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Abstract—Two-player games are a fruitful way to represent
and reason about several important synthesis tasks. These tasks
include controller synthesis (where one asks for a controller
for a given plant such that the controlled plant satisfies a
given temporal specification), program repair (setting values of
variables to avoid exceptions), and synchronization synthesis
(adding lock/unlock statements in multi-threaded programs to
satisfy safety assertions). In all these applications, a solution
directly corresponds to a winning strategy for one of the players
in the induced game. In turn, logically-specified games offer
a powerful way to model these tasks for large or infinite-
state systems. Much of the techniques proposed for solving
such games typically rely on abstraction-refinement or template-
based solutions. In this paper, we show how to apply classical
fixpoint algorithms, that have hitherto been used in explicit, finite-
state, settings, to a symbolic logical setting. We implement our
techniques in a tool called GENSYS-LTL and show that they are
not only effective in synthesizing valid controllers for a variety of
challenging benchmarks from the literature, but often compute
maximal winning regions and maximally-permissive controllers.
We achieve 46.38X speed-up over the state of the art and also
scale well for non-trivial LTL specifications.

Index Terms—reactive synthesis, symbolic algorithms, program
synthesis, program repair, two-player games

I. INTRODUCTION

Two-player games are games played between two players
called the Controller and the Environment, on a game graph or
arena. The players generate an infinite sequence of states (a so-
called “play”) in the game by making moves alternately, from a
specified set of legal moves. The Controller wins the play if the
sequence of states satisfies a winning condition (e.g., a Linear-
Time Temporal Logic (LTL) formula). The central question in
these games is whether a player (typically the Controller) has
a winning strategy from a given set of initial states (called the
realizability problem), or more generally, to compute the set
of states from which she wins (i.e. the winning region).

Games are a fruitful way to model and reason about several
important problems in Sofware Engineering, like controller
synthesis [1] (where a winning strategy for the Controller in
the associated game directly corresponds to a valid controller
for the system); program repair [2] (strategy corresponds
to corrected program); synchronization synthesis [3] (strategy
corresponds to appropriate placement of synchronization state-
ments in a concurrent program); and safety shield synthesis [4]

(winning region corresponds to region in which the neural-
network based controller is allowed to operate without the
shield stepping in).

Classical techniques for solving games [5]–[7], and more
recent improvements [8]–[10], work on finite-state games, by
iteratively computing sets of states till a fixpoint is reached.
These algorithms typically allow us to compute the exact
winning region and thereby answer the realizability question
as well.

In recent years, logical games – where the moves of the
players are specified by logical formulas on the state variables
– have attracted much attention, due to their ability to model
large or infinite-state systems. Techniques proposed for these
games range from constraint solving [11], finite unrollings
and generalization [12], CEGAR-based abstraction-refinement
[13]–[15], counterexample-based learning [16], combination
of Sygus and classical LTL synthesis [17], and solver-based
enumeration [18]. Among these Beyene et al [11] address
general LTL specs, while the others handle only safety or
reachability specs. Furthermore, none of these techniques are
able to compute precise winning regions.

In this paper we show that symbolic fixpoint techniques
can be effectively applied to solve logical games with general
LTL specifications. We propose a bouquet of techniques that
target different classes of LTL specs, from simple specs which
directly involve a safety, reachability, Büchi, or Co-Büchi
condition on the states of the game, to those for which the
formula automata are non-deterministic. The techniques we
propose are guaranteed (whenever they terminate) to compute
the exact winning region, and, for certain kinds of games,
output a finite-memory winning strategy as well.

We show how to implement these algorithms in a logical set-
ting, by leveraging the right tactics in available SMT solvers.
We evaluate our prototype tool, called GENSYS-LTL, on a
host of benchmarks from the literature. Our tool terminates
on all benchmarks except one, and takes an average time of
7.1 sec to solve each benchmark. It thus outperforms the state-
of-the-art tools in terms of the number of instances solved, and
by an order of magnitude in terms of running time.



II. PRELIMINARIES

We will be dealing with standard first-order logic of addition
(+), comparison (<), and constants 0 and 1, interpreted over
the domain of reals R (or a subset of R like the integers Z).
The atomic formulas in this logic are thus of the form a1x1 +
· · ·+anxn ∼ c, where ais and c are integers, xis are variables,
and “∼” is a comparison symbol in {<,≤,=,≥, >}. We will
refer to such formulas as atomic constraints, and to boolean
combinations of such formulas (or equivalently, quantifier-free
formulas) as constraints. We will denote the set of constraints
over a set of variables V by Constr(V ).

For a set of variables V , a V -valuation (or a V -state) is
simply a mapping s : V → R. Given a constraint δ over a set
of variables V , and a V -state s, we say s satisfies δ, written
s � δ, if the constraint δ evaluates to true in s (defined in
the expected way). We denote the set of V -states by VR. A
domain mapping for V is a map D : V → 2R, which assigns a
domain D(x) ⊆ R for each variable x in V . We will call a V -
state s whose range respects a domain mapping D, in that for
each x ∈ V , s(x) ∈ D(x)), a (V,D)-state, and denote the set
of such (V,D)-states by VD. We also denote the cardinality
of a set S as |S|.

We will sometimes write ϕ(X) to denote that the free
variables in a formula ϕ are among the variables in the set X .
For a set of variables X = {x1, . . . , xn} we will sometimes
use the notation X ′ to refer to the set of “primed” variables
{x′1, . . . , x′n}. For a constraint ϕ over a set of variables
X = {x1, . . . , xn}, we will write ϕ[X ′/X] (or simply ϕ(X ′)
when X is clear from the context) to represent the constraint
obtained by substituting x′i for each xi in ϕ.

Finally, we will make use of standard notation from formal
languages. For a (possibly infinite) set S, we will view finite
and infinite sequences of elements of S as finite or infinite
words over S. We denote the empty word by ε. If v and w
are finite words and α an infnite word over S, we denote the
conatenation of v and w by v ·w, and the concatenation of v
and α by v ·α. We will use S∗ and Sω to denote, respectively,
the set of finite and infinite words over S.

III. LTL AND AUTOMATA

We will make use of a version of Linear-Time Temporal
Logic (LTL) [19] where propositions are atomic constraints
over a set of variables V (as in Holzmann [20], for example).

Let V be a set of variables. Then the formulas of LTL(V )
are given by:

ψ ::= δ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where δ is an atomic constraint over V . The formulas of
LTL(V ) are intepreted over an infinite sequence of V -states.
For an LTL(V ) formula ψ and an infinite sequence of V -states

π = s0s1 · · · , we define when ψ is satisfied at position i in
π, written π, i � ψ, inductively as follows:

π, i � δ iff si � δ
π, i � ¬ψ iff π, i 6� ψ
π, i � ψ ∨ ψ′ iff π, i � ψ or π, i � ψ′

π, i � Xψ iff π, i+ 1 � ψ
π, i � ψUψ′ iff ∃k ≥ i s.t. π, k � ψ′ and

∀j : i ≤ j < k → π, j � ψ.

