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Abstract

We say a family of geometric objects C has (l, k)-property
if every subfamily C ′ ⊆ C of cardinality at most l is k-
piercable. In this paper we investigate the existence of
g(k, d) such that if any family of objects C in Rd has
the (g(k, d), k)-property, then C is k-piercable. Danzer
and Grünbaum showed that g(k, d) is infinite for fami-
lies of boxes and translates of centrally symmetric convex
hexagons. In this paper we show that any family of pseudo-
lines(lines) with (k2 + k + 1, k)-property is k-piercable and
extend this result to certain families of objects with discrete
intersections. This is the first positive result for arbitrary k
for a general family of objects. We also pose a relaxed ver-
sion of the above question and show that any family of boxes
in Rd with (k2d, k)-property is 2dk-piercable.

1 Introduction

A family of geometric objects C in Rd is said to be k-
piercable if there exists a set of points P ⊂ Rd of cardinality
k such that every object in C contains (is pierced by) at least
one of the points of P .

Definition 1 We say a family of geometric objects C has
(l, k)-property if every subfamily C ′ ⊆ C of cardinality at
most l is k-piercable.

The classical Helly’s theorem [8] stated in this notation is
as follows: Any family of convex objects C in Rd having
(d+ 1, 1)-property is 1-piercable.

Helly-type theorems have been widely studied for different
settings (see surveys [5, 6]). Danzer and Grünbaum [4] con-
sidered the following generalised version of Helly’s theorem:

For every positive integer k, does there exist a finite
g(k, d) such that if any family of convex objects C in Rd has
(g(k, d), k)-property, then C is k-piercable?

They showed that g(k, d) is infinite even for families of
boxes in Rd. Specifically, they gave a generic construction
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and showed that g(k, d) is infinite for all k ≥ 3, d ≥ 2
and (k, d) 6= (3, 2). The same construction also works as a
counterexample for hypercubes in Rd. Katchalski et al [9]
showed that g(k, d) is infinite for translates of a symmetric
convex hexagon.

Positive results are known for small values of k (i.e. k =
2). Danzer and Grünbaum [4] showed that for a family of
boxes in Rd, g(2, d) = 3d − 1 if d is even and g(2, d) = 3d
if d is odd. They also proved that g(3, 2) = 16 for a family
of rectangles in R2. Katchalski et al [9] showed that for a
family of homothetic triangles in R2, g(2, 2) = 9.

In this paper, we obtain the first positive results for general
k. We show that for a family of pseudolines in R2, g(k, 2) is
finite for all k ≥ 2. Specifically, we prove the following:

Theorem 1 Let C be a family of pseudolines in R2 with
|C| ≥ k2 + k + 1. For any integer k ≥ 2, if C has
(k2 + k + 1, k)-property then C is k-piercable.

We extend the above theorem for families of objects C
with the following property: any subfamily of p+ 1 distinct
objects in C intersect in at most one point. Note that p = 1
for a family of pseudolines.

Theorem 2 Let C be a family of objects with the property
that any subfamily of p + 1 distinct objects in C intersect
in at most one point. Let |C| ≥ k(kp + 1) + 1. For any
integer k ≥ 2, if C has (k(kp + 1), k)-property then C is
k-piercable.

The proof of Theorem 1 and 2 are combinatorial and
exploit only the intersection property. In fact, Theorem 2 is
true for set systems with the property that any subfamily of
p+ 1 distinct sets intersect in at most one element. Also the
proofs lead naturally to a FPT algorithm for the minimum
piercing problem on these objects. Note that the minimum
piercing problem is NP-hard and APX-hard even for lines in
R2 [12, 3].

Since g(k, d) is infinite for most families of geometric
objects in the above problem, we define the following
relaxed variant, which we refer to as the k-Helly problem:

k-Helly problem: For every positive integer k, deter-
mine the smallest f(k, d) such that if any family of convex
objects C in Rd has (g(k, d), k)-property for some g(k, d),
then C is f(k, d)-piercable.

The k-Helly problem is related to the weak ε-net [1] and
Hadwiger-Debrunner (p, q)-problem [7] as follows:
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Weak ε-nets is a special case of the k-Helly problem : In
the weak ε-net problem, we ask for a piercing set for objects
containing > εn points. By pigeon hole principle, in any
subcollection of 1

ε + 1 objects, two will intersect. Therefore
the objects satisfy ( 1ε + 1, 1ε )-property.

The k-Helly problem is a special case of the
Hadwiger-Debrunner (p, q)-problem since (g(k, d), k)-
property implies Hadwiger-Debrunner (p, q)-property
for p = g(k, d), q = g(k, d)/k. Also, the finiteness of
g(k, d), f(k, d) is implied by the Hadwiger Debrunner (p, q)
theorem [2], which shows a finite piercing set. However, the
bounds given by the Hadwiger Debrunner (p, q) theorem are
large (roughly O(p6) for convex objects in R2).

