξ〉, where q ∈ Q, c ∈ Nr and

ξ ∈ (V → Z). The initial con�guration of a VCFG is 〈q0,0, ξ0〉, where 0 denotes
a vector with r zeroes, and ξ0 is a given initial valuation for the variables. The
VCFG can be said to have r counters. The vector c in each con�guration can
be thought of as a valuation to the counters. The transitions between VCFG
con�gurations are according to the rule below:

e = (q1, q2), e ∈ δ, π(e) = a, θ(e) = w, a(ξ1) = ξ2, c1 + w = c2, c2 ≥ 0
〈q1, c1, ξ1〉 ⇒e 〈q2, c2, ξ2〉

2.1 Modeling of Asynchronous Message Passing Systems as VCFGs

Asynchronous systems are composed of �nite number of independently executing
processes that communicate with each other by passing messages along FIFO
channels. The processes may have local variables, and there may exist shared (or
global) variables as well. For simplicity of presentation we assume all variables
are global.

c1!m1

c2! m2

x ≔ x + 1

c2?m2

c1?m1

id, 〈1,0〉

id, 〈1,0〉

id, 〈1,0〉

id, 〈0,−1〉

id, 〈0,1〉

id, 〈0,1〉

id, 〈0,−1〉

id, 〈0,−1〉

id,
〈−1,0〉

id,
〈−1,0〉

x ≔ x + 1,
〈0,0〉

x ≔ x + 1,
〈0,0〉

(a) (b)

Fig. 2. (a) Asynchronous system with two processes, (b) its VCFG model

Figure 2(a) shows a simple asynchronous system with two processes. In this
system there are two channels, c1 and c2, and a message alphabet consisting of
two elements, m1 and m2. The semantics we assume for message-passing systems
is the same as what is used by the tool Spin [25]. A con�guration of the system
consists of the current control states of all the processes, the contents of all the
channels, and the values of all the variables. A single transition of the system
consists of a transition of one of the processes from its current control-state to a

6 Athaiya S. et al.

successor control state, accompanied with the corresponding queuing operation
or variable-update action. A transition labeled c !m can be taken unconditionally,
and results in `m' being appended to the tail of the channel `c'. A transition
labeled c ?m can be taken only if an instance of `m' is available at the head
of `c', and results in this instance getting removed from `c'. (Note, based on
the context, we over-load the term �message� to mean either an element of the
message alphabet, or an instance of a message-alphabet element in a channel at
run-time.)

Asynchronous systems can be modeled as VCFGs, and our approach performs
data �ow analysis on VCFGs. We now illustrate how an asynchronous system
can be modeled as a VCFG. We assume a �xed number of processes in the
system. We do this illustration using the example VCFG in Figure 2(b), which
models the system in Figure 2(a). Each node of the VCFG represents a tuple
of control-states of the processes, while each edge corresponds to a transition
of the system. The action of a VCFG edge is identical to the action that labels
the corresponding process transition. (�id� in Figure 2(b) represents the identity
action) The VCFG will have as many counters as the number of unique pairs
(ci,mj) such that the operation ci ! mj is performed by any process. If an edge
e in the VCFG corresponds to a send transition ci ! mj of the system, then e's
queuing vector would have a +1 for the counter corresponding to (ci,mj) and
a zero for all the other counters. Analogously, a receive operation gets modeled
as -1 in the queuing vector. In Figure 2(b), the �rst counter is for (c1,m1) while
the second counter is for (c2,m2). Note that the +1 and -1 encoding (which
are inherited from VASS's) e�ectively cause FIFO channels to be treated as
unordered channels.

When each process can invoke procedures as part of its execution, such sys-
tems can be modeled using inter-procedural VCFGs, or iVCFGs. These are ex-
tensions of VCFGs just as standard inter-procedural control-�ow graphs are
extensions of control-�ow graphs. Constructing an iVCFG for a given system
is straightforward, under a restriction that at most one of the processes in the
system can be executing a procedure other than its main procedure at any time.
This restriction is also present in other related work [29,5].

2.2 Data �ow analysis over iVCFGs

Data �ow analysis is based on a given complete lattice L, which serves as the
abstract domain. As a pre-requisite step before we can perform our data �ow

analysis on iVCFGs, we �rst consider each edge v
a,w−−→ w in each procedure

in the iVCFG, and replace the (concrete) action a with an abstract action f ,
where f : L → L is a given abstract transfer function that conservatively over-

approximates [12] the behavior of the concrete action a.
Let p be a path in a iVCFG, let p0 be the �rst node in the path, and let ξi

be a valuation to the variables at the beginning of p. The path p is said to be
feasible if, starting from the con�guration 〈p0,0, ξi〉, the con�guration 〈q, d, ξ〉
obtained at each successive point in the path is such that d ≥ 0, with successive
con�gurations along the path being generated as per the rule for transitions

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 7

t≔x≔
y≔ z≔0

〈-1〉 〈-1〉

t ≔ z z ≔ 1 y ≔ x x ≔ x + 1

foo()

foo()

〈+1〉

〈+1〉

〈-1〉

Fig. 3. Example iVCFG

among VCFG con�gurations that was given before Section 2.1. For any path
p = e1 e2 . . . ek of an iVCFG, we de�ne its path transfer function ptf (p) as
fek ◦ fek−1

. . . ◦ fe1 , where fe is the abstract action associated with edge e.
The standard data �ow analysis problem for sequential programs is to com-

pute the join-over-all-paths (JOP) solution. Our problem statement is to com-
pute the join-over-all-feasible-paths (JOFP) solution for iVCFGs. Formally stated,
if start is the entry node of the �main� procedure of the iVCFG, given any node
target in any procedure of the iVCFG, and an �entry� value d0 ∈ L at start such
that d0 conservatively over-approximates ξ0, we wish to compute the JOFP value
at target as de�ned by the following expression:⊔

p is a feasible and interprocedurally valid
path in the iVCFG from start to target

(ptf (p))(d0)

Intuitively, due to the unordered channel abstraction, every run of the system
corresponds to a feasible path in the iVCFG, but not vice versa. Hence, the
JOFP solution above is guaranteed to conservatively over-approximate the JOP
solution on the runs of the system (which is not computable in general).

3 Backward DFAS Approach

In this section we present our key contribution � the Backward DFAS (Data Flow
Analysis of Asynchronous Systems) algorithm � an interprocedural algorithm
that computes the precise JOFP at any given node of the iVCFG.

We begin by presenting a running example, which is the iVCFG with two
procedures depicted in Figure 3. There is only one channel and one message in the
message alphabet in this example, and hence the queuing vectors associated with
the edges are of size 1. The edges without the vectors are implicitly associated

8 Athaiya S. et al.

with zero vectors. The actions associated with edges are represented in the form
of assignment statements. The edges without assignment statements next to
them have identity actions. The upper part of the Figure 3, consisting of nodes
a, b, p, q, h, i, j, k, l, is the VCFG of the �main� procedure. The remaining nodes
constitute the VCFG of the (tail) recursive procedure foo. The solid edges are
intra-procedural edges, while dashed edges are inter-procedural edges.

Throughout this section we use Linear Constant Propagation (LCP) [51] as
our example data �ow analysis. LCP, like CP, aims to identify the variables that
have constant values at any given location in the system. LCP is based on the
same in�nite domain as CP; i.e., each abstract domain element is a mapping from
variables to (integer) values. The �w� relation for the LCP lattice is also de�ned
in the same way as for CP. The encoding of the transfer functions in LCP is as
follows. Each edge (resp. path) maps the outgoing value of each variable to either
a constant, or to a linear expression in the incoming value of at most one variable
into the edge (resp. path), or to a special symbol > that indicates an unknown
outgoing value. For instance, for the edge g → m in Figure 3, its transfer function
can be represented symbolically as (t'=t,x'=x+1,y'=y,z'=z), where the primed
versions represent outgoing values and unprimed versions represent incoming
values.

Say we wish to compute the JOFP at node k. The only feasible paths that
reach node k are the ones that attain calling-depth of three or more in the proce-
dure foo, and hence encounter at least three send operations, which are required
to clear the three receive operations encountered from node h to node k. All such
paths happen to bring the constant values (t = 1, z = 1) to the node k. Hence,
(t = 1, z = 1) is the precise JOFP result at node k. However, infeasible paths, if
not elided, can introduce imprecision. For instance, the path that directly goes
from node c to node o in the outermost call to the Procedure foo (this path is of
calling-depth zero) brings values of zero for all four variables, and would hence
prevent the precise fact (t = 1, z = 1) from being inferred.