We say π satisfies ψ, written π � ψ, if π, 0 � ψ. We will
freely make use of the derived operators F (“future”) and G
(“globally”) defined by Fψ ≡ true U ψ and Gψ ≡ ¬F¬ψ,
apart from the boolean operators ∧ (“and”), → (“implies”),
etc.

An ω-automaton [21] A over a set of variables V , is a
tuple (Q, I, T , F ) where Q is a finite set of states, I ⊆ Q
is a set of initial states, T ⊆fin Q × Constr(V ) × Q is a
“logical” transition relation, and F ⊆ Q is a set of final states.
The logical transition relation T induces a concrete transition
relation ∆T ⊆ Q × VR × Q, given by (q, s, q′) ∈ ∆T iff
there exists (q, δ, q′) ∈ T such that s � δ. A run of A on
an infinite sequence of V -states π = s0s1 · · · is an infinite
sequence of states ρ = q0q1 · · · , such that q0 ∈ I , and for
each i, (qi, si, qi+1) ∈ ∆T .

We say an ω-automaton A = (Q, I, T , F ) over V , is
deterministic if I is singleton, and for every q ∈ Q and V -
state s, there is at most one q′ ∈ Q such that (q, s, q′) ∈ ∆T .
Similarly we say A is complete if for every q ∈ Q and V -state
s, there exists a q′ ∈ Q such that (q, s, q′) ∈ ∆T .

An ω-automaton can be viewed as either a Büchi [22], Co-
Büchi, Universal Co-Büchi, or Safety automaton based on how
the runs for a given V -state sequence π are accepted using
the final states F , described as follows. A run ρ = q0q1 · · ·
of A is accepting by the Büchi acceptance condition if for
infinitely many i, we have qi ∈ F , and a V -state sequence π
is accepted by A if there exists such a run ρ for π. A Büchi
Automaton is an ω-automaton where F is viewed as a Büchi
acceptance condition. Similarly, by the Co-Büchi acceptance
condition ρ is accepting if it visits F only a finite number
of times and a V -state sequence π is accepted by A if there
exists such a run ρ for π. We call such an automaton a Co-
Büchi Automaton (CA). The Universal Co-Büchi acceptance
condition states that a run ρ of A is accepting if it visits
F only a finite number of times, and a V -state sequence π
is accepted by A if all runs ρ for π are accepting. We call
such an automaton a Universal Co-Büchi Automaton (UCA).
Finally, we can view an ω-automaton A as a safety automaton,
by saying that A accepts π iff there is a run of A on π which
never visits a state outside F . We denote by L(A) the set of
V -state sequences accepted by an ω-automaton A.

It is well-known that any LTL formula ψ can be trans-
lated into a (possibly non-deterministic) Büchi automaton
Aψ that accepts precisely the models of ψ [23]. The same
construction works for LTL(V ) formulas, by treating each
atomic constraint as a propositional variable. Henceforth, for



Fig. 1: Büchi automaton Aψ for the LTL formula ψ =
G(F (x = 1)∧F (x = 2)∧F (x = 3)). Final states are indicated
with double circles.

an LTL(V ) formula ψ we will denote the corresponding
formula automaton by Aψ .

Fig. 1 shows a formula automaton Aψ for the LTL(V )
formula ψ = G(F (x = 1) ∧ F (x = 2) ∧ F (x = 3)) from
Example 4.1, where V = {x}. The automaton can be seen to
be deterministic.

IV. LTL GAMES

In this section we introduce our notion of logically specified
games, where moves are specified by logical constraints and
winning conditions by LTL formulas. These games are similar
to the formulation in Beyene et al [11].

A 2-player logical game with an LTL winning condition (or
simply an LTL game) is of the form

G = (V,D,Con,Env , ψ), where

• V is a finite set of variables.
• D : V → 2R is a domain mapping for V .
• Con and Env are both constraints over V ∪ V ′, repre-

senting the moves of Player C and Player E respectively.
• ψ is an LTL(V ) formula.
The constraint Con induces a transition relation

∆Con ⊆ VD ×VD

given by (s, s′) ∈ ∆Con iff s and s′ are (V,D)-states, and
(s, s′) � Con . We use the notation (s, s′) � Con to denote the
fact that ts,s′ � Con , where ts,s′ is the valuation over V ∪V ′
which maps each x ∈ V to s(x) and x′ ∈ V ′ to s′(x). In a
similar way, Env induces a transition relation ∆Env ⊆ VD×
VD. For convenience we will assume that the C-moves are
“complete” in that for every (V,D)-state s, there is a (V,D)-
state s′ such that (s, s′) ∈ ∆Con ; and similarly for Player E.

A play in G is an sequence of (V,D)-states obtained by
an alternating sequence of moves of Players C and E, with
Player C making the first move. More precisely, an (infinite)
play of G, starting from a (V,D)-state s, is an infinite sequence
of (V,D)-states π = s0s1 · · · , such that
• s0 = s, and
• for all i, (s2i, s2i+1) ∈ ∆Con and (s2i+1, s2i+2) ∈ ∆Env .

We similarly define the notion of a finite play w in the expected
manner. We say a play π is winning for Player C if it satisfies
ψ (i.e. π � ψ); otherwise it is winning for Player E.

A strategy for Player C assigns to odd-length sequences of
states, a non-empty subset of states that correspond to legal
moves of C. More precisely, a strategy for Player C in G is
a partial map

σ : ((VD ·VD)∗ ·VD) ⇀ 2VD

satisfying the following constraints. We first define when a
finite play w is according to σ, inductively as follows:
• s is according to σ iff s belongs to the domain of σ.
• if w · s is of odd length and according to σ, and s′ ∈
σ(w · s), then w · s · s′ is according to σ.

• if w ·s is of even length and according to σ, and (s, s′) ∈
∆Env , then w · s · s′ is according to σ.

For σ to be a valid strategy in G, we require that for every
finite play w ·s of odd-length, which is according to σ, σ(w ·s)
must be defined and non-empty, and for each s′ ∈ σ(w ·s) we
must have (s, s′) ∈ ∆Con .

Finally, a strategy σ for Player C is winning from a (V,D)-
state s in its domain, if every play that starts from s and is
according to σ, is winning for Player C (i.e. the play satisfies
ψ). We say σ itself is winning if it is winning from every state
in its domain. We say Player C wins from a (V,D)-state s if
it has a strategy which is wining from s. We call the set of
(V,D)-states from which Player-C wins, the winning region
for Player C in G, and denote it winregC(G). The analogous
notions for Player E are defined similarly.

We close this section with some further notions about
strategies. We say that a winning strategy σ for C is maximal
if its domain is winregC(G), and for every strategy σ′ for
C that is winning from a state s in winregC(G), we have
σ′(w) ⊆ σ(w) for each odd-length play w from s according
to σ′. A strategy σ for C is called a (finitely-representable)
finite memory strategy, if it can be represented by a “Mealy-
style” strategy automaton (see Fig. 2b). This is a finite-state
automaton similar to a deterministic Büchi automaton, but
with a partition of the states into controller and environment
states. The initial states are environment states. The states in
the domain of the strategy are those that satisfy one of the
outgoing guards from the initial state. Each controller state
q has a label mov(q) associated with it in the form of a
constraint over V ∪ V ′, which denotes a subset of moves
allowed by Con . The automaton represents a strategy σ in
which σ(w) for odd-length w is given by the label mov(q) of
the state q reached by the automaton on reading w. Finally,
a memoryless strategy is one that is represented by a strategy
automaton with a single environment state.

Synthesizing winning strategies will be easier when the
controller’s moves are finitely non-deterministic, in that Con
is given by a disjunction Con1∨· · ·∨Conk, where each con-
straint Coni is deterministic (in that whenever (s, s′) � Coni
and (s, s′′) � Coni, we have s′ = s′′). We call such a game
a finitely non-deterministic (FND) game.
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Fig. 2: Game graph and strategy for C in Elevator game

We illustrate some of these notions through an example
below adapted from [15].

Example 4.1 (Elevator): Consider a game G1 which models
an elevator control problem, where the system’s state is
represented by a single variable x of type integer, indicating
the floor the elevator is currently positioned at. The controller
can choose to move the elevator up or down by one floor, or
stay at the same floor. The environment does nothing (simply
“skips”). The specification requires us visit each of Floor 1, 2,
and 3 infinitely often. The game G1 has the following compo-
nents: the set of variables V is {x}, and the domain map D is
given by D(x) = Z. The moves of Player C and Player E are
given by the constraints Con: x′ = x∨x′ = x+1∨x′ = x−1,
and Env : x′ = x, respectively. The LTL specification ψ is
G(F (x = 1) ∧ F (x = 2) ∧ F (x = 3)). The game is easily
seen to be finitely non-deterministic.

The “game graph” is shown in Fig. 2a. For convenience we
visualize the game as having two copies of the state space, one
where it is the turn of Player C to make a move (denoted by
circle states on the left) and the other where it is Player E’s
turn to move (indicated by square states on the right). The
moves of C go from left to right, while those of E go from
right to left.

Player C has a winning strategy from all states; for example,
by playing x′ = x − 1 from Floor 3 and above; x′ = x + 1
from Floor 1 and below; and x′ = x + 1 and x′ = x − 1
from Floor 2, depending on whether it was last in Floor 1 or
3 respectively. This finite-memory strategy is shown by the
strategy automaton in Fig. 2b.

It is easy to see that a memoryless winning strategy does
not exist for Player C, as it cannot afford to play the same
move from state x 7→ 2 (it must keep track of the direction in
which the lift is coming from). �

We close this section with a description of the problems we
address in this paper. The main problems we address are the
following:

1) (Winning Region) Given an LTL game G, compute the

winning region for Player C. Wherever possible, also
compute a finite-memory winning strategy for C from
this region.

2) (Realizability) Given an LTL game G and an initial
region in the form of a constraint Init over the variables
V of the game, decide whether Player C wins from
every state in Init . If possible, compute a finite-memory
winning strategy for C from Init .

It is easy to see that these problems are undecidable in
general (for example by a reduction from the control-state
reachability problem for 2-Counter Machines). Hence the
procedures we give in subsequent sections may not always
be terminating ones. In the sequel we focus on the problem of
computing winning regions, since we can check realizability
by checking if the given initial region is contained in the
winning region.

V. GENSYS-LTL APPROACH

Algorithm 1: GENSYS-LTL overview
Input : LTL game G = (V,D,Con,Env , ψ)
Output: winregC(G) or an approximation of it, and a

strategy σ for Player C from this region.
1 if G is simple then
2 Compute winregC(G) (i.e. winning reg for C in G).
3 Compute winning strategy σ.
4 return winregC(G), σ.

5 Aψ := LTL2BA(ψ).
6 A¬ψ := LTL2BA(¬ψ).
7 if Aψ is deterministic then
8 Construct simple Büchi product game H = G⊗Aψ .
9 Compute winregC(H).

10 Extract winregC(G), winning strategy σ for C in
G.

11 return winregC(G), σ.

12 if A¬ψ is deterministic then
13 Construct simple Co-Büchi product game

H = G⊗A¬ψ . Compute winregC(H).
14 Extract winregC(G), winning strategy σ for C.
15 return winregC(G), σ.

// Both Aψ and A¬ψ are non-det
16 k := 0; WU := false; WO := true;
17 while WU 6= WO do
18 Construct on-the-fly two k-safety product

automatons involving G with Aψ and A¬ψ ,
respectively, and from these, extract an
under-approximation WU of winregC(G) and an
over-approximation WO of winregC(G),
respectively. From WU extract a winning strategy
σ for Player C.

19 k = k + 1.

20 return WU ,WO, σ;
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Our approach consists of a bouquet of techniques. This is
motivated by our objective to handle each type of LTL formula
with an efficient technique suited to that type. Algorithm 1 is
the “main” program or driver of our approach. Fig. 3 also
summarizes the approach.

Algorithm 1 takes as input an LTL game G. Lines 1–4 of the
algorithm tackle the scenario when the given game G is simple.
These are games where the formula ψ is of one of restricted
forms G(X) (safety), F (X) (reachability), GF (X) (Büchi),
or FG(X) (Co-Büchi), where X is a constraint over the game
variables V . For these cases, we propose fixpoint procedures
that directly work on the state-space of the given game G,
and that use SMT formulae to encode sets of states. Sec. VI
describes these procedures in detail. Due to the infiniteness of
the state-space, these fixpoint computations are not guaranteed
to terminate. When they do terminate, they are guaranteed
to compute the precise winning region winregC(G), and, in
the case of FND games, to extract a memoryless strategy
automaton for these regions.

If the given formula ψ is not simple, we convert the formula
as well as its negation, in Lines 5–6, into Büchi automata using
a standard procedure [23]. If either of these two automata
are deterministic (see Sec. III), we construct a product of the
game G with the automaton, such that this product-game H is
a simple LTL game. We then compute the winning region on
this product using the fixpoint computations mentioned above.
If the fixpoint computation terminates, we extract a winning
region for the original game G, and a strategy σ. These steps
are outlined in Lines 7–15 of Algorithm 1, and details are
presented in Sec. VII.

The hardest scenario is when both the automata are non-
deterministic. For this scenario, we propose an on-the-fly de-
terminization and winning-region extraction approach. These
steps are outlined in Lines 16-19 of Algorithm 1. We present
the details in Section VIII.

We state the following claim which we will substantiate in
subsequent sections:

Theorem 1: Whenever Algorithm 1 terminates, it outputs
the exact winning region for Player C when G is either simple
or deterministic; in other cases it outputs a sound under- and
over-approximation of the winning region for Player C in G.

Additionally, in the case when G is FND, upon termination
Algorithm 1 outputs a strategy automaton representing a
winning strategy for Player C from this region. �

VI. SIMPLE LTL GAMES

Our approach reduces logical LTL games to “simple” LTL
games in which the winning condition is internal to the game.
In this section we describe this subclass of LTL games and
the basic fixpoint algorithms to solve them.

A simple LTL game is an LTL game G =
(V,D,Con,Env , ψ), in which ψ is an LTL(V ) formula of
the form G(X), F (X), GF (X), or FG(X), where X is a
constraint on V . We refer to games with such specifications as
safety, reachability, Büchi, and co-Büchi games, respectively.

We can compute (with the possibility of non-termination)
the winning regions winregC(G) for each of these four types of
games, and a strategy automaton representing a memoryless
winning strategy for Player C, in the special case of FND
games, by extending the classical algorithms for the finite-
state versions of these games (see [6], [7]).

The algorithms we describe will make use of the following
formulas representing sets of “controllable predecessors” in
the context of different types of games. Here Y (V ) is a
constraint representing a set of game states.
• The set of controllable predecessors w.r.t. the set of

states Y , for a safety specification G(X) (namely states
from which Player C has a safe move from which all
environment moves result in a Y -state):

CPX
S (Y ) ≡ ∃V ′(Con(V, V ′) ∧X(V ′) ∧

∀V ′′(Env(V ′, V ′′) =⇒ Y (V ′′))).

• The set of controllable predecessors w.r.t. Y , for a reach-
ability specification F (X) (namely states from which
either C has a move that either gets into X , or from
which all environment moves get into Y ):

CPX
R (Y ) ≡ ∃V ′(Con(V, V ′) ∧ (X(V ′) ∨

∀V ′′(Env(V ′, V ′′) =⇒ Y (V ′′)))).

• The set of predecessors w.r.t. Y for Player C (namely
states from which C has a move that results in a Y -state):

CPC(Y ) ≡ ∃V ′(Con(V, V ′) ∧ Y (V ′)).

• The set of predecessors w.r.t. Y for Player E (namely
states from which all moves of E result in a Y -state):

CPE(Y ) ≡ ∀V ′(Env(V, V ′) =⇒ Y (V ′)).

Algorithm 2 (ComputeWR-Safety) takes a safety game as
input, and iteratively computes the safe controllable prede-
cessors, starting with the given safe set X , until it reaches a
fixpoint (Wold =⇒ W ). Here we use a quantifier elimination
procedure QElim which takes a logical formula with quanti-
fiers (like CPX

S (W )∧X) and returns an equivalent quantifier-
free formula. For example, QElim(∃y(y ≤ x∧x+y ≤ 1∧0 ≤
y)) returns 0 ≤ x ∧ x ≤ 1. Upon termination the algorithm
returns the fixpoint W .



Algorithm 2: ComputeWR-Safety
Input : Safety game G = (V,D,Con,Env , G(X))
Output: winregC(G), strategy σ

1 W := X;
2 do
3 Wold := W ;
4 W := QElim(CPX

S (W ) ∧X);
5 while ¬(Wold ⇒W );
6 σ := ExtractStrategyG(W );
7 return W , σ;

Algorithm 3: ComputeWR-Reachability
Input : Reachability game

G = (V,D,Con,Env , F (X))
Output: winregC(G), strategy σ

1 W := X;
2 C := [W ];
3 do
4 Wold := W ;
5 W := QElim(CPX

R (W ) ∨X);
6 C.append(W ∧ ¬Wold);
7 while ¬(W ⇒Wold);
8 σ := ExtractStrategyF (C);
9 return W , σ;

Algorithm 4: ComputeWR - Büchi
Input : Büchi game G = (V,D,Con,Env , GF (X))
Output: winregC(G), strategy σ

1 W := WE := True;
2 do
3 WEold

,Wold := WE ,W ;
4 W := QElim(CPC(WE) ∧X);
5 WE := QElim(CPE(W ) ∧X);
6 H := HE := False;
7 C := [H];
8 do
9 HEold

, Hold := HE , H;
10 H := QElim(CPC(HE) ∨W );
11 HE := QElim(CPE(H) ∨WE);
12 C.append(H ∧ ¬Hold);
13 while ¬(HE ⇒ HEold

∧ H ⇒ Hold);
14 WE ,W := HE , H;
15 while ¬(WEold

⇒WE ∧ Wold ⇒W );
16 σ := ExtractStrategyGF (W,C);
17 return W,σ;

Algorithm 5: ComputeWR - Co-Büchi
Input : Co-Büchi game

G = (V,D,Con,Env , FG(X))
Output: winregC(G), strategy σ

1 W := WE := False;
2 C := [W ];
3 do
4 WEold

,Wold := WE ,W ;
5 W := QElim(CPC(WE) ∨X);
6 WE := QElim(CPE(W ) ∨X);
7 H := HE := True;
8 do
9 HEold

, Hold := HE , H;
10 H := QElim(CPC(HE) ∧W );
11 HE := QElim(CPE(H) ∧WE);
12 while ¬(HEold

⇒ HE ∧ Hold ⇒ H);
13 WE ,W := HE , H;
14 C.append(W ∧ ¬Wold);
15 while ¬(WE ⇒WEold

∧ W ⇒Wold);
16 σ := ExtractStrategyGF (W,C);
17 return W,σ;

When the input game is FND (with Con = Con1 ∨ · · · ∨
Conk), the call to ExtractStrategyG(W ) does the following.
Let
Ui = W ∧QElim(∃V ′( Coni(V, V

′) ∧W (V ′) ∧
∀V ′′(Env(V ′, V ′′) =⇒ W (V ′′)))).

Then the memoryless strategy σ extracted simply offers the
move Coni whenever Player C is in region Ui. The corre-
sponding strategy automaton essentially maintains a controller
state for each constraint Ui, labelled by the move Coni. For
the strategy extraction in the rest of this section, we assume
that the input game is FND.

Similarly, Algorithm 3 (ComputeWR-Reachability) takes
a reachability game as input, and iteratively computes the
reachable controllable predecessors, starting with the given
safe set X , until it reaches a fixpoint (W =⇒ Wold ).

To compute the memoryless strategy for reachability, we
compute C that ensures that each move made by the controller
from a given state ensures that it moves one step closer to X .

Let the reachability controllable predecessor for move Coni
be:

CPX
Ri

(Y ) ≡ ∃V ′(Coni(V, V
′) ∧ (X(V ′) ∨

∀V ′′(Env(V ′, V ′′) =⇒ Y (V ′′)))).

Then ExtractStrategyF (C) does the following:

Ui =
∨|C|−2
j=0 QElim(CP

Xj

Ri
(Xj)) ∧ Cj+1

where Xj = Cj ∨ Cj−1 ∨ Cj−2 ∨ · · · ∨ C0.
Thus, Ui is the set of states exclusively in Wj+1 (which

we denote by Cj−1 which is constructed in Algorithm 3)
from where Player C has a strategy to reach X by first
ensuring a move to Wj , thereby ensuring moving one step
closer to X . Then the memoryless strategy σ extracted offers



the move Coni whenever Player C is in the region Ui.
The corresponding strategy automaton essentially maintains
a controller state for each constraint Ui, labelled by the move
Coni.

Algorithm 4 (ComputeWR- Büchi) takes a Büchi game as
an input, and computes a winning region from where Player
C has a strategy to visit X infinitely often. In this algorithm,
we require two levels of nesting to compute the winning
region. Using two-step controllable predecessors (such as
CPX

S , and CPX
R ), that reason about two moves at a time

causes unsoundness, if used directly. Using CPX
S in the nested

Buchi algorithm causes an underapproximation of the winning
region as it is not necessary that the intermediate environment
states be safe. Similarly, using CPX

R is too weak as the
intermediate states of the environment are not reasoned with
correctly. It assumes that a finite play reaching an intermediate
environment state in X satisfies the property, which is not true
for an infinite Büchi play. Thus, we use one step controllable
predecessors CPC and CPE (for controller and environment
respectively) that reason about the game play one move at a
time in the style of [6]. The strategy is also extracted similarly.

As a dual of Algorithm 4, Algorithm 5 (ComputeWR- Co-
Büchi), takes a co-büchi game as an input, and computes
a winning region from where Player C has a strategy to
eventually visit X always.

We can now state (see our extended version [24] for proof):
Theorem 2: Whenever Algorithms 2, 3, 4, and 5 terminate,

they compute the exact winning region for Player C in safety,
reachability, Büchi, and co-Büchi games, respectively. For
FND games, upon termination, they also output a winning
strategy automaton for Player C for this region. Furthermore,
for safety games this strategy is maximally permissive. �

VII. DETERMINISTIC LTL GAMES

In this section we discuss how to solve a game with an
LTL condition ψ which is not simple, but is nevertheless
deterministic in that either Aψ or A¬ψ is deterministic. We
begin with the case when Aψ is deterministic.

Let G = (V,D,Con,Env , ψ) be an LTL game, and let
Aψ = (Q, {q0}, T , F ) be a deterministic and complete Büchi
automaton for ψ over the set of variables V . We define the
product game corresponding to G and Aψ to be

G⊗Aψ = (V ∪ {q}, D,Con ′,Env ′, ψ′) where

• q is a new variable representing the state of the automaton
such that D(q) = {1, 2, · · · |Q|}

• Con ′ = Con ∧
∨

(p,δ,p′)∈T (q = p ∧ δ ∧ q′ = p′).
• Env ′ = Env ∧

∨
(p,δ,p′)∈T (q = p ∧ δ ∧ q′ = p′).

• ψ′ = GF (
∨
p∈F q = p).

Similarly, for the case when A¬ψ is a deterministic and
complete Büchi automaton for ¬ψ, we define the product game
corresponding to G and A¬ψ to be

G⊗A¬ψ = (V ∪ {q}, D,Con ′,Env ′, ψ′) where

• ψ′ = FG(
∨
p/∈F q = p).

Fig. 4: Universal Co-Büchi automaton A¬ψ for the specifica-
tion ψ := G(F (x = 1) ∧ F (x = 2))

The definitions of Con ′ and Env ′ remain the same as that
of the product game G⊗Aψ . For the product game G⊗A¬ψ ,
in order to satisfy the specification ψ, we need to visit the
final states of A¬ψ finitely often. This is equivalent to visiting
the non-final states eventually always, as the definition of ψ′

states. We note that if G is finitely non-deterministic, so is
G⊗Aψ and G⊗A¬ψ .

Theorem 3: Let G, with Aψ (resp. A¬ψ) deterministic, be
as above. Let W ′ be the winning region for Player C in G⊗Aψ
(resp. G⊗A¬ψ). Then the winning region for Player C in G is
W = {s | (s, q0) ∈ W ′}. Furthermore, when G is finitely
non-deterministic, given a finitely-representable memoryless
strategy for C in G⊗Aψ (resp. G⊗A¬ψ), we can construct a
finitely-representable finite-memory strategy for C in G.

Proof: See our extended version [24].

VIII. ON THE FLY DETERMINIZATION APPROACH

When the automata Aψ and A¬ψ are non-deterministic,
the product game Hψ of the given game G with Aψ and
the product game H¬ψ of G with A¬ψ both will be non-
deterministic. It has been recognized in the literature [9] that
non-deterministic automata need to be determinized to enable
a precise winning region to be inferred.

A. Overview of determinization

We adopt the basic idea of k-safety determinization from
the Acacia approach [10] for finite games and extend it to
the setting of infinite games. We introduce our determinized
product game construction intuitively below, and later formally
in Sec. VIII-B. The underlying game graph G we use here for
illustration is based on the Elevator game in Example 4.1.
We simplify the example to admit just two controller moves,
namely, x′ = 1 and x′ = 2, while the environment does not
change the floor x in its moves. The given LTL property ψ
is G(F (x = 1) ∧ F (x = 2)). Fig. 4 depicts the Universal
Co-Büchi automaton A¬ψ for this property, which happens to
be non-deterministic.

The approach takes as parameter an integer k ≥ 0, and gen-
erates a determinized version of the product of the game G and
the automaton A¬ψ . A portion of the (infinite) determinized
product for our example under consideration is depicted in



1, < 0, -1, -1, -1 > 2, < 0, 1, -1, -1 > 2, < 0, -1, 1, 1 >
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J

2, < 0, -1, 3, 2 >

K

1, < 0, 1, -1, -1 > 1, < 0, 2, -1, -1 >

N P

1, < 0, 3, -1, -1 > 2, < 0, 3, -1, -1 >

RQ

Fig. 5: Determinized 2-safety game for A¬ψ where ψ := G(F (x = 1) ∧ F (x = 2))

Fig. 5, for k = 2. Each state of the determinized product is a
pair of the form (s, v), where s a state of the underlying game
G (i.e., a value of x in the example), and v is a vector of counts
(the vectors are depicted within angle brackets). Each vector
intuitively represents the subset of automaton states that the
game could be in currently, with v(i) > −1 indicating that the
automaton state qi ∈ Q belongs to the subset. If v(i) > −1,
the value v(i) further indicates the count of the maximum
number of final states that can be visited along plays in the
underlying game graph that reach automaton state qi and that
correspond to plays of the product graph that reach the current
state (s, v). The moves of the two players in the product
graph are alternating. For conciseness, we avoid showing the
environment states in square., which do not make any updates
to the game state. The initial states of the product graph are the
ones whose vector component is c0 = 〈0,−1,−1,−1〉, which
represents the initial subset {q0}. One of the initial states of
the product graph is depicted in Fig. 5 (there are an infinite
number of them, corresponding to all possible values of the
game variable x).

We pick state E in Fig. 5 to illustrate the subset construc-
tion. q2 is not present in E because from none of the automaton
states that are present in the subset in product state D (i.e.,
q0, q2 or q3), transitions to q2 are possible as per the automaton
in Fig. 4, when the value of x is 1 (as x has value 1 in product
state D). And q3 has a count of 2 in E because q2 had count
of 2 in state D and a q2 to q3 transition is possible when x
has value 1 as per Fig. 4.

The product game shown in Fig. 5 can be seen to deter-
ministic. This means that if a product state (s, v) has two
successors (s1, v1) and (s2, v2), then s1 6= s2. Safe states of
the product graph are ones where no element of the vector
exceeds k. Successor states of unsafe states will themselves
be unsafe. In the figure unsafe states are indicated in red color
(and have entries greater than 2 in the vectors).

A unique product game graph exists as per the construction
mentioned above for a given value of k. This product game
graph is said to be winning for Player C if satisfies the
following conditions: (I) At least one of the safe product
states has c0 = 〈0,−1, . . . ,−1〉 as its vector, (II) For every
safe product state from which the controller moves, at least
one of the successors is a safe state, and (III) for every safe
product state from which the environment moves, none of the

successors are unsafe states. Otherwise, higher values of k
will need to be tried, as indicated in the loop in Lines 16-19
in Algorithm 1. The product game graph in Fig. 5 happens to
be winning.

If a product game graph is winning, then the game state
components s of the product states of the form (s, c0) in
the product graph, where c0 = 〈0,−1, . . . ,−1〉, constitute,
in general, an under-approximation of the winning region
winregC(G). The under-approximation in general increases in
size as the value of k increases. Note, in the loop we also com-
pute a strategy for Player E by constructing a determinized
product using Aψ . Using this it can be detected when the
current value of k yields the precise region winregC(G). (If
the underlying game is finite, such a k is guaranteed to exist.)

B. Formal presentation of deterministic product construction

We present here our SMT-based fixpoint computation for
computing the product game graph of the kind introduced
above, for a given bound k. We use formulas to represent
(finite or infinite) portions of product graphs symbolically. The
free variables in any formula are underlying game variables
V and a vector-typed variable c. The solution to a formula is
a (finite or infinite) set of states of a product graph.

Aut(P, V,Q) is a given formula that encodes the logical
transition relation T of the Büchi automaton A¬ψ . A triple
(q, s, q′) is a solution to Aut(P, V,Q) iff (q, s, q′) ∈ ∆T . For
instance, for the automaton in Fig. 4, Aut(P, V,Q) would be
(P = q0 ∧ Q = q0) ∨ (P = q0 ∧ Q = q1 ∧ x 6= 2) ∨ · · · .
final(P ) is a given formula that evaluates to 1 if P is a final
state in the automaton A¬ψ and otherwise evaluates to 0.

We define a formula Succk(c, V, c′) as follows:

∀q. c′(q) = max{min(c(p) + final(q), k + 1) |
p ∈ Q,Aut(p, V, q), c(p) ≥ 0},

if ∃p such that Aut(p, V, q) ∧ c(p) ≥ 0

= −1, otherwise.

Intuitively, a triple (v, s, v′) is a solution to Succk(c, V, c′)
iff the product state (s′, v′) is a successor of the product state
(s, v) for some s′.



Our approach is to use an iterative shrinking fixpoint
computation to compute the greatest fixpoint (GFP) W of the
function CP defined below.

CPk(X) ≡ G(V, c)∧
∃V ′, c′. (Con(V, V ′) ∧ Succk(c, V, c′) ∧ G(V ′, c′)

∧ ∀V ′′, c′′. ((Env(V ′, V ′′) ∧ Succk(c′, V, c′′))

=⇒ X(V ′′, c′′))).

The argument of and the return value from the function
above are both formulas in V, c, representing sets of product
graph states. G(V, c) represents safe product states, and checks
that all elements of c are ≥ -1 and ≤ k. The fixpoint compu-
tation is not guaranteed to terminate due to the infiniteness
in the underlying game graph G. If it does terminate, the
formula W , after replacing the free variable c with the initial
vector c0 = 〈0,−1, . . . ,−1〉, is returned. This formula will
have solutions iff the value of k considered was sufficient
to identify a non-empty under-approximation of winregC(G).
The formula’s solution is guaranteed to represent the maximal
winning product graph that exists (and hence the maximal
subset of winregC(G)) for the given value of k.

If W has solutions, we infer a strategy σ for Player C as
follows. The following utility function σprod returns a formula
in free variables V , whose solutions are the next game states
to transition to when at a product state (s1, c1) in order to
ensure a winning play.

σprod(s1, c1) = ∃c2.Con(s1, V )∧Succk(c1, s1, c2)∧W (V, c2)

We introduce a utility function DestPair , whose argument
is a play in the underlying game G, and that returns the product
state in the determinized product graph reached by the play.

DestPair(s) = (s, c0)

DestPair(w · s) = (s, c), such that
(DestPair(w) = (s′, c′) ∧ Succk(c′, s′, c)

Finally, the strategy in terms of the underlying game G is
defined as follows (where w is a play in the underlying game):

σ(w) = σprod(DestPair(w)).

IX. IMPLEMENTATION

We implement all fixpoint approaches in our protoype
tool GENSYS-LTL which extends our earlier tool GenSys
[25] to support general LTL specifications. GENSYS-LTL is
implemented using Python and uses the Z3 theorem prover
[26] from Microsoft Research as the constraint solver under
the hood. GENSYS-LTL uses Z3 to eliminate quantifiers from
formulas resulting from the fixpoint iterations and check sat-
isfiability. In all fixpoint approaches mentioned in this paper,
large formulas are generated in every iteration, containing
nested quantifiers. This formula blowup can quickly cause a
bottleneck affecting scalability. The reason is that Z3 chokes
over large formulas involving nested quantifiers. Thus, it
is necessary to eliminate quantifiers at every step. We use
quantifier elimination tactics inherent in Z3 to solve this issue.

We use variations of [27] and simplification tactics in parallel,
to achieve efficient quantifier elimination.

To convert a given LTL formula into an equivalent Buchi
automaton, we use the Spot library [28] which efficiently
returns a complete and state based accepting automaton for
a given LTL specification. We also constrain Spot to return
a deterministic Buchi automaton whenever possible, and then
choose our approach appropriately. However, in this prototype
version of GENSYS-LTL , this encoding is done manually.
GENSYS-LTL is available as an open source tool on GitHub1.

X. EVALUATION

To evaluate GENSYS-LTL we collect from the literature a
corpus of benchmarks (and corresponding temporal specifica-
tions) that deal with the synthesis of strategies for two-player
infinite-state logical LTL games. The first set of benchmarks
were used in the evaluation of the ConSynth [11] approach.
These target program repair applications, program synchro-
nization and synthesis scenarios for single and multi-threaded
programs, and variations of the Cinderella-Stepmother game
[29], [30], which is considered to be a challenging program
for automated synthesis tasks. The second set of benchmarks
were used to evaluate the Raboniel [15] approach, which
contains elevator, sorting, and cyber-physical examples, and
specification complexity ranging from simple LTL games to
ones that need products with Büchi automata. The third set
of benchmarks are from DTSynth approach evaluation [16],
and involve safety properties on robot motion planning over
an infinite grid.

We compare our tool GENSYS-LTL against two comparable
tools from the literature: ConSynth [11] and Raboniel [15]. We
do not compare against tools such as DTSynth [16] that only
handle safety (not general LTL) specifications. We executed
GENSYS-LTL and Raboniel on our benchmarks on a desktop
computer having six Intel i7-8700 cores at 3.20GHz each
and 64 GB RAM. We were able to obtain a binary for
ConSynth from other authors [16], but were unable to run
it due to incompatibilities with numerous versions of Z3 that
we tried with it. Hence, for the benchmarks in our suite that
previous papers [11], [16] had evaluated ConSynth on, we
directly picked up results from those papers. There is another
comparable synthesis tool we are aware of, Temos [17]. We
were unable to install this tool successfully from their code
available on their artifact and from their GitHub repository,
due to numerous dependencies that we could not successfully
resolve despite much effort.