We show the following result for boxes in Rd:

Theorem 3 LetC be a family of boxes in Rd. For any k ≥ 2,
if C has (k2d, k)-property, then C is 2dk-piercable.

Note that for boxes in Rd, f(k, d) > k since otherwise
g(k, d) is infinite. The proof of Theorem 3 directly leads
to a 2d-approximate FPT algorithm for the minimum pierc-
ing problem on boxes. We note that the minimum piercing
problem for boxes is NP-hard as well as W[1]-hard [11].

2 Lines and Pseudolines

Any two lines in R2 intersect in at most one point. This can
be generalized in the following way.

Definition 2 A family of geometric objects C in R2 is called
a family of pseudolines if for every li, lj ∈ C, li and lj inter-
sect in at most one point.

Let C be a finite family of pseudolines in R2.

Definition 3 Let a point x lie in the intersection of a set of
pseudolines l1, l2, · · · , ls ∈ C. We call x k-degenerate in C
if s > k.

Lemma 4 Let H be a set of points that pierces C. If x is
k-degenerate in C and x /∈ H , then |H| ≥ k + 1.

Proof. If x /∈ H then we need at least s points to hit the
s pseudolines passing through x. Since s > k the lemma
follows. �

Lemma 5 Let |C| ≥ (k2 + k + 1) and G be the set of all
k-degenerate points in C. If C has (k2 + k+1, k)-property,
then 1 ≤ |G| ≤ k

Proof. Let S be a subset of C such that |S| = k2 + k + 1.
S is k-piercable. By pigeon hole principle, there exists a
point x that pierces at least k + 1 pseudolines in S. Hence
|G| ≥ 1. Also if G ≥ k + 1, there exists S′ ⊂ C which
contains k+1 pseudolines passing through each of the first k
points inG and one pseudoline passing through the (k+1)th
point which does not pass through the first k points. Clearly
|S′| ≤ k2 + k + 1 and S′ is not k-piercable, a contradiction.
Hence 1 ≤ |G| ≤ k. �

Proof of Theorem 1. LetG be the set of all k-degenerate
points in C. From the Lemma 5 1 ≤ |G| ≤ k. Let C ′ be the
set of pseudolines not pierced by any of the points in G. We
claim that if |G| = k then C ′ = ∅. For if C ′ 6= ∅ then
there is a l ∈ C ′ such that it is not pierced by any point
in G. For each point in G, pick k + 1 pseudolines passing
through it. This together with l gives a set C ′′ of at most
k(k + 1) + 1 = k2 + k + 1 pseudolines which is not k-
piercable, a contradiction.

Hence let |G| = k − r where k > r ≥ 1 and C ′ 6= ∅. We
claim |C ′| ≤ rk. Assume, for contradiction, that |C ′| > rk.
Then, for each point in G, pick k + 1 pseudolines passing
through it. This together with rk + 1 lines from C ′ to give a
set C ′′ of (at most) (k − r)(k + 1) + rk + 1 = k2 + (k −
r) + 1 < k2 + k + 1 pseudolines. C ′′, being a subset of
C, has (k2 + k, k)-property and hence can be pierced by k
points. Any point in G can pierce only k + 1 pseudolines
in C ′′ and no r points outside G can pierce the remaining
rk + 1 pseudolines in C ′′, a contradiction.

Now as before we pick k + 1 pseudolines from each of
the k− r k-degenerate points together with at most rk pseu-
dolines from C ′ to get a system of (at most) (k − r)(k +
1) + rk = k2 + k − r < k2 + k + 1 pseudolines. This
can be pierced by k points. We have to choose each of the
k − r k-degenerate points in a piercing set for this system.
This means that the rk pseudolines from C ′(none of them
are pierced by the degenerate points) have to be pierced by r
points. This implies that C is k-piercable.

Lemma 6 Let C be a family of pseudolines with |C| ≥ 6. If
C has (6, 2)-property then C is 2-piercable.

Proof. As C has (6, 2)-property, there exist two cases.
There exist some 6 pseudolines out of which 5 do not in-
tersect or out of every 6 pseudolines 5 intersect.

In the first case there are two sub cases. There exist
l1, . . . , l6 ∈ C such that l1, l2, l3, l4 intersect or in the sec-
ond sub case l1, l2, l3 and l4, l5, l6 intersect respectively. Let
l ∈ C. If l1, l2, l3, l4 intersect, then l is incident on the in-
tersection of l1, l2, l3 or on the intersection of l5, l6. Oth-
erwise l1, l2, l3, l5, l6, l is a set of 6 pseudolines which are
not 2-piercable. If l1, l2, l3 and l4, l5, l6 intersect, then l is
incident on the intersection of l1, l2, l3 or l5, l6. Otherwise
l1, l2, l3, l5, l6, l is a set of 6 lines which are not 2-piercable.
Hence in both sub cases C is 2-piercable.