3.1 Assumptions and De�nitions

The set of all L → L transfer functions clearly forms a complete lattice based on
the following ordering: f1 w f2 i� for all d ∈ L, f1(d) w f2(d). Backward DFAS
makes a few assumptions on this lattice of transfer functions. The �rst is that
this lattice be of �nite height ; i.e., all strictly ascending chains of elements in
this lattice are �nite (although no a priori bound on the sizes of these chains is
required). The second is that a representation of transfer functions is available,
as are operators to compose, join, and compare transfer functions. Note, the two
assumptions above are also made by the classical �functional� inter-procedural
approach of Sharir and Pnueli [55]. Thirdly, we need distributivity, as de�ned
below: for any f1, f2, f ∈ L → L, (f1 t f2) ◦ f = (f1 ◦ f) t (f2 ◦ f). The
distributivity assumption is required only if the given system contains recursive
procedure calls.

Linear Constant Propagation (LCP) [51] and A�ne Relationships Analysis
(ARA) [46] are well-known examples of analyses based on in�nite abstract do-

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 9

mains that satisfy all of the assumptions listed above. Note that the CP transfer-
functions lattice is not of �nite height. Despite the LCP abstract domain being
the same as the CP abstract domain, the encoding chosen for LCP transfer
functions (which was mentioned above), ensures that LCP uses a strict, �nite-
height subset of the full CP transfer-functions lattice that is closed under join
and function composition operations. The trade-o� is that LCP transfer func-
tions for assignment statements whose RHS is not a linear expression and for
conditionals are less precise than the corresponding CP transfer functions.

Our �nal assumption is that procedures other than �main� may send mes-
sages, but should not have any �receive� operations. Previous approaches that
have addressed data �ow analysis or veri�cation problems for asynchronous sys-
tems with recursive procedures also have the same restriction [54,29,19].

We now introduce important terminology. The demand of a given path p in
the VCFG is a vector of size r, and is de�ned as follows:

demand(p) =

{
max (0− w,0), if p = (v

f,w−−→ z)

max (demand(p′)− w,0), if p = (e.p′),where e ≡ (v
f,w−−→ z)

Intuitively, the demand of a path p is the minimum required vector of counter
values in any starting con�guration at the entry of the path for there to exist a
sequence of transitions among con�gurations that manages to traverse the entire
path (following the rule given before Section 2.1). It is easy to see that a path p
is feasible i� demand(p) = 0.

A set of paths C is said to cover a path p i�: (a) all paths in C have the
same start and end nodes (respectively) as p, (b) for each p′ ∈ C, demand(p′) ≤
demand(p), and (c) (tp′∈Cptf (p′)) w ptf (p). (Regarding (b), any binary vector
operation in this paper is de�ned as applying the same operation on every pair
of corresponding entries, i.e., point-wise.)

A path template (p1 , p2 , . . . , pn) of any procedure Fi is a sequence of paths
in the VCFG of Fi such that: (a) path p1 begins at the entry node enFi of Fi
and path pn ends at return node exFi of Fi, (b) for all pi, 1 ≤ i < n, pi ends at
a call-site node, and (c) for all pi, 1 < i ≤ n, pi begins at a return-site node vir,
such that vir corresponds to the call-site node vi−1c at which pi−1 ends.

3.2 Properties of Demand and Covering

At a high level, Backward DFAS works by growing paths in the backward di-
rection by a single edge at a time starting from the target node (node k in
our example in Figure 3). Every time this process results in a path reaching
the start node (node a in our example), and the path is feasible, the approach
simply transfers the entry value d0 via this path to the target node. The main
challenge is that due to the presence of cycles and recursion, there are an in�nite
number of feasible paths in general. In this subsection we present a set of lemmas
that embody our intuition on how a �nite subset of the set of all paths can be

10 Athaiya S. et al.

enumerated such that the join of the values brought by these paths is equal to
the JOFP. We then present our complete approach in Section 3.3.

Demand Coverage Lemma: Let p2 and p′2 be two paths from a node vi to
a node vj such that demand(p′2) ≤ demand(p2). If p1 is any path ending at vi,
then demand(p1.p

′
2) ≤ demand(p1.p2). �

This lemma can be argued using induction on the length of path p1. A
similar observation has been used to solve coverability of lossy channels and
well-structured transition systems in general [3,18,2]. An important corollary
of this lemma is that for any two paths p′2 and p2 from vi to vj such that
demand(p′2) ≤ demand(p2), if there exists a path p1 ending at vi such that p1.p2
is feasible, then p1.p

′
2 is also feasible.

Function Coverage Lemma: Let p2 be a path from a node vi to a node

vj, and P2 be a set of paths from vi to vj such that (
⊔
p′2∈P2

ptf (p′2)) w ptf (p2).

Let p1 be any path ending at vi and p3 be any path beginning at vj. Under

the distributivity assumption stated in Section 3.1, the following property holds:

(
⊔
p′2∈P2

ptf (p1.p
′
2.p3)) w ptf (p1.p2.p3). �

The following result follows from the Demand and Function Coverage Lem-
mas and from monotonicity of the transfer functions:

Corollary 1: Let p2 be a path from a node vi to a node vj, and P2 be a set

of paths from vi to vj such that P2 covers p2. Let p1 be any path ending at vi.
Then, the set of paths {p1.p′2 | p′2 ∈ P2} covers the path p1.p2. �

We now use the running example from Figure 3 to illustrate how we leverage
Corollary 1 in our approach. When we grow paths in backward direction from
the target node k, two candidate paths that would get enumerated (among oth-
ers) are pi ≡ hijk and pj ≡ hijkhijk (in that order). Now, pi covers pj . Therefore,
by Corollary 1, any backward extension p1.pj of pj (p1 is any path pre�x) is
guaranteed to be covered by the analogous backward extension p1.pi of pi. By
de�nition of covering, it follows that p1.pi brings in a data value that conserva-
tively over-approximates the value brought in by p1.pj . Therefore, our approach
discards pj as soon as it gets enumerated. To summarize, our approach discards
any path as soon as it is enumerated if it is covered by some subset of the
previously enumerated and retained paths.

Due to the �nite height of the transfer functions lattice, and because demand
vectors cannot contain negative values, at some point in the algorithm every
new path that can be generated by backward extension at that point would
be discarded immediately. At this point the approach would terminate, and
soundness would be guaranteed by de�nition of covering.

In the inter-procedural setting the situation is more complex. We �rst present
two lemmas that set the stage. The lemmas both crucially make use of the as-
sumption that recursive procedures are not allowed to have �receive� operations.
For any path pa that contains no receive operations, and for any demand vector
d, we �rst de�ne supply(pa, d) as min(s, d), where s is the sum of the queuing
vectors of the edges of pa.

Supply Limit Lemma: Let p1, p2 be two paths from vi to vj such that

there are no receive operations in p1 and p2. Let pb be any path beginning at vj.

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 11

If demand(pb) = d, and if supply(p1, d) ≥ supply(p2, d), then demand(p1.pb) ≤
demand(p2.pb). �

A set of paths P is said to d-supply-cover a path pa i�: (a) all paths
in P have the same start node and same end node (respectively) as pa, (b)
(tp′∈P ptf (p′)) w ptf (pa), and (c) for each p′ ∈ P , supply(p′, d) ≥ supply(pa, d).

Supply Coverage Lemma: If pa.pb is a path, and demand(pb) = d, and
if a set of paths P d-supply-covers pa, and pa as well as all paths in P have no

receive operations, then the set of paths {p′.pb | p′ ∈ P} covers the path pa.pb.

Proof argument: Since P d-supply-covers pa, by the Supply Limit Lemma,
we have (a): for all p′ ∈ P , demand(p′.pb) ≤ demand(pa.pb). Since P d-supply-
covers pa, we also have (tp′∈P ptf (p′)) w ptf (pa). From this, we use the Function
Coverage lemma to infer that (b): (tp′∈P ptf (p′.pb)) w ptf (pa.pb). The result
now follows from (a) and (b). �

Consider path hijk in our example, which gets enumerated and retained (as
discussed earlier). This path gets extended back as qhijk ; let us denote this path
as p′. Let d be the demand of p′ (i.e., is equal to 3). Our plan now is to extend
this path in the backward direction all the way up to node p, by prepending
interprocedurally valid and complete (i.e., IVC) paths of procedure foo in front
of p′. An IVC path is one that begins at the entry node of foo, ends at the
return node of foo, is of arbitrary calling depth, has balanced calls and returns,
and has no pending returns when it completes [50]. First, we enumerate the IVC
path(s) with calling-depth zero (i.e., path co in the example), and prepend them
in front of p′. We then produce deeper IVC paths, in phases. In each phase i,
i > 0, we inline IVC paths of calling-depth i− 1 that have been enumerated and
retained so far into the path templates of the procedure to generate IVC paths of
calling-depth i, and prepend these IVC paths in front of p′. We terminate when
each IVC path that is generated in a particular phase j is d-supply-covered by
some subset P of IVC paths generated in previous phases.

The soundness of discarding the IVC paths of phase j follows from the Supply
Coverage lemma (p′ would take the place of pb in the lemma's statement, while
the path generated in phase j would take the place of pa in the lemma statement).
The termination condition is guaranteed to be reached eventually, because: (a)
the supplies of all IVC paths generated are limited to d, and (b) the lattice
of transfer functions is of �nite height. Intuitively, we could devise a sound
termination condition even though deeper and deeper IVC paths can increment
counters more and more, because a deeper IVC path that increments the counters
beyond the demand of p′ does not really result in lower overall demand when
prepended before p′ than a shallower IVC path that also happens to meet the
demand of p′ (Supply Limit lemma formalizes this).

In our running example, for the path qhijk , whose demand is equal to three,
pre�x generation for it happens to terminate in the �fth phase. The IVC paths
that get generated in the �ve phases are, respectively, p0 = co, p1 = cdefgmcono,
p2 = (cdefgm)2co(no)2, p3 = (cdefgm)3co(no)3, p4 = (cdefgm)4co(no)4, and
p5 = (cdefgm)5co(no)5. supply(p3, 3) = supply(p4, 3) = supply(p5, 3) = 3. The
LCP transfer functions of the paths are as follows. ptf (p3) is (t'=1, x'=x+3,

12 Athaiya S. et al.

y'=x+2, z'=1), ptf (p4) is (t'=1, x'=x+4, y'=x+3, z'=1), while ptf (p5) is (t'=1,
x'=x+5, y'=x+4, z'=1). {p3, p4} 3-supply-covers p5.

We also need a result that when the IVC paths in the jth phase are d-supply-
covered by paths generated in preceding phases, then the IVC paths that would
be generated in the (j+1)th would also be d-supply-covered by paths generated
in phases that preceded j. This can be shown using a variant of the Supply
Coverage Lemma, which we omit in the interest of space. Once this is shown,
it then follows inductively that none of the phases after phase j are required,
which would imply that it would be safe to terminate.

The arguments presented above were in a restricted setting, namely, that
there is only one call in each procedure, and that only recursive calls are allowed.
These restrictions were assumed only for simplicity, and are not actually assumed
in the algorithm to be presented below.

3.3 Data Flow Analysis Algorithm

Our approach is summarized in Algorithm 1. ComputeJOFP is the main rou-
tine. The algorithm works on a given iVCFG (which is an implicit parameter
to the algorithm), and is given a target node at which the JOFP is to be com-
puted. A key data structure in the algorithm is sPaths; for any node v, sPaths(v)
is the set of all paths that start from v and end at target that the algorithm has
generated and retained so far. The workList at any point stores a subset of the
paths in sPaths, and these are the paths of the iVCFG that need to be extended
backward.

To begin with, all edges incident onto target are generated and added to the
sets sPaths and workList (Line 4 in Algorithm 1). In each step the algorithm
picks up a path p from workList (Line 6), and extends this path in the backward
direction. The backward extension has three cases based on the start node of
the path p. The simplest case is the intra-procedural case, wherein the path is
extended backwards in all possible ways by a single edge (Lines 21-23). The
routine Covered, whose de�nition is not shown in the algorithm, checks if its
�rst argument (a path) is covered by its second argument (a set of paths). Note,
covered paths are not retained.

When the start node of p is the entry node of a procedure F1 (Lines 14-
19), the path is extended backwards via all possible call-site-to-entry edges for
procedure F1.

If the starting node of path p is a return-site node v1 (Lines 8-13) in a calling
procedure, we invoke a routineComputeEndToEnd (in line 10 of Algorithm 1).
This routine, which we explain later, returns a set IVC paths of the called pro-
cedure such that every IVC path of the called procedure is d-supply-covered by
some subset of paths in the returned set, where d denotes demand(p). These
returned IVC paths are prepended before p (Line 11), with the call-edge e1 and
return edge r1 appropriately inserted.

The �nal result returned by the algorithm (see Lines 25 and 26 in Algo-
rithm 1) is the join of the values transferred by the zero-demand paths (i.e.,
feasible paths) starting from the given entry value d0 ∈ L.

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 13

Algorithm 1 Backward DFAS algorithm

1: procedure ComputeJOFP(target)
. Returns JOFP from start ∈ Nodes to target ∈ Nodes, entry value d0 ∈ L.

2: for all v ∈ Nodes do . Nodes is the set of all nodes in the VCFG
3: sPaths(v) = ∅
4: For each intra-proc VCFG edge v→ target , add this edge to workList and to

sPaths(v)
5: repeat
6: Remove any path p from workList .
7: Let v1 be the start node of p.
8: if v1 is a return-site node, with incoming return edge from func. F1 then
9: Let v3 be the call-site node corresponding to v1, e1 be the call-site-to-

entry edge from v3 to enF1 , and r1 be the exit-to-return-site edge from
exF1 to v1.

10: for all p1 ∈ ComputeEndToEnd(F1, demand(p)) do
11: p2 = e1 .p1 .r1 .p
12: if Covered(p2 , sPaths(v3)) returns false then
13: Add p2 to sPaths(v3) and to workList .

14: else if v1 is the entry node of a func. F1 then
15: for all v3 ∈ call-sites (F1) do
16: Let e1 be the call edge from v3 to v1.
17: p2 = e1 .p.
18: if Covered(p2 , sPaths(v3)) returns false then
19: Add p2 to sPaths(v3) and to workList .

20: else
21: for all intra-procedural edges e = v3

f,w−−→ v1 in the VCFG do
22: if Covered(e.p, sPaths(v3)) returns false then
23: Add the path (e.p) to sPaths(v3) and to workList .

24: until workList is empty
25: P = {p | p ∈ sPaths(start), demand(p) = 0}
26: return

⊔
p∈P (ptf (p))(d0)

Routine ComputeEndToEnd: This routine is speci�ed in Algorithm 2, and is
basically a generalization of the approach that we described in Section 3.2, now
handling multiple call-sites in each procedure, mutual recursion, calls to non-
recursive procedures, etc. We do assume for simplicity of presentation that there
are no cycles (i.e., loops) in the procedures, as this results in a �xed number of
path templates in each procedure. There is no loss of generality here because
we allow recursion. The routine incrementally populates a group of sets � there
is a set named sIVCPaths(Fi, d) for each procedure Fi in the system. The idea
is that when the routine completes, sIVCPaths(Fi, d) will contain a set of IVC
paths of Fi that d-supply-cover all IVC paths of Fi. Note that we simultaneously
populate covering sets for all the procedures in the system in order to handle
mutual recursion.

The routine ComputeEndToEnd �rst enumerates and saves all zero-depth
paths in all procedures (see Line 3 in Algorithm 2). The routine then iteratively

14 Athaiya S. et al.

Algorithm 2 Routines invoked for inter-procedural processing in Backward
DFAS algorithm

1: procedure ComputeEndToEnd(F , d)

.
Returns a set of paths that d-supply-covers each IVC path of the proce-
dure F .

2: for all Fi ∈ Funcs do
3: Place all 0-depth paths from Fi in sIVCPaths(Fi , d)

4: repeat
5: pathsAdded = false
6: for all path template (p1 , p2 , . . . , pn) in any function Fi ∈ Funcs do
7: Let F1 be the procedure called from the call-site at which p1 ends, F2

be the procedure called from the call-site at which p2 ends, and so on.
8: for all p′1 ∈ sIVCPaths(F1, d), p

′
2 ∈ sIVCPaths(F2, d), . . . do

9: Let p′ = p1 .e1 .p
′
1 .r1 .p2 .e2 .p

′
2 .r2 pn , where each ei is the call-edge

that leaves the call-site node at which pi ends and ri is the return
edge corresponding to ei.

10: if DSCovered(p′, d, sIVCPaths(Fi, d)) returns false then
11: Add the path p′ to sIVCPaths(Fi, d). pathsAdded = true.