Table I shows the experimental results of all our approaches
in comparison with ConSynth and Raboniel, with a timeout
of 15 minutes per benchmark. The first column depicts the
name of the benchmark: each benchmark includes a logical
game specification and a temporal property winning condition.
Column Type indicates whether the game variables in the
underlying game G are reals or integers. Column P indicates
the player (C or E) for which we are synthesizing a winning

1https://github.com/stanlysamuel/gensys/tree/gensys-ltl



region. Column S indicates whether the given benchmark falls
in the Simple LTL category (G, F, FG, GF), or whether it needs
an automaton to be constructed from the LTL property (Gen).
|V| is the number of game variables. Letting ψ denote the
given temporal property, Column DB? indicates whether the
automaton Aψ is deterministic, while Column DCB? indicates
whether the automaton A¬ψ is deterministic. In both these
columns, the numbers within brackets indicate the number of
automaton states.

The remainder of this section summarizes our results for the
two main problems we address in this paper, namely, winning
region computation, and realizability (see Section IV).

A. Winning region computation

Columns G-S to OTF in Table I indicate the running times
of different variants of our approach, in seconds, for winning
region computation (i.e., when an initial set of states is not
given). The variant G-S is applicable when the given game is
a simple game, and it involves no automaton construction or
product-game formation (see Section VI). Variant GF-P (resp.
FG-P), involves product constructions with property automata,
and is applicable either when the given game is simple or when
Aψ (resp. A¬ψ) is deterministic (see Section VII). The OTF
variant (see Section VIII) is applicable in all cases, as it is the
most general. Any entry T/O in the table denotes a timeout,
of 15 minutes while “N/A” indicates not-applicable.

We observe that when the game is simple, computing
the winning region is fastest using simple game fixpoint
approaches (Variant G-S). If both automatons are determin-
istic, then the FG-P computation is faster than the GF-P
computation. This is because the former does not require a
nested loop, as compared to the latter. The OTF approach is
slower than the other approaches in most of the cases due
to the cost of determinization, but is the only approach that
was applicable in one of the benchmarks (Cinderella C = 1.4
with a non-simple temporal property). OTF took 7.7 seconds
in this case, and returned a non-empty under-approximation
of the winning region. The k parameter value given to OTF
is indicated in Column K.

Our approach is very efficient as per our evaluations. Only
on one of the benchmarks did none of the variants terminate
within the timeout (Repair-Critical, with non-simple temporal
property). On each of the remaining benchmarks, at least one
variant of our approach terminated within 43 seconds at most.

The other approaches ConSynth and Raboniel are only
applicable when an initial set of states is given, and not for
general winning region computation.

B. Realizability

Recall that in this problem, a set of initial states is given in
addition to the temporal property, with the aim being to check
if the chosen player wins from every state in this set. The last
three columns in Table I pertain to this discussion. Column G
indicates the running time of the most suitable variant of our
approach for the corresponding benchmark; what we mean by

this, Variant G-S whenever it is applicable, else FG-P if it is
applicable, else GF-P if it is applicable, otherwise OTF.

Column C indicates ConSynth’s running times, for the
benchmarks for which results were available in other papers.
The rows where we show ConSynth’s results in red color are
ones where we are unsure of its soundness; this is because
ConSynth does not determinize non-deterministic automatons,
whereas in the literature it has been recognized that in general
determinization is required for synthesis [9].

Column R indicates Raboniel’s running times, obtained
from our own runs of their tool. We were not able to encode
three benchmarks into Raboniel’s system due to the higher
complexity of manually encoding these benchmarks; in these
cases we have indicated dashes in the corresponding rows.

It is observable that our approach is much more efficient
than the two baseline approaches. We terminate within the
given timeout on one all but one benchmark, whereas Con-
Synth times out on three benchmarks and Raboniel on eight.
Considering the benchmarks where both our approach and
Raboniel terminate, our approach is 46x faster on average
(arithmetic mean of speedups). Considering the benchmarks
where both our approach and ConSynth terminate, our ap-
proach is 244x faster on average.

A case-by-case analysis reveals that we scale in the chal-
lenging Cinderella case where the bucket size C is 1.9(20)
(i.e., 9 repeated 20 times). We also scale gracefully in the
simple elevator examples (Simple-3 to Simple-10), as the
number of floors increases from 3 to 10, as compared to
Raboniel. We solve the Cinderella benchmark for C = 1.4
with the general LTL specification in 301 seconds (using OTF,
with k = 1), which is another challenging case. Raboniel times
out for this case.

A detailed list of the specifications used is given in our
extended version [24].

C. Discussion on non-termination

There do exist specifications where GENSYS-LTL will not
terminate. We share this issue in common with Raboniel.
Consider the game specification: V = {x},Con(x, x′) :=
x′ == x−1∨x′ = x+ 1,Env(x, x′) := x′ == x, Init(x) :=
x ≥ 0, ψ(x) := F (x < 0). This example is realizable.
However, GENSYS-LTL will not terminate as it will keep
generating predicates x ≤ 1, x ≤ 2, x ≤ 3, and so on, which
can never cover the initial region x ≥ 0.

XI. RELATED WORK

Explicit-state techniques for finite-state games. This line of
work goes back to Büchi and Landweber [5], who essentially
studied finite-state games with a Büchi winning condition,
and showed that a player always has a finite-memory strategy
(if she has one at all). Games with LTL winning conditions,
where the players play symbols from an input/output alphabet
respectively, were first studied by Pnueli and Rosner [31]
who showed the realizabilty question was decidable in double
exponential time in the size of the LTL specification. A recent
line of work [8], [9] proposes a practically efficient solution to



TABLE I: Comparison of all approaches of GENSYS-LTL with ConSynth and Raboniel. Times are in seconds. T/O denotes a
timeout after 15 minutes. Abbreviations: P for Player, S for Specification, DB for Deterministic Büchi, DCB for Deterministic
Co-Büchi, G-S for GenSys-Simple Game, GF-P for Product Büchi Game, FG-P for Product Co-Büchi Game, OTF for
On-The-Fly approach, K for OTF bound for which solution was found, C for ConSynth, R for Raboniel, G for GenSys-LTL

Game Type P S |V| DB?(|Q|) DCB?(|Q|) G-S GF-P FG-P OTF K C R G

Cinderella (C = 2) Real C G 5 Y (2) Y (2) 0.4 2.4 0.8 0.7 0 T/O T/O 0.4
Cinderella (C = 3) Real C G 5 Y (2) Y (2) 0.3 2.8 0.7 0.7 0 765.3 T/O 0.3
Repair-Lock Int C G 3 Y (2) Y (2) 0.3 1.0 0.4 0.4 0 2.5 3.1 0.3
Repair-Critical Int C G 8 Y (2) Y (2) 29.0 666.0 29.5 123.0 0 19.5 - 29.0
Synth-Synchronization Int C G 7 Y (2) Y (2) 0.3 0.6 0.3 0.4 0 10.0 - 0.3
Cinderella (C = 1.4) Real E F 5 Y (2) Y (2) 0.3 1.0 0.3 2.7 3 18.0 T/O 0.3
Cinderella (C = 1.4) Real C GF 5 Y (2) N (3) 43.0 130.0 N/A 101.0 1 436.0 T/O 43.0
Cinderella (C = 1.4) Real C Gen 5 N (7) N (5) N/A N/A N/A 7.7 0 4.7 T/O 301.0
Cinderella (C = 1.9(20)) Real C G 5 Y (2) Y (2) 42.0 T/O T/O T/O T/O - T/O 42.0
Repair-Critical Int C Gen 8 Y(40) N (6) N/A T/O N/A T/O T/O 53.3 - T/O
Simple-3 Int C Gen 1 Y (5) N (6) N/A 3.3 N/A 309.0 6 - 1.8 3.3
Simple-4 Int C Gen 1 Y (6) N (7) N/A 4.1 N/A T/O T/O - 2.2 4.1
Simple-5 Int C Gen 1 Y (7) N (8) N/A 5.8 N/A T/O T/O - 5.1 5.8
Simple-8 Int C Gen 1 Y(10) N(11) N/A 15.6 N/A T/O T/O - 27.4 15.6
Simple-10 Int C Gen 1 Y(12) N(13) N/A 30.3 N/A T/O T/O - 108.0 30.3
Watertank-safety Real C G 2 Y (2) Y (2) 0.3 0.6 0.3 0.3 0 - 19.4 0.3
Watertank-liveness Real C Gen 1 Y (3) N (4) N/A 2.5 N/A 0.7 0 - 51.0 2.5
Sort-3 Int C FG 3 Y (2) N/A 1.2 1.1 N/A 0.3 0 - 51.0 1.1
Sort-4 Int C FG 4 Y (2) N/A 2.2 1.2 N/A 0.4 0 - 650.1 1.2
Sort-5 Int C FG 5 Y (2) N/A 5.2 1.2 N/A 0.4 0 - T/O 1.2
Box Int C G 2 Y (2) Y (2) 0.3 0.6 0.3 0.4 0 3.7 1.2 0.3
Box Limited Int C G 2 Y (2) Y (2) 0.2 0.6 0.3 0.3 0 0.4 0.3 0.2
Diagonal Int C G 2 Y (2) Y (2) 0.2 0.6 0.2 0.4 0 1.9 6.4 0.2
Evasion Int C G 4 Y (2) Y (2) 0.7 1.8 0.8 0.6 0 1.5 3.4 0.7
Follow Int C G 4 Y (2) Y (2) 0.7 1.8 0.8 0.6 0 T/O 94.0 0.7
Solitary Box Int C G 2 Y (2) Y (2) 0.3 0.5 0.2 0.4 0 0.4 0.3 0.3
Square 5 * 5 Int C G 2 Y (2) Y (2) 0.3 0.6 0.3 0.4 0 T/O T/O 0.3

these games, which avoids the expensive determinization step,
based on Universal Co-Büchi Tree Automata. [10] extend this
direction by reducing the problem to solving a series of safety
games, based on a k-safety automaton (k-UCW) obtained from
a Universal Co-Büchi Word (UCW) automaton.

Symbolic fixpoint techniques. One of the first works to
propose a symbolic representation of the state space in fixpoint
approaches was [32] in the setting of discrete-event systems.
More recently Spectra [33] uses BDDs to represent states
symbolically in finite-state safety games. For infinite-state
systems, [1] proposes a logical representation of fixpoint
algorithms for boolean and timed-automata based systems,
while [34] characterizes classes of arenas for which fixpoint
algorithms for safety/reachability/Buchi games terminate. An
earlier version of our tool called GenSys [25] uses a symbolic
fixpoint approach, but is restricted to safety games only. In
contrast to all these works, we target the general class of
LTL games. A recent preprint [35] uses acceleration-based
techniques to alleviate divergence issues in the fixpoint-based
game solving approach. Their approach can terminate in
certain cases where our approach does not terminate, such as
the one explained in Sec. X-C. However their technique does
not attempt to compute the exact winning region.

Symbolic CEGAR approaches. [36] considers infinite-state
LTL games and proposes a CEGAR-based approach for real-
izability and synthesis. Several recent works consider games
specified in Temporal Stream Logic (TSL). [13] considers
uninterpreted functions and predicates and convert the game

to a bounded LTL synthesis problem, refining by adding new
constraints to rule out spurious environment strategies. [14],
[15], [17] consider TSL modulo theories specifications and
give techniques based on converting to an LTL synthesis
problem, using EUF and Presburger logic, and Sygus based
techniques, respectively. In contrast to our techniques, these
techniques are not guaranteed to compute precise winning
regions or to synthesize maximally permissive controllers.

Symbolic deductive approaches. In [11] Beyene et al pro-
pose a constraint-based approach for solving logical LTL
games, which encodes a strategy as a solution to a system
of extended Horn Constraints. The work relies on user-given
templates for the unknown relations. [12] considers reacha-
bility games, and tries to find a strategy by first finding one
on a finite unrolling of the program and then generalizing
it. [16], [18], [37] consider safety games, and try to find
strategies using forall-exists solvers, a decision-tree based
learning technique, and enumerative search using a solver,
respectively. In contrast, our work aims for precise winning
regions for general LTL games.

XII. CONCLUSION

In this paper we have shown that symbolic fixpoint tech-
niques are effective in solving logical games with general
LTL specifications. Going forward, one of the extensions we
would like to look at is strategy extraction for general (non-
FND) games. Here one could use tools like AE-Val [38] that
synthesize valid Skolem functions for forall-exists formulas.



A theoretical question that appears to be open is whether the
class of games we consider (with real domains in general) are
determined (in that one of the players always has a winning
strategy from a given starting state).

Acknowledgment: The authors would like to thank Rayna
Dimitrova and Philippe Heim for their comments on a preprint
of our paper, which helped us improve key parts of our paper.

REFERENCES

[1] E. Asarin, O. Maler, and A. Pnueli, “Symbolic controller synthesis for
discrete and timed systems,” in Proc. Third Intl. Workshop on Hybrid
Systems, Ithaca, USA, 1994, ser. LNCS, vol. 999. Springer, 1994, pp.
1–20.

[2] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a
game,” in Proc. Intl. Conf. Computer Aided Verification (CAV 2005)
Edinburgh, 2005, ser. LNCS, vol. 3576. Springer, 2005, pp. 226–238.

[3] M. T. Vechev, E. Yahav, and G. Yorsh, “Abstraction-guided synthesis of
synchronization,” in Proc. ACM SIGPLAN-SIGACT Symp. Principles of
Programming Languages (POPL 2010), Madrid, 2010. ACM, 2010,
pp. 327–338.

[4] H. Zhu, Z. Xiong, S. Magill, and S. Jagannathan, “An inductive syn-
thesis framework for verifiable reinforcement learning,” in Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation
(PLDI 2019), Phoenix, USA, 2019, K. S. McKinley and K. Fisher, Eds.
ACM, 2019, pp. 686–701.
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