In the second case when out of every 6 pseudolines 5 in-
tersect, all the lines except one have a common intersection
and hence C is 2-piercable.

Hence in either case C is 2-piercable. �

The above result is tight since there is a family of 6 lines with
(5, 2)-property which is not 2-piercable (shown in Figure 1).

Consider a collection of pseudolines C. We wish to de-
termine if C is k-piercable or not. There is a naive FPT al-
gorithm which is implied by the above combinatorial result



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Figure 1: A family of 6 lines with (5, 2)-property which is
not 2-piercable.

which takes O(n2 + k3k4k) time. However one can use the
techniques given in [10] to get a faster FPT algorithm which
takes O(n2 + k2k+2) time.

3 Objects with discrete intersection

We extend the results of the previous section to a more gen-
eral family of objects. We consider families of objects C
with the following property : any subfamily of p+1 distinct
objects intersect in at most one point. This is a notion similar
to the one in [10]. Unit circles, curves in the plane obtained
by polynomial equations of bounded degree are some exam-
ples of objects with the above property.

Definition 4 Let a point x lie in the intersection of a set of
objects c1, c2, · · · , cs ∈ C. We call x k-degenerate in C if
s > kp.

Lemma 7 Let H be a set of points that pierces C. If x is
k-degenerate in C and x /∈ H , then |H| ≥ k + 1.

Proof. Any point y 6= x can pierce at most p − 1 of the
objects passing through x. Hence we need at least k + 1
points to pierce kp+ 1 objects passing thorugh x. �

Consider a set of objects C with |C| ≥ k(kp+1)+ 1 which
has (k(kp + 1) + 1, k)-property. Consider a subset S ⊆ C
with |S| = k(kp + 1). Note that it can be pierced by a
set H of size k. Then there is some point x1 ∈ H which
pierces at least kp + 1 objects in C. We construct a set of
degenerate points as follows. Let C1 = C, G1 = {x1}
where x1 is obtained as before. Construct Gi+1, i ≥ 1, as
long as possible, in the following way: Ci+1 = Ci \ {c ∈
Ci : c pierced by xi}. Let xi+1 be any k-degenerate point in
Ci+1. Now Gi+1 = Gi ∪ xi+1.

Lemma 8 Consider a family of objectsC with |C| ≥ k(kp+
1) + 1 which has the (k(kp+ 1), k) property. Let G be a set
of k-degenerate points in C with maximum cardinality. Then
1 ≤ |G| ≤ k.

Proof. Clearly |G| ≥ 1 . Suppose |G| ≥ k + 1. Let Ci be
a subset of objects pierced by xi ∈ G with |Ci| = kp + 1.
Consider X = ∪1≤i≤kCi ∪ {c} where c ∈ Ck+1. Clearly
|X| ≤ k(kp + 1) + 1. Hence X is k-piercable. Any k-
piercing set for C ′ must contain {x1, · · ·xk} (by Lemma 7).
This is a contradiction as ∀xi ∈ G, 1 ≤ i ≤ k, xi cannot
pierce c. �

Proof of Theorem 2. Let G be a set of k-degenerate
points in C with maximum cardinality and let |G| = k − r
where k > r ≥ 0 (by Lemma 8). Let Ci be a subset of
objects pierced by xi ∈ G with |Ci| = kp+ 1.

Let C ′ be the set of remaining objects not pierced by any
of these points. If C ′ = ∅ then C is k-piercable. Hence let
us assume C ′ 6= ∅. We claim that |C ′| ≤ r(kp+ 1).

Assume, for contradiction, that |C ′| = r(kp+1)+1. Then
a subset of objects X = C1 ∪ · · ·Ck−r ∪ C ′ is k-piercable
since |X| ≤ k(kp + 1) + 1. Any k-piercing set for X must
contain all k − r points in G. If r = 0 this means that a
object in C ′ is not pierced, a contradiction. Else if r > 0 this
implies r(kp+ 1) objects in C ′ is pierced by r points, all of
which are not k-degenerate, a contradiction.

Hence |C ′| ≤ r(kp + 1). Again as before a subset of
objects X = C1 ∪ · · ·Ck−r ∪ C ′ is k-piercable since
|X| ≤ k(kp+1)+1. Any k-piercing set forX must contain
all k− r points in G. This implies C ′ is r-piercable(if r = 0
this means C ′ = ∅). Hence C is k-piercable.

We extend the result on lines in the previous section
to hyperplanes in 3 dimensions. The idea of replacing
degenerate hyperplanes by a line is from [10].

Lemma 9 Let C be a family of hyperplanes in R3 with
(k(k + 1)3, k) property. Then C is k-piercable.

Proof. We obtain a family of objects C ′ from C as follows.
If at least k+1 hyperplanes intersect in a line then we replace
them with the line.

It is obvious that ifC ′ is k-piercable thenC is k-piercable.
We note that if any k+1 hyperplanes in C intersect in a line
l then any k-piercing set must contain a point from l. Hence
C ′ is k-piercable if and only if C is k-piercable.

We claim that any set of k+ 2 objects in C ′ intersect in at
most 1 point. There are two cases - the set contains at least
two lines or the set contains at most one line. The claim is
true if there are at least two lines in this set of k + 2 objects.
In the other case, the set contains at least k + 1 hyperplanes
and these cannot intersect in a line. Hence the k + 2 objects
intersect at most 1 point.

From Theorem 2 if C ′ has (k(k(k + 2) + 1), k) property
then C ′ is k-piercable. Any line in C ′ can be realized as the
intersection of at most k + 1 hyperplanes in C. Hence if C
has ((k+1)k(k(k+2)+1), k) property thenC is k-piercable
which proves the claim. �

This result can be extended to higher dimensions.
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Figure 2: Grid points, representative rectangles and piercing
set for a collection of rectangles.

4 Boxes in Rd

In this section we consider the k-Helly problem for families
of boxes in Rd.

Lemma 10 Let I be a family of intervals in R with (k+1, k)
property. Then I is k-piercable.

Proof. We note that I satisfies the Hadwiger Debrunner
HD(k + 1, 2) property. Hence I has a piercing set of size k
[7]. �

Lemma 11 Let S be a family of vertical and horizontal
slabs with (k + 1, k)-property. S is k-piercable.

Proof. Let S1 be the set of vertical slabs and S2 the set of
horizontal slabs. Clearly from Lemma 10, S1 and S2 are
k-piercable. Without loss of generality let S1 and S2 be
’pierced’ by k points on the x axis v1, . . . , vk and k points
on the y axis h1, . . . , hk respectively. (v1, h1), . . . , (vk, hk)
is a k-piercing set for S. �

Proof of Theorem 3. We prove the claim for d = 2.
The proof for d > 2 is a straightforward generalization.
Let C be a family of rectangles in R2 with (k4, k)-property.
We orthogonally project each rectangle r ∈ C to the two
coordinate axes. For each axis i, 1 ≤ i ≤ 2, we get
a set of intervals Ci with (k4, k)-property. Hence Ci has
(k + 1, k)-property and is k-piercable (Lemma 10). Let Hi,
|Hi| ≤ k, be such a piercing set (the small hollow points
on the x and y axes in Figure 2). Consider the grid points
H = {(x, y) : x ∈ H1, y ∈ H2} (the small hollow circles
in Figure 2). For r ∈ C, let r1 be the projection of r on
the x axis and r2 be the projection of r on the y axis. There
exist x ∈ H1, y ∈ H2 such that x pierces r1 and y pierces
r2. Thus (x, y) ∈ H pierces r. Hence every r ∈ C can be
pierced by one of the (at most k2) grid points in H .

For X ⊆ H we define SX ⊆ C as follows:

SX = {r ∈ C : r ∩H = X}

We note that C is partitioned into the sets SX , i.e. C =⋃̇
X⊆HSX .
The subset of H ’induced’ by a rectangle r ∈ C will be

of the form of a rectangular ’sub block’ of H . Any rectan-
gular sub block of H is uniquely determined by its diagonal
endpoints. Hence there are at most

(
k2

2

)
distinct subsets ofH

induced by rectangles. Therefore there are at most
(
k2

2

)
≤ k4

distinct nonempty SX .
Let S′ ⊆ C be a set of representative rectangles obtained

by picking exactly one rectangle from each of the nonempty
sets SX , X ⊆ H (the bold rectangles in Figure 2). Note that
|S′| ≤ k4. Since C has (k4, k) property, S′ can be pierced
by a set of points W ⊂ R2, |W | ≤ k (the filled points in
Figure 2). For p ∈W , let N(p) denote the set of (at most 4)
grid points of H which form the gridcell containing p. Let
P = ∪p∈WN(p), |P | ≤ 4k (the big hollow points in Figure
2). If p pierces some rectangle r ∈ SX , then the points in
N(p) pierce all rectangles in SX . Since points in W pierce
all the rectangles in S′, points in P pierce all the rectangles
in C =

⋃̇
X⊆HSX . Thus C is 4k-piercable.

Algorithm 1 FPT algorithm to give a 2d approximation for
piercing boