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Abstract

We say a family of geometric objects C has (I, k)-property
if every subfamily C’ C C of cardinality at most [ is k-
piercable. In this paper we investigate the existence of
g(k,d) such that if any family of objects C' in R? has
the (g(k,d), k)-property, then C is k-piercable. Danzer
and Griinbaum showed that g(k,d) is infinite for fami-
lies of boxes and translates of centrally symmetric convex
hexagons. In this paper we show that any family of pseudo-
lines(lines) with (k2 + k + 1, k)-property is k-piercable and
extend this result to certain families of objects with discrete
intersections. This is the first positive result for arbitrary &
for a general family of objects. We also pose a relaxed ver-
sion of the above question and show that any family of boxes
in R? with (k2?, k)-property is 2?k-piercable.

1 Introduction

A family of geometric objects C' in R? is said to be k-
piercable if there exists a set of points P C R? of cardinality
k such that every object in C contains (is pierced by) at least
one of the points of P.

Definition 1 We say a family of geometric objects C' has
(I, k)-property if every subfamily C' C C of cardinality at
most | is k-piercable.

The classical Helly’s theorem [8] stated in this notation is
as follows: Any family of convex objects C' in R% having
(d + 1, 1)-property is 1-piercable.

Helly-type theorems have been widely studied for different
settings (see surveys [5}16]). Danzer and Griinbaum [4]] con-
sidered the following generalised version of Helly’s theorem:

For every positive integer k, does there exist a finite
g(k, d) such that if any family of convex objects C in R? has
(9(k,d), k)-property, then C' is k-piercable?

They showed that g(k,d) is infinite even for families of
boxes in R?. Specifically, they gave a generic construction
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and showed that g(k,d) is infinite for all K > 3, d > 2
and (k,d) # (3,2). The same construction also works as a
counterexample for hypercubes in R¢. Katchalski et al [9]
showed that g(k, d) is infinite for translates of a symmetric
convex hexagon.

Positive results are known for small values of £ (i.e. k =
2). Danzer and Griinbaum [4]] showed that for a family of
boxes in RY, g(2,d) = 3d — 1 if d is even and ¢(2,d) = 3d
if d is odd. They also proved that g(3,2) = 16 for a family
of rectangles in R2. Katchalski et al [9] showed that for a
family of homothetic triangles in R?, g(2,2) = 9.

In this paper, we obtain the first positive results for general
k. We show that for a family of pseudolines in R?, g(k, 2) is
finite for all £ > 2. Specifically, we prove the following:

Theorem 1 Let C be a family of pseudolines in R? with
|IC| > k® + k + 1. For any integer k > 2, if C has
(k% + k + 1, k)-property then C is k-piercable.

We extend the above theorem for families of objects C
with the following property: any subfamily of p 4 1 distinct
objects in C' intersect in at most one point. Note that p = 1
for a family of pseudolines.

Theorem 2 Let C be a family of objects with the property
that any subfamily of p + 1 distinct objects in C' intersect
in at most one point. Let |C| > k(kp + 1) + 1. For any
integer k > 2, if C has (k(kp + 1), k)-property then C' is
k-piercable.

The proof of Theorem 1 and 2 are combinatorial and
exploit only the intersection property. In fact, Theorem 2 is
true for set systems with the property that any subfamily of
p + 1 distinct sets intersect in at most one element. Also the
proofs lead naturally to a FPT algorithm for the minimum
piercing problem on these objects. Note that the minimum
piercing problem is NP-hard and APX-hard even for lines in
R2 [12.3].

Since ¢g(k,d) is infinite for most families of geometric
objects in the above problem, we define the following
relaxed variant, which we refer to as the k-Helly problem:

k-Helly problem: For every positive integer k, deter-
mine the smallest f(k,d) such that if any family of convex
objects C in R has (g(k,d), k)-property for some g(k,d),
then C'is f(k,d)-piercable.

The k-Helly problem is related to the weak e-net [1] and
Hadwiger-Debrunner (p, ¢)-problem [7]] as follows:
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Weak e-nets is a special case of the k-Helly problem : In
the weak e-net problem, we ask for a piercing set for objects
containing > en points. By pigeon hole principle, in any
subcollection of % + 1 objects, two will intersect. Therefore
the objects satisfy (1 + 1, 2)-property.

The k-Helly problem is a special case of the
Hadwiger-Debrunner (p, ¢)-problem since (g(k,d), k)-
property implies Hadwiger-Debrunner (p, ¢)-property
for p = g(k,d),q = g(k,d)/k. Also, the finiteness of
g(k,d), f(k,d) is implied by the Hadwiger Debrunner (p, q)
theorem [2]], which shows a finite piercing set. However, the
bounds given by the Hadwiger Debrunner (p, ¢) theorem are
large (roughly O(p®) for convex objects in R?).

We show the following result for boxes in R¢:

Theorem 3 Let C be a family of boxes in R?. Forany k > 2,
if C has (k*?, k)-property, then C is 2%k-piercable.

Note that for boxes in R, f(k,d) > k since otherwise
g(k, d) is infinite. The proof of Theorem 3 directly leads
to a 2%-approximate FPT algorithm for the minimum pierc-
ing problem on boxes. We note that the minimum piercing
problem for boxes is NP-hard as well as W[1]-hard [L1]].

2 Lines and Pseudolines

Any two lines in R? intersect in at most one point. This can
be generalized in the following way.

Definition 2 A family of geometric objects C in R? is called
a family of pseudolines if for every l;,1; € C, l; and l; inter-
sect in at most one point.

Let C be a finite family of pseudolines in R2.

Definition 3 Let a point x lie in the intersection of a set of
pseudolines l1,ls, -+ |l € C. We call x k-degenerate in C
ifs > k.

Lemma 4 Let H be a set of points that pierces C. If x is
k-degenerate in C and x ¢ H, then |H| > k + 1.

Proof. If © ¢ H then we need at least s points to hit the
s pseudolines passing through z. Since s > k the lemma
follows. 0

Lemma 5 Let |C| > (k* + k + 1) and G be the set of all
k-degenerate points in C. If C has (k* + k + 1, k)-property,
then1 < |G| < k

Proof. Let S be a subset of C such that |S| = k? + k + 1.
S is k-piercable. By pigeon hole principle, there exists a
point x that pierces at least k + 1 pseudolines in S. Hence
|G| > 1. Also if G > k + 1, there exists S’ C C which
contains k£ -+ 1 pseudolines passing through each of the first k&
points in G and one pseudoline passing through the (k+ 1)th
point which does not pass through the first k& points. Clearly
|S’] < k? 4+ k+ 1and S’ is not k-piercable, a contradiction.
Hence 1 < |G| < k. O

Proof of Theorem[I] Let G be the set of all k-degenerate
points in C. From the Lemma[5|1 < |G| < k. Let C’ be the
set of pseudolines not pierced by any of the points in G. We
claim that if |G| = k then C" = (). For if C" # () then
there is a [ € C’ such that it is not pierced by any point
in G. For each point in G, pick k + 1 pseudolines passing
through it. This together with [ gives a set C” of at most
k(k +1)+1 = k? + k + 1 pseudolines which is not k-
piercable, a contradiction.

Hence let |G| = k — r where k > r > 1 and C’ # (). We
claim |C'| < rk. Assume, for contradiction, that |C’| > rk.
Then, for each point in G, pick k£ + 1 pseudolines passing
through it. This together with 7k + 1 lines from C’ to give a
set C” of (at most) (k —r)(k+ 1) +7k+1=k? + (k —
r) + 1 < k% + k + 1 pseudolines. C”, being a subset of
C, has (k% + k, k)-property and hence can be pierced by k
points. Any point in G can pierce only k£ + 1 pseudolines
in C” and no r points outside G' can pierce the remaining
rk + 1 pseudolines in C”, a contradiction.

Now as before we pick k + 1 pseudolines from each of
the k — r k-degenerate points together with at most rk pseu-
dolines from C’ to get a system of (at most) (k — r)(k +
1)+ 7k = k* + k —r < k? + k + 1 pseudolines. This
can be pierced by k points. We have to choose each of the
k — r k-degenerate points in a piercing set for this system.
This means that the rk pseudolines from C’(none of them
are pierced by the degenerate points) have to be pierced by r
points. This implies that C' is k-piercable.

Lemma 6 Let C be a family of pseudolines with |C| > 6. If
C has (6,2)-property then C' is 2-piercable.

Proof. As C has (6,2)-property, there exist two cases.
There exist some 6 pseudolines out of which 5 do not in-
tersect or out of every 6 pseudolines 5 intersect.

In the first case there are two sub cases. There exist
li,...,lg € C such that ly,15,13,14 intersect or in the sec-
ond sub case Iy, 1,3 and Iy, 5, [ intersect respectively. Let
l € C. Ifly,ls,13,14 intersect, then [ is incident on the in-
tersection of [, l5,[3 or on the intersection of I5,lg. Oth-
erwise Iy, 1o, 13,105,106, is a set of 6 pseudolines which are
not 2-piercable. If I1,1s,13 and Iy, 15, [ intersect, then [ is
incident on the intersection of Iy, s, 13 or I5,lg. Otherwise
l1,12,13,15,16,1 is a set of 6 lines which are not 2-piercable.
Hence in both sub cases C' is 2-piercable.

In the second case when out of every 6 pseudolines 5 in-
tersect, all the lines except one have a common intersection
and hence C'is 2-piercable.

Hence in either case C' is 2-piercable. (]

The above result is tight since there is a family of 6 lines with
(5, 2)-property which is not 2-piercable (shown in Figure .