12: until pathsAdded is false
13: return sIVCPaths(F, d)

takes a path template at a time, and �lls in the �holes� between corresponding
(call-site, return-site) pairs of the form vi−1c , vir in the path template with IVC
paths of the procedure that is called from this pair of nodes, thus generating
a deeper IVC path (see the loop in lines 6-11). A newly generated IVC path
p′ is retained only if it is not d-supply-covered by other IVC paths already
generated for the current procedure Fi (Lines 10-11). The routine terminates
when no more IVC paths that can be retained are generated, and returns the
set sIVCPaths(F, d).

3.4 Illustration

We now illustrate our approach using the example in Figure 3. Algorithm 1 would
start from the target node k, and would grow paths one edge at a time. After four
steps the path hijk would be added to sPaths(h) (the intermediate steps would
add su�xes of this path to sPaths(i), sPaths(j), and sPaths(k)). Next, path khijk
would be generated and discarded, because it is covered by the �root� path k .
Hence, further iterations of the cycle are avoided. On the other hand, the path
hijk would get extended back to node q, resulting in path qhijk being retained
in sPaths(q). This path would trigger a call to routine ComputeEndToEnd.
As discussed in Section 3.2, this routine would return the following set of paths:
p0 = co, and pi = (cdefgm)ico(no)i for each 1 ≤ i ≤ 4. (Recall, as discussed in
Section 3.2, that (cdefgm)5co(no)5 and deeper IVC paths are 3-supply-covered
by the paths {p3, p4}.)

Each of the paths returned above by the routineComputeEndToEnd would
be prepended in front of qhijk , with the corresponding call and return edges in-

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 15

serted appropriately. These paths would then be extended back to node a. Hence,
the �nal set of paths in sPaths(a) would be abpcoqhijk , abpcdefgmconoqhijk ,
abp(cdefgm)2co(no)2, abp(cdefgm)3co(no)3, and abp(cdefgm)4co(no)4. Of these
paths, the �rst two are ignored, as they are not feasible. The initial data-�ow
value (in which all variables are non-constant) is sent via the remaining three
paths. In all these three paths the �nal values of variables `t' and `z' are one.
Hence, these two constants are inferred at node k.

3.5 Properties of the algorithm

We provide argument sketches here about the key properties of Backward DFAS.
Detailed proofs are available in the appendix that accompanies this paper [4].

Termination. The argument is by contradiction. For the algorithm to not
terminate, one of the following two scenarios must happen. The �rst is that an
in�nite sequence of paths gets added to some set sPaths(v). By Higman's lemma
it follows that embedded within this in�nite sequence there is an in�nite se-
quence p1, p2, . . ., such that for all i, demand(pi) ≤ demand(pi+1). Because the
algorithm never adds covered paths, it follows that for all i:

⊔
1≤k≤i+1 ptf (pk) A⊔

1≤k≤i ptf (pk). However, this contradicts the assumption that the lattice of
transfer functions is of �nite height. The second scenario is that an in�nite se-
quence of IVC paths gets added to some set sIVCPaths(F, d) for some procedure
F and some demand vector d in some call to routine ComputeEndToEnd.
Because the �supply� values of the IVC paths are bounded by d, it follows that
embedded within the in�nite sequence just mentioned there must exist an in�nite
sequence of paths p1, p2, . . ., such that for all i, supply(pi, d) ≥ supply(pi+1, d).
However, since d-supply-covered paths are never added, it follows that for all i:⊔

1≤k≤i+1 ptf (pk) A
⊔

1≤k≤i ptf (pk). However, this contradicts the assumption
that the lattice of transfer functions is of �nite height.

Soundness and Precision. We already argued informally in Section 3.2 that
the algorithm explores all feasible paths in the system, omitting only paths that
are covered by other already-retained paths. By de�nition of covering, this is
su�cient to guarantee over-approximation of the JOFP. The converse direction,
namely, under-approximation, is obvious to see as every path along which the
data �ow value d0 is sent at the end of the algorithm is a feasible path. Together,
these two results imply that the algorithm is guaranteed to compute the precise
JOFP.

Complexity. We show the complexity of our approach in the single-procedure
setting. Our analysis follows along the lines of the analysis of the backwards
algorithm for coverability in VASS [6]. The overall idea, is to use the technique
of Racko� [48] to derive a bound on the length of the paths that need to be
considered. We derive a complexity bound of O(∆.h2.L2r+1.r.log(L)), where ∆
is the total number of transitions in the VCFG, Q is the number of VCFG nodes,
h is the height of lattice of L → L functions, and L = (Q.(h+ 1).2)(3r)!+1.

16 Athaiya S. et al.

4 Forward DFAS Approach

The Backward DFAS approach, though precise, requires the transfer function
lattice to be of �nite height. Due to this restriction, in�nite-height abstract
domains like Octagons [44], which need widening [12], are not accommodated
by Backward DFAS. To address this, we present the Forward DFAS approach,
which admits any complete lattice as an abstract domain (if the lattice is of
in�nite height then a widening operator should also be provided). The trade-o�
is precision. Forward DFAS elides only some of the infeasible paths in the VCFG,
and hence, in general, computes a conservative over-approximation of the JOFP.
Forward DFAS is conceptually not as sophisticated as Backward DFAS, but is
still a novel proposal from the perspective of the literature.

The Forward DFAS approach is structured as an instantiation of Kildall's
data �ow analysis framework [32]. This framework needs a given complete lattice,
the elements of which will be propagated around the VCFG as part of the �x
point computation. Let L be the given underlying �nite or in�nite complete
lattice. L either needs to not have any in�nite ascending chains (e.g., Constant
Propagation), or L needs to have an associated widening operator �OL�. The
complete lattice D that we use in our instantiation of Kildall's framework is
de�ned as D ≡ Dr,κ → L, where κ ≥ 0 is a user-given non-negative integer,
and Dr,κ is the set of all vectors of size r (where r is the number of counters in
the VCFG) such that all entries of the vectors are integers in the range [0, κ]. The
ordering on this lattice is as follows: (d1 ∈ D) v (d2 ∈ D) i� ∀c ∈ Dr,κ. d1(c) vL
d2(c). If a widening operator OL has been provided for L, we de�ne a widening
operator O for D as follows: d1Od2 ≡ λc ∈ Dr,κ. d1(c)OL d2(c).

We now need to de�ne the abstract transfer functions with signature D → D
for the VCFG edges, to be used within the data �ow analysis. As an intermediate
step to this end, we de�ne a ternary relation boundedMove1 as follows. Any triple
of integers (p, q, s) ∈ boundedMove1 i�

(0 ≤ p ≤ κ) ∧
((q ≥ 0 ∧ p+ q ≤ κ ∧ s = p+ q) ∨ (a)
(q ≥ 0 ∧ p+ q > κ ∧ s = κ) ∨ (b)
(q < 0 ∧ p = κ ∧ 0 ≤ s ≤ κ ∧ κ− s ≤ −1 ∗ q) ∨ (c)
(q < 0 ∧ p < κ ∧ p+ q ≥ 0 ∧ s = p+ q)) (d)

We now de�ne a ternary relation boundedMove on vectors. A triple of vectors
(c1, c2, c3) belongs to relation boundedMove i� all three vectors are of the same
size, and for each index i, (c1[i], c2[i], c3[i]) ∈ boundedMove1 .

We now de�ne the D → D transfer function for the VCFG edge q1
f,w−−→ q2

as follows:

fun(l ∈ D) ≡ λc2 ∈ Dr,κ.

 ⊔
c1 such that (c1,w,c2)∈boundedMove

f(l(c1))


Finally, let l0 denote following function: λc ∈ Dr,κ. if c is 0 then d0 else ⊥,

where d0 ∈ L. We can now invoke Kildall's algorithm using the fun transfer

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 17

functions de�ned above at all VCFG edges, using l0 as the fact at the �entry� to
the �main� procedure. After Kildall's algorithm has �nished computing the �x
point solution, if lDv ∈ D is the �x point solution at any node v, we return the
value

(
tc∈Dr,κ lDv (c)

)
as the �nal result at v.

The intuition behind the approach above is as follows. If v is a vector in the
set Dr,κ, and if (c,m) is a channel-message pair, then the value in the (c,m)th
slot of v encodes the number of instances of message m in channel c currently.
An important note is that if this value is κ, it actually indicates that there are
κ or more instances of message m in channel c, whereas if the value is less than
κ it represents itself. Hence, we can refer to vectors in Dr,κ as bounded queue

con�gurations. If d ∈ D is a data �ow fact that holds at a node of the VCFG
after data �ow analysis terminates, then for any v ∈ Dr,κ if d(v) = l, it indicates
that l is a (conservative over-approximation) of the join of the data �ow facts
brought by all feasible paths that reach the node such that the counter values at
the ends of these paths are as indicated by v (the notion of what counter values
are indicated by a vector v ∈ Dr,κ was described earlier in this paragraph).

The relation boundedMove is responsible for blocking the propagation along
some of the infeasible paths. The intuition behind it is as follows. Let us con-

sider a VCFG edge q1
f :L→L,w−−−−−−→ q2. If c1 is a bounded queue con�guration at

node q1, then, c1 upon propagation via this edge will become a bounded queue
con�guration c2 at q2 i� (c1, w, c2) ∈ boundedMove. Lines (a) and (b) in the
de�nition of boundedMove1 correspond to sending a message; line (b) basically
throws away the precise count when the number of messages in the channel goes
above κ. Line (c) corresponds to receiving a message when all we know is that
the number of messages currently in the channel is greater than or equal to κ.
Line (d) is key for precision when the channel has less than κ messages, as it
allows a receive operation to proceed only if the requisite number of messages
are present in the channel.

The formulation above extends naturally to inter-procedural VCFGs using
generic inter-procedural frameworks such as the call strings approach [55]. We
omit the details of this in the interest of space.

Properties of the approach: Since Forward DFAS is an instantiation of
Kildall's algorithm, it derives its properties from the same. As the set Dr,k is a
�nite set, it is easy to see that the �x-point algorithm will terminate.

To argue the soundness of the algorithm, we consider the concrete lattice

Dc ≡ Dr → L, and the following �concrete� transfer function for the VCFG edge

q1
f,w−−→ q2: fun_conc(l ∈ Dc) ≡ λc2 ∈ Dr.

(⊔
c1∈Dr such that c1+w=c2

f(l(c1))
)
,

where Dr is the set of all vectors of size r of natural numbers. We then argue that
the abstract transfer function fun de�ned earlier is a consistent abstraction [12]
of fun_conc. This soundness argument is given in detail in the appendix that
accompanies this paper [4].

If we restrict our discussion to single-procedure systems, the complexity of
our approach is just the complexity of applying Kildall's algorithm. This works
out to O(Q2κrh), where Q is the number of VCFG nodes, and h is either the

18 Athaiya S. et al.

height of the lattice L or the maximum increasing sequence of values from L
that is obtainable at any point using the lattice L in conjunction with Kildall's
algorithm, using the given widening operation OL.

c t x y z

1 0 0 0 0

m t x y z

2 0 1 0 1

c t x y z

1 0 0 0 0
2 0 1 0 1

m t x y z

2 0 1 0 1
3 1 2 1 1

c t x y z

1 0 0 0 0
2 0 1 0 1
3 1 2 1 1

m t x y z

2 0 1 0 1
3 1 > > 1

(1) (2) (3) (4) (5) (6)
o t x y z

1 0 0 0 0
2 0 1 0 1
3 1 > > 1

k t x y z

1 1 > > 1
2 1 > > 1
3 1 > > 1

(7) (8)

Fig. 4. Data �ow facts over a run of the algorithm

Illustration: We illustrate Forward DFAS using the example in Figure 3. Fig-
ure 4 depicts the data �ow values at four selected nodes as they get updated over
eight selected points of time during the run of the algorithm. In this illustra-
tion we assume a context insensitive analysis for simplicity (it so happens that
context sensitivity does not matter in this speci�c example). We use the value
κ = 3. Each small table is a data �ow fact, i.e., an element of D ≡ Dr,κ → L.
The top-left cell in the table shows the node at which the fact arises. In each
row the �rst column shows the counter value, while the remaining columns de-
pict the known constant value of the variables (> indicates unknown). Here are
some interesting things to note. When any tuple of constant values transfers
along the path from node c to node m, the constant values get updated due to
the assignment statements encountered, and this tuple shifts from counter i to
counter i+1 (if i is not already equal to κ) due to the �send� operation encoun-
tered. When we transition from Step (5) to Step (6) in the �gure, we get >'s,
as counter values 2 and 3 in Step (5) both map to counter value 3 in Step (6)
due to κ being 3 (hence, the constant values get joined). The value at node o
(in Step (7)) is the join of values from Steps (5) and (6). Finally, when the value
at node o propagates to node k, the tuple of constants associated with counter
value 3 end up getting mapped to all lower values as well due to the receive
operations encountered.

Note, the precision of our approach in general increases with the value of κ
(the running time increases as well). For instance, if κ is set to 2 (rather than
3) in the example, some more infeasible paths would be traversed. Only z = 1
would be inferred at node k, instead of (t = 1, z = 1).

5 Implementation and Evaluation

We have implemented prototypes of both the Forward DFAS and Backward
DFAS approaches, in Java. Both the implementations have been parallelized,

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 19

using the ThreadPool library. With Backward DFAS the iterations of the outer
�repeat� loop in Algorithm 1 run in parallel, while with Forward DFAS propa-
gations of values from di�erent nodes to their respective successors happen in
parallel. Our implementations currently target systems without procedure calls,
as none of our benchmarks had recursive procedure calls.

Our implementations accept a given system, and a �target� control state q
in one of the processes of the system at which the JOFP is desired. They then
construct the VCFG from the system (see Section 2.1), and identify the target set
of q, which is the set of VCFG nodes in which q is a constituent. For instance,
in Figure 2, the target set for control state e is {(a, e), (b, e)}. The JOFPs at
the nodes in the target set are then computed, and the join of these JOFPs is
returned as the result for q.

Each variable reference in any transition leaving any control state is called
a �use�. For instance, in Figure 2, the reference to variable x along the outgoing
transition from state d is one use. In all our experiments, the objective is to �nd
the uses that are de�nitely constants by computing the JOFP at all uses. This
is a common objective in many research papers, as �nding constants enables
optimizations such as constant folding, and also checking assertions in the code.
We instantiate Forward DFAS with the Constant Propagation (CP) analysis,
and Backward DFAS with the LCP analysis (for the reason discussed in Sec-
tion 3.1). We use the bound κ = 2 in all runs of Forward DFAS, except with two
benchmarks which are too large to scale to this bound. We discuss this later in
this section. All the experiments were run on a machine with 128GB RAM and
four AMD Opteron 6386 SE processors (64 cores total).

5.1 Benchmarks and modeling

We use 14 benchmarks for our evaluations. These are described in the �rst two
columns of Table 1. Four benchmarks � bartlett, leader, lynch, and peterson � are
Promela models for the Spin model-checker. Three benchmarks � boundedAsync,
receive1, and replicatingStorage � are from the P language repository (www.
github.com/p-org). Two benchmarks � server and chameneos � are from the Bas-
set repository (www.github.com/SoftwareEngineeringToolDemos/FSE-2010-Basset).
Four benchmarks � event_bus_test, jobqueue_test, nursery_test, and bookCol-
lectionStore � are real world Go programs. There is one toy example �mutex�,
for ensuring mutual exclusion, via blocking receive messages, that we have made
ourselves. We provide precise links to the benchmarks in the appendix [4].

Our DFAS implementations expect the asynchronous system to be speci�ed
in an XML format. We have developed a custom XML schema for this, closely
based on the Promela modeling language used in Spin [26]. We followed this
direction in order to be able to evaluate our approach on examples from di�erent
languages. We manually translated each benchmark into an XML �le, which we
call a model. As the input XML schema is close to Promela, the Spin models were
easily translated. Other benchmarks had to be translated to our XML schema
by understanding their semantics.

www.github.com/p-org
www.github.com/p-org
www.github.com/SoftwareEngineeringToolDemos/FSE-2010-Basset

20 Athaiya S. et al.

Table 1. Information about the benchmarks. Abbreviations used: (a) prtcl = protocol,
(b) comm = communication, (c) app = application

Benchmark Description #Proc #Var r #VCFG
(1) (2) (3) (4) (5) nodes (6)

mutex mutual exclusion example 3 1 6 4536

bartlett Bartlett's alternating-bit prtcl 3 3 7 17864

leader leader election prtcl 2 11 12 16002

lynch distorted channel comm prtcl 3 5 27 168912

peterson Peterson's mutual exclusion
prtcl

3 4 4 6864

boundedAsync illustrative example 3 5 10 14375

receive1 illustrative example 2 5 13 1160

server actor-based client server app 3 3 6 1232

chameneos Chameneos concurrency game 3 9 10 45584

replicatingStorage replicating storage system 4 4 8 47952

event_bus_test publish-subscribe system 2 2 5 160

jobqueue_test concurrent job queue system 4 1 10 28800

bookCollectionStore REST app 2 2 12 2162

nursery_test structured concurrency app 3 2 4 1260

Note that both our approaches are expensive in the worst-case (exponential or
worse in the number of counters r). Therefore, we have chosen benchmarks that
are moderate in their complexity metrics. Still, these benchmarks are real and
contain complex logic (e.g., the leader election example from Promela, which
was discussed in detail in Section 1.1). We have also performed some manual
simpli�cations to the benchmarks to aid scalability (discussed below). Our eval-
uation is aimed towards understanding the impact on precision due to infeasible
paths in real benchmarks, and not necessarily to evaluate applicability of our
approach to large systems.

We now list some of the simpli�cations referred to above. Language-speci�c
idioms that were irrelevant to the core logic of the benchmark were removed. The
number of instances of identical processes in some of the models were reduced in
a behavior-preserving manner according to our best judgment. In many of the
benchmarks, messages carry payload. Usually the payload is one byte. We would
have needed 256 counters just to encode the payload of one 1-byte message.
Therefore, in the interest of keeping the analysis time manageable, the payload
size was reduced to 1 bit or 2 bits. The reduction was done while preserving key
behavioral aspects according to our best judgment. Finally, procedure calls were
inlined (there was no use of recursion in the benchmarks).

In the rest of this section, whenever we say �benchmark�, we actually mean the
model we created corresponding to the benchmark. Table 1 also shows various
metrics of our benchmarks (based on the XML models). Column 3-6 depict,
respectively, the number of processes, the total number of variables, the number
of �counters� r, and the total number of nodes in the VCFG. We provide our
XML models of all our benchmarks, as well as full output �les from the runs of

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 21

our approach, as a downloadable folder (https://drive.google.com/drive/folders/
181DloNfm6_UHFyz7qni8rZjwCp-a8oCV).

5.2 Data �ow analysis results

Table 2. Data �ow analysis results

DFAS Approach Baseline Approaches
Benchmark #Var. #Asserts #Consts. #Veri�ed #Consts. #Veri�ed
(1) uses (2) (3) (4) (5) (6) (7)

Forw. Back. Forw. Back. JOP CCP JOP CCP

mutex 6 2 6 6 2 2 0 0 0 0

bartlett 9 1 0 0 0 0 0 0 0 0

leader 54 4 20 6 4 0 6 6 2 0

lynch 6 2 4 3 0 0 4 3 0 0

peterson 14 2 0 0 0 0 0 0 0 0

boundedAsync 24 8 8 8 0 0 8 8 0 0

receive1 9 5 8 8 4 4 2 8 2 4

server 4 1 0 0 0 0 0 0 0 0

chameneos 35 2 2 2 0 0 2 2 0 0

replicatingStorage 8 1 2 0 1 0 0 0 0 0

event_bus_test 5 3 3 3 3 3 0 2 0 2

jobqueue_test 3 1 0 1 0 1 0 0 0 0

bookCollectionStore 10 8 8 10 6 8 0 8 0 6

nursery_test 2 2 2 2 2 2 0 2 0 2

Total 189 42 63 49 22 20 22 39 4 14

We structure our evaluation as a set of research questions (RQs) below. Ta-
ble 2 summarizes results for the �rst three RQs, while Table 3 summarizes results
for RQ 4.

RQ 1: How many constants are identi�ed by the Forward and Backward DFAS

approaches? Column (2) in Table 2 shows the number of uses in each benchmark.
Columns (4)-Forw and (4)-Back show the number of uses identi�ed as constants
by the Forward and Backward DFAS approaches, respectively. In total across
all benchmarks Forward DFAS identi�es 63 constants whereas Backward DFAS
identi�es 49 constants.

Although in aggregate Backward DFAS appears weaker than Forward DFAS,
Backward DFAS infers more constants than Forward DFAS in two benchmarks �
jobqueue_test and bookCollectionStore. Therefore, the two approaches are actu-
ally incomparable. The advantage of Forward DFAS is that it can use relatively
more precise analyses like CP that do not satisfy the assumptions of Backward
DFAS, while the advantage of Backward DFAS is that it always computes the
precise JOFP.

https://drive.google.com/drive/folders/181DloNfm6_UHFyz7qni8rZjwCp-a8oCV
https://drive.google.com/drive/folders/181DloNfm6_UHFyz7qni8rZjwCp-a8oCV

22 Athaiya S. et al.

RQ 2: How many assertions are veri�ed by the approaches? Verifying asser-
tions that occur in code is a useful activity as it gives con�dence to developers.
All but one of our benchmarks had assertions (in the original code itself, before
modeling). We carried over these assertions into our models. For instance, for
the benchmark leader, the assertion appears in Line 11 in Figure 1. In some
benchmarks, like jobqueue_test, the assertions were part of test cases. It makes
sense to verify these assertions as well, as unlike in testing, our technique con-
siders all possible interleavings of the processes. As �bookCollectionStore� did
not come with any assertions, a graduate student who was unfamiliar with our
work studied the benchmark and suggested assertions.

Column (3) in Table 2 shows the number of assertions present in each bench-
mark. Columns (5)-Forw and (5)-Back in Table 2 show the number of assertions
declared as safe (i.e., veri�ed) by the Forward and Backward DFAS approaches,
respectively. An assertion is considered veri�ed i� constants (as opposed to �>�)
are inferred for all the variables used in the assertion, and if these constants sat-
isfy the assertion. As can be seen from the last row in Table 2, both approaches
verify a substantial percentage of all the assertions � 52% by Forward DFAS and
48% by Backward DFAS. We believe these results are surprisingly useful, given
that our technique needs no loop invariants or usage of theorem provers.

RQ 3: Are the DFAS approaches more precise than baseline approaches? We
compare the DFAS results with two baseline approaches. The �rst baseline is
a Join-Over-all-Paths (JOP) analysis, which basically performs CP analysis on
the VCFG without eliding any infeasible paths. Columns (6)-JOP and (7)-JOP
in Table 2 show the number of constants inferred and the number of assertions
veri�ed by the JOP baseline. It can be seen that Backward DFAS identi�es 2.2
times the number of constants as JOP, while Forward DFAS identi�es 2.9 times
the number of constants as JOP (see columns (4)-Forw, (4)-Back, and (6)-JOP
in the Total row in Table 2). In terms of assertions, each of them veri�es almost
5 times as many assertions as JOP (see columns (5)-Forw, (5)-Back, and (7)-
JOP in Total row in Table 2.) It is clear from the results that eliding infeasible
paths is extremely important for precision.

The second baseline is Copy Constant Propagation (CCP) [50]. This is an-
other variant of constant propagation that is even less precise than LCP. How-
ever, it is based on a �nite lattice, speci�cally, an IFDS [50] lattice. Hence this
baseline represents the capability of the closest related work to ours [29], which
elides infeasible paths but supports only IFDS lattices, which are a sub-class of
�nite lattices. (Their implementation also used a �nite lattice of predicates, but
we are not aware of a predicate-identi�cation tool that would work on our bench-
marks out of the box.) We implemented the CCP baseline within our Backward
DFAS framework. This baseline hence computes the JOFP using CCP (i.e., it
elides infeasible paths).

Columns (6)-CCP and (7)-CCP in Table 2 show the number of constants
inferred and the number of assertions veri�ed by the CCP baseline. From the
Total row in Table 2 it can be seen that Forward DFAS �nds 62% more constants
than CCP, while Backward DFAS �nds 26% more constants than CCP. With

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 23

Table 3. Execution time in seconds

mut. bar. lea. lyn. pet. bou. rec. ser. cha. rep. eve. job. boo. nur.

Forw 1.2 14.0 1.3 8.0 1.2 21.0 1.2 1.2 18.0 2.4 1.2 1.2 1.2 1.2

Back 5.0 11.0 284.0 118.0 13.0 21.0 8.0 3.0 220.0 21.0 3.0 140.0 16.0 1.0

JOP 1.2 1.3 1.6 8.0 1.2 1.4 1.3 1.2 3.1 3.0 1.1 1.4 1.2 1.2

CCP 5.0 12.0 226.0 116.0 12.0 14.0 8.0 3.0 156.0 24.0 3.0 51.0 30.0 1.0

respect to number of assertions veri�ed, the respective gains are 57% and 43%.
In other words, in�nite domains such as CP or LCP can give signi�cantly more
precision than closely related �nite domains such as CCP.

RQ 4: How does the execution cost of DFAS approaches compare to the cost of

the JOP baseline? The columns in Table 3 correspond to the benchmarks (only
�rst three letters of each benchmark's name are shown in the interest of space).
The rows show the running times for Forward DFAS, Backward DFAS, JOP
baseline, and CCP baseline, respectively.

The JOP baseline was quite fast on almost all benchmarks (except lynch).
This is because it maintains just a single data �ow fact per VCFG node, in
contrast to our approaches. Forward DFAS was generally quite e�cient, except
on chameneos and lynch. On these two benchmarks, it scaled only with κ = 1
and κ = 0, respectively, encountering memory-related crashes at higher values
of κ (we used κ = 2 for all other benchmarks). These two benchmarks have large
number of nodes and a high value of r, which increases the size of the data �ow
facts.

The running time of Backward DFAS is substantially higher than the JOP
baseline. One reason for this is that being a demand-driven approach, the ap-
proach is invoked separately for each use (Table 2, Col. 2), and the cumulative
time across all these invocations is reported in the table. In fact, the mean time
per query for Backward DFAS is less than the total time for Forward DFAS on
9 out of 14 benchmarks, in some cases by a factor of 20x. Also, unlike Forward
DFAS, Backward DFAS visits a small portion of the VCFG in each invocation.
Therefore, Backward DFAS is more memory e�cient and scales to all our bench-
marks. Every invocation of Backward DFAS consumed less than 32GB of mem-
ory, whereas with Forward DFAS, three benchmarks (leader, replicatingStorage,
and jobqueue_test) required more than 32GB, and two (lynch and chameneos)
needed more than the 128 GB that was available in the machine. On the whole,
the time requirement of Backward DFAS is still acceptable considering the large
precision gain over the JOP baseline.

5.3 Limitations and Threats to Validity

The results of the evaluation using our prototype implementation are very en-
couraging, in terms of both usefulness and e�ciency. The evaluation does how-
ever pose some threats to the validity of our results. The benchmark set, though
extracted from a wide set of sources, may not be exhaustive in its idioms. Also,

24 Athaiya S. et al.

while modeling, we had to simplify some of the features of the benchmarks in or-
der to let the approaches scale. Therefore, applicability of our approach directly
on real systems with all their language-level complexities, use of libraries, etc.,
is not yet established, and would be a very interesting line of future work.

6 Related Work

The modeling and analysis of parallel systems, which include asynchronous sys-
tems, multi-threaded systems, distributed systems, event-driven systems, etc.,
has been the focus of a large body of work, for a very long time. We discuss
some of the more closely related previous work, by dividing the work into four
broad categories.

Data Flow Analysis: The work of Jhala et al. [29] is the closest work that ad-
dresses similar challenges as our work. They combine the Expand, Enlarge and
Check (EEC) algorithm [21] that answers control state reachability inWSTS [18],
with the unordered channel abstraction, and the IFDS [50] algorithm for data
�ow analysis, to compute the JOFP solution for all nodes. They admit only
IDFS abstract domains, which are �nite by de�nition. Some recent work has ex-
tended this approach for analyzing JavaScript [60] and Android [45] programs.
Both our approaches are dissimilar to theirs, and we admit in�nite lattices (like
CP and LCP). On the other hand, their approach is able to handle parameter
passing between procedures, which we do not.

Bronevetsky et al. [8] address generalized data �ow analysis of a very re-
stricted class of systems, where any receive operation must receive messages
from a speci�c process, and channel contents are not allowed to cause non-
determinism in control �ow. Other work has addressed analysis of asynchrony in
web applications [28,42]. These approaches are e�cient, but over-approximate
the JOFP by eliding only certain speci�c types of infeasible paths.

Formal Modeling and Veri�cation: Veri�cation of asynchronous systems has re-
ceived a lot of attention over a long time. VASS [31] and Petri nets [49] (which
both support unordered channel abstraction) have been used widely to model
parallel and asynchronous processes [31,38,54,29,19,5]. Di�erent analysis prob-
lems based on these models have been studied, such as reachability of con�gura-
tions [7,43,34,35], coverability and boundedness [31,3,2,18,21,6], and coverability
in the presence of stacks or other data structures [57,5,9,10,40].

The coverability problem mentioned above is considered equivalent to con-
trol state reachability, and has received wide attention [1,14,29,19,54,20,33,5,56].
Abdulla et al. [3] were the �rst to provide a backward algorithm to answer cover-
ability. Our Backward DFAS approach is structurally similar to their approach,
but is a strict generalization, as we incorporate data �ow analysis using in�nite
abstract domains. (It is noteworthy that when the abstract domain is �nite, then
data �ow analysis can be reduced to coverability.) One di�erence is that we use
the unordered channel abstraction, while they use the lossy channel abstraction.

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 25

It is possible to modify our approach to use lossy channels as well (when there
are no procedure calls, which they also do not allow); we omit the formalization
of this due to lack of space.

Bouajjani and Emmi [5] generalize over previous coverability results by solv-
ing the coverability problem for a class of multi-procedure systems called re-
cursively parallel programs. Their class of systems is somewhat broader than
ours, as they allow a caller to receive the messages sent by its callees. Our
ComputeEndToEnd routine in Algorithm 2 is structurally similar to their ap-
proach. They admit �nite abstract domains only. It would be interesting future
work to extend the Backward DFAS approach to their class of systems.

Our approaches explore all interleavings between the processes, following the
Spin semantics. Whereas, the closest previous approaches [29,5] only address
�event-based� systems, wherein a set of processes execute sequentially without
interleaving at the statement level, but over an unbounded schedule (i.e., each
process executes from start to �nish whenever it is scheduled).

Other forms of veri�cation: Proof-based techniques have been explored for veri-
fying asynchronous and distributed systems [24,58,47,22]. These techniques need
inductive variants and are not as user-friendly as data �ow analysis techniques.
Behavioral types have been used to tackle speci�c analysis problems such as
deadlock detection and correct usage of channels [36,37,52].

Testing and Model Checking: Languages and tools such as Spin and Promela [26],
P [15], P# [13], and JPF-Actor [39] have been used widely to model-check asyn-
chronous systems. A lot of work has been done in testing of asynchronous sys-
tems [16,13,53,23,59] as well. Such techniques are bounded in nature and cannot
provide the strong veri�cation guarantees that data �ow analysis provides.

7 Conclusions and Future Work

In spite of the substantial body of work on analysis and veri�cation of distributed
systems, there is no existing approach that performs precise data �ow analysis of
such systems using in�nite abstract domains, which are otherwise very commonly
used with sequential programs. We propose two data �ow analysis approaches
that solve this problem � one computes the precise JOFP solution always, while
the other one admits a fully general class of in�nite abstract domains. We have
implemented our approaches, analyzed 14 benchmarks using the implementation,
and have observed substantially higher precision from our approach over two
di�erent baseline approaches.

Our approach can be extended in many ways. One interesting extension would
be to make Backward DFAS work with in�nite height lattices, using widening.
Another possible extension could be the handling of parameters in procedure
calls. There is signi�cant scope for improving the scalability using better en-
gineering, especially for Forward DFAS. One could explore the integration of
partial-order reduction [11] into both our approaches. Finally, we would like to

26 Athaiya S. et al.

build tools based on our approach that apply directly to programs written in
commonly-used languages for distributed programming.

References

1. Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-�y analysis of systems with
unbounded, lossy �fo channels. In: International Conference on Computer Aided
Veri�cation. pp. 305�318. Springer (1998)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for in�nite-state systems. In: Proceedings 11th Annual IEEE Symposium on Logic
in Computer Science. pp. 313�321. IEEE (1996)

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. informa-
tion and computation 127(2), 91�101 (1996)

4. Athaiya, S., Komondoor, R., Kumar, K.N.: Data �ow analysis of asynchronous
systems using in�nite abstract domains (2021), https://arxiv.org/abs/2101.10233

5. Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. In: ACM Sig-
plan Notices. vol. 47, pp. 203�214. ACM (2012)

6. Bozzelli, L., Ganty, P.: Complexity analysis of the backward coverability algorithm
for vass. In: Int. Workshop on Reachability Problems. pp. 96�109. Springer (2011)

7. Brand, D., Za�ropulo, P.: On communicating �nite-state machines. Journal of the
ACM (JACM) 30, 323�342 (1983)

8. Bronevetsky, G.: Communication-sensitive static data�ow for parallel message
passing applications. In: 2009 International Symposium on Code Generation and
Optimization. pp. 1�12. IEEE (2009)

9. Cai, X., Ogawa, M.: Well-structured pushdown systems. In: International Confer-
ence on Concurrency Theory. pp. 121�136. Springer (2013)

10. Chadha, R., Viswanathan, M.: Decidability results for well-structured transition
systems with auxiliary storage. In: International Conference on Concurrency The-
ory. pp. 136�150. Springer (2007)

11. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. International Journal on Software Tools for Technology
Transfer 2(3), 279�287 (1999)

12. Cousot, P., Cousot, R.: Abstract interpretation: a uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages. pp. 238�252 (1977)

13. Deligiannis, P., Donaldson, A.F., Ketema, J., Lal, A., Thomson, P.: Asynchronous
programming, analysis and testing with state machines. In: Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. pp. 154�164 (2015)

14. Delzanno, G., Raskin, J.F., Van Begin, L.: Towards the automated veri�cation
of multithreaded java programs. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 173�187. Springer (2002)

15. Desai, A., Gupta, V., Jackson, E., Qadeer, S., Rajamani, S., Zu�erey, D.: P: safe
asynchronous event-driven programming. ACM SIGPLAN Notices 48, 321�332
(2013)

16. Desai, A., Qadeer, S., Seshia, S.A.: Systematic testing of asynchronous reactive
systems. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. pp. 73�83 (2015)

https://arxiv.org/abs/2101.10233

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 27

17. Dolev, D., Klawe, M., Rodeh, M.: An o (n log n) unidirectional distributed algo-
rithm for extrema �nding in a circle. Journal of Algorithms 3(3), 245�260 (1982)

18. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1-2), 63�92 (2001)

19. Ganty, P., Majumdar, R., Rybalchenko, A.: Verifying liveness for asynchronous
programs. In: ACM SIGPLAN Notices. vol. 44, pp. 102�113. ACM (2009)

20. Geeraerts, G., Heuÿner, A., Raskin, J.F.: On the veri�cation of concurrent, asyn-
chronous programs with waiting queues. ACM Transactions on Embedded Com-
puting Systems (TECS) 14, 58 (2015)

21. Geeraerts, G., Raskin, J.F., Van Begin, L.: Expand, enlarge and check: New al-
gorithms for the coverability problem of wsts. Journal of Computer and system
Sciences 72(1), 180�203 (2006)

22. v. Gleissenthall, K., K�c�, R.G., Bakst, A., Stefan, D., Jhala, R.: Pretend synchrony:
synchronous veri�cation of asynchronous distributed programs. Proceedings of the
ACM on Programming Languages 3(POPL), 1�30 (2019)

23. Guo, H., Wu, M., Zhou, L., Hu, G., Yang, J., Zhang, L.: Practical software model
checking via dynamic interface reduction. In: Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. pp. 265�278 (2011)

24. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: Iron�eet: proving practical distributed systems correct. In: Pro-
ceedings of the 25th Symposium on Operating Systems Principles. pp. 1�17 (2015)

25. Holzmann, G.J.: The model checker spin. IEEE Transactions on software engineer-
ing 23(5), 279�295 (1997)

26. Holzmann, G.J.: The SPIN model checker: Primer and reference manual, vol. 1003.
Addison-Wesley Reading (2004)

27. Hopcroft, J., Pansiot, J.J.: On the reachability problem for 5-dimensional vector
addition systems. Theoretical Computer Science 8, 135�159 (1979)

28. Jensen, S.H., Madsen, M., Møller, A.: Modeling the html dom and browser api
in static analysis of javascript web applications. In: Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of soft-
ware engineering. pp. 59�69. ACM (2011)

29. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
ACM SIGPLAN Notices. vol. 42, pp. 339�350. ACM (2007)

30. Kam, J.B., Ullman, J.D.: Monotone data �ow analysis frameworks. Acta informat-
ica 7, 305�317 (1977)

31. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and
system Sciences 3, 147�195 (1969)

32. Kildall, G.A.: A uni�ed approach to global program optimization. In: Proceedings
of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages. pp. 194�206. ACM (1973)

33. Kochems, J., Ong, C.H.L.: Safety veri�cation of asynchronous pushdown systems
with shaped stacks. In: International Conference on Concurrency Theory. pp. 288�
302. Springer (2013)

34. Kosaraju, S.R.: Decidability of reachability in vector addition systems. In: STOC.
vol. 82, pp. 267�281. ACM (1982)

35. Lambert, J.L.: A structure to decide reachability in petri nets. Theoretical Com-
puter Science 99, 79�104 (1992)

36. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing o� go: Liveness and safety for
channel-based programming. ACM SIGPLAN Notices 52(1), 748�761 (2017)

28 Athaiya S. et al.

37. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static veri�cation framework for
message passing in go using behavioural types. In: Proceedings of the 40th Inter-
national Conference on Software Engineering. pp. 1137�1148 (2018)

38. Lautenbach, K., Schmid, H.: Use of petri nets for proving correctness of concurrent
process systems. Proceedings of IFIP Congress pp. 187�191 (1974)

39. Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Basset: A tool
for systematic testing of actor programs (Jul 2019), www.github.com/
SoftwareEngineeringToolDemos/FSE-2010-Basset

40. Leroux, J., Praveen, M., Sutre, G.: Hyper-ackermannian bounds for pushdown
vector addition systems. In: Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). p. 63.
ACM (2014)

41. Lynch, N.A.: Distributed algorithms. Elsevier (1996)
42. Madsen, M., Tip, F., Lhoták, O.: Static analysis of event-driven node. js javascript

applications. In: ACM SIGPLAN Notices. vol. 50, pp. 505�519. ACM (2015)
43. Mayr, E.W., Meyer, A.R.: The complexity of the �nite containment problem for

petri nets. Journal of the ACM (JACM) 28, 561�576 (1981)
44. Miné, A.: The octagon abstract domain. Higher-order and symbolic computation

19, 31�100 (2006)
45. Mishra, A., Kanade, A., Srikant, Y.: Asynchrony-aware static analysis of android

applications. In: 2016 ACM/IEEE International Conference on Formal Methods
and Models for System Design (MEMOCODE). pp. 163�172. IEEE (2016)

46. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: ACM SIGPLAN Notices. vol. 39, pp. 330�341. ACM (2004)

47. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety veri�-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 614�630
(2016)

48. Racko�, C.: The covering and boundedness problems for vector addition systems.
Theoretical Computer Science 6, 223�231 (1978)

49. Reisig, W.: Petri nets: an introduction, vol. 4. Springer Science & Business Media
(2012)

50. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural data�ow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages. pp. 49�61. ACM (1995)

51. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural data�ow analysis with
applications to constant propagation. Theoretical Computer Science 167, 131�170
(1996)

52. Scalas, A., Yoshida, N., Benussi, E.: Verifying message-passing programs with de-
pendent behavioural types. In: Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 502�516 (2019)

53. Sen, K., Agha, G.: Automated systematic testing of open distributed programs.
In: International Conference on Fundamental Approaches to Software Engineering.
pp. 339�356. Springer (2006)

54. Sen, K., Viswanathan, M.: Model checking multithreaded programs with asyn-
chronous atomic methods. In: International Conference on Computer Aided Veri-
�cation. pp. 300�314. Springer (2006)

55. Sharir, M., Pnueli, A.: Two approaches to interprocedural data �ow analysis. In:
Muchnick, S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applica-
tion. Prentice Hall Professional Technical Reference (1981)

www.github.com/SoftwareEngineeringToolDemos/FSE-2010-Basset
www.github.com/SoftwareEngineeringToolDemos/FSE-2010-Basset

Data Flow Analysis of Async. Systems using Inf. Abstract Domains 29

56. Stiévenart, Q., Nicolay, J., De Meuter, W., De Roover, C.: Mailbox abstractions for
static analysis of actor programs. In: 31st European Conference on Object-Oriented
Programming (ECOOP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2017)

57. Torre, S.L., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: TACAS (2008)

58. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., An-
derson, T.: Verdi: a framework for implementing and formally verifying distributed
systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 357�368 (2015)

59. Yang, J., Chen, T., Wu, M., Xu, Z., Liu, X., Lin, H., Yang, M., Long, F., Zhang, L.,
Zhou, L.: Modist: Transparent model checking of unmodi�ed distributed systems.
Proceedings of the Symposium on Networked Systems Design and Implementation
(2009)

60. Yee, M.H., Badouraly, A., Lhoták, O., Tip, F., Vitek, J.: Precise data�ow analysis
of event-driven applications. arXiv preprint arXiv:1910.12935 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter's

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Data Flow Analysis of Asynchronous Systems using Infinite Abstract Domains