Consider a collection of pseudolines C. We wish to de-
termine if C' is k-piercable or not. There is a naive FPT al-
gorithm which is implied by the above combinatorial result
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Figure 1: A family of 6 lines with (5, 2)-property which is
not 2-piercable.

which takes O(n? + k*k**) time. However one can use the
techniques given in [10] to get a faster FPT algorithm which
takes O(n? + k?*2) time.

3 Objects with discrete intersection

We extend the results of the previous section to a more gen-
eral family of objects. We consider families of objects C'
with the following property : any subfamily of p + 1 distinct
objects intersect in at most one point. This is a notion similar
to the one in [10]]. Unit circles, curves in the plane obtained
by polynomial equations of bounded degree are some exam-
ples of objects with the above property.

Definition 4 Let a point x lie in the intersection of a set of
objects c¢1,ca,--- ,cs € C. We call x k-degenerate in C if
s > kp.

Lemma 7 Let H be a set of points that pierces C. If x is
k-degenerate in C and x ¢ H, then |H| > k + 1.

Proof. Any point y # x can pierce at most p — 1 of the
objects passing through x. Hence we need at least k& + 1
points to pierce kp + 1 objects passing thorugh z. 0

Consider a set of objects C' with |C| > k(kp+ 1) + 1 which
has (k(kp + 1) + 1, k)-property. Consider a subset S C C
with |S| = k(kp + 1). Note that it can be pierced by a
set H of size k. Then there is some point 1 € H which
pierces at least kp + 1 objects in C'. We construct a set of
degenerate points as follows. Let C; = C, G; = {1}
where x, is obtained as before. Construct G;11, ¢ > 1, as
long as possible, in the following way: C;11 = C; \ {c €
C; : c pierced by x; }. Let x; 11 be any k-degenerate point in
Cit1. Now Gip1 = Gi Uxiya.

Lemma 8 Consider a family of objects C with |C| > k(kp+
1) + 1 which has the (k(kp + 1), k) property. Let G be a set
of k-degenerate points in C' with maximum cardinality. Then
1< |G < k.

Proof. Clearly |G| > 1. Suppose |G| > k + 1. Let C? be
a subset of objects pierced by x; € G with |C?| = kp + 1.
Consider X = Uj<;<xC? U {c} where ¢ € C*¥*1. Clearly
|X| < k(kp + 1) + 1. Hence X is k-piercable. Any k-
piercing set for C’ must contain {1, - - - 2} (by Lemmal[7).
This is a contradiction as Vx; € G,1 < i < k, x; cannot
pierce c. 0

Proof of Theorem [2] Let G be a set of k-degenerate
points in C' with maximum cardinality and let |G| = k — r
where £ > r > 0 (by Lemma . Let C be a subset of
objects pierced by x; € G with |C?| = kp + 1.

Let C’ be the set of remaining objects not pierced by any
of these points. If C’ = () then C is k-piercable. Hence let
us assume C’ # (). We claim that |C’| < r(kp + 1).

Assume, for contradiction, that |C’| = r(kp+1)+1. Then
a subset of objects X = C' U---C*~" U (" is k-piercable
since | X| < k(kp + 1) + 1. Any k-piercing set for X must
contain all £ — r points in G. If r = 0 this means that a
object in C” is not pierced, a contradiction. Else if 7 > 0 this
implies r(kp + 1) objects in C” is pierced by r points, all of
which are not k-degenerate, a contradiction.

Hence |C'| < r(kp + 1). Again as before a subset of
objects X = C' U ---CF " U C' is k-piercable since
|X| < k(kp+1)+1. Any k-piercing set for X must contain
all k — r points in G. This implies C’ is r-piercable(if » = 0
this means C’ = (). Hence C is k-piercable.

We extend the result on lines in the previous section
to hyperplanes in 3 dimensions. The idea of replacing
degenerate hyperplanes by a line is from [10].

Lemma9 Let C be a family of hyperplanes in R® with
(k(k + 1)3, k) property. Then C is k-piercable.

Proof. We obtain a family of objects C’ from C as follows.
If at least k+1 hyperplanes intersect in a line then we replace
them with the line.

It is obvious that if C” is k-piercable then C' is k-piercable.
We note that if any £ + 1 hyperplanes in C' intersect in a line
[ then any k-piercing set must contain a point from /. Hence
(" is k-piercable if and only if C'is k-piercable.

We claim that any set of k + 2 objects in C” intersect in at
most 1 point. There are two cases - the set contains at least
two lines or the set contains at most one line. The claim is
true if there are at least two lines in this set of k 4 2 objects.
In the other case, the set contains at least k£ + 1 hyperplanes
and these cannot intersect in a line. Hence the k + 2 objects
intersect at most 1 point.

From Theorem [2)if C” has (k(k(k + 2) + 1), k) property
then C” is k-piercable. Any line in C” can be realized as the
intersection of at most k + 1 hyperplanes in C. Hence if C'
has ((k+1)k(k(k—+2)+1), k) property then C is k-piercable
which proves the claim. O

This result can be extended to higher dimensions.
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Figure 2: Grid points, representative rectangles and piercing
set for a collection of rectangles.

4 Boxes in R

In this section we consider the k-Helly problem for families
of boxes in R%.

Lemma 10 Let I be a family of intervals in R with (k+1, k)
property. Then I is k-piercable.

Proof. We note that I satisfies the Hadwiger Debrunner
HD(k + 1,2) property. Hence [ has a piercing set of size k
[7]. O

Lemma 11 Let S be a family of vertical and horizontal
slabs with (k + 1, k)-property. S is k-piercable.

Proof. Let S| be the set of vertical slabs and S, the set of
horizontal slabs. Clearly from Lemma [I0} S; and S, are
k-piercable. Without loss of generality let S; and Sy be
"pierced’ by k points on the x axis vy,...,v; and k points
on the y axis hy, ..., hy respectively. (vi,hy),..., (vg, hg)
is a k-piercing set for .S. 0

Proof of Theorem [3 We prove the claim for d = 2.
The proof for d > 2 is a straightforward generalization.
Let C be a family of rectangles in R? with (k*, k)-property.
We orthogonally project each rectangle » € C' to the two
coordinate axes. For each axis 7, 1 < ¢ < 2, we get
a set of intervals C; with (k*, k)-property. Hence C; has
(k + 1, k)-property and is k-piercable (Lemma . Let H;,
|H;| < E, be such a piercing set (the small hollow points
on the  and y axes in Figure ). Consider the grid points
H = {(z,y) : * € H1,y € Hsy} (the small hollow circles
in Figure ). For r € C, let 1 be the projection of r on
the = axis and 79 be the projection of r on the y axis. There
exist z € Hy,y € Hs such that x pierces r1 and y pierces
ro. Thus (z,y) € H pierces r. Hence every r € C can be
pierced by one of the (at most k?) grid points in H.

For X C H we define Sx C C as follows:
Sx={reC:rnH=X}

We note that C' is partitioned into the sets Sx, i.e. C' =
UXQHSX :

The subset of H ’induced’ by a rectangle r € C' will be
of the form of a rectangular ’sub block’ of H. Any rectan-
gular sub block of H is uniquely determined by its diagonal
endpoints. Hence there are at most (k;) distinct subsets of H

induced by rectangles. Therefore there are at most (k;) < K4
distinct nonempty S'x.

Let S’ C C be a set of representative rectangles obtained
by picking exactly one rectangle from each of the nonempty
sets Sy, X C H (the bold rectangles in Figure . Note that
|S’| < k*. Since C has (k*, k) property, S’ can be pierced
by a set of points W C R2, [W| < k (the filled points in
Figure[2). For p € W, let N(p) denote the set of (at most 4)
grid points of H which form the gridcell containing p. Let
P = Upew N (p), |P| < 4k (the big hollow points in Figure
). If p pierces some rectangle r € Sx, then the points in
N(p) pierce all rectangles in Sx. Since points in W pierce
all the rectangles in S’, points in P pierce all the rectangles
inC = UXCHSX. Thus C'is 4k-piercable.

Algorithm 1 FPT algorithm to give a 2¢ approximation for
piercing boxes in R?
Orthogonally project each box r € C to the d axes to get
a set of intervals C; for each axis 4
if All the C; are k-piercable then
Obtain S’
Bruteforce check if S’ is k-piercable

if S’ is k-piercable then
return Grid neighbours of piercing set
else
return false
end if
else
return false
end if

The proof of Theorem 3 directly leads to a 2¢-approximate
FPT algorithm for the minimum piercing problem on boxes.
Given a collection of boxes C' Algorithm 1 returns no if C'is
not k-piercable and returns a piercing set of size atmost 2%k
otherwise.

Obtaining C; takes O(dn) time. Checking if each C;
is k-piercable takes O(dnlogn) time. Obtaining S’ takes
O(dnlog k) time. The bruteforce check takes O(k**) time.
Hence the whole algorithm takes O(dn logn + k**) time.
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5 Conclusion

In this paper we prove that any family of pseudolines with
(k? +k+1, k)-property is k-piercable. We extend this result
for other families of geometric objects with discrete intersec-
tion, i.e., polynomial curves and hyperplanes. It is an inter-
esting question to fully charaterise such families of objects
for which g(k,d) is finite. We also pose a relaxed variant
of this problem as the k-Helly problem and show non-trivial
bounds for a family of boxes in R?. An interesting open
problem is to obtain tight bounds on the k-Helly problem for
other families of geometric objects in R
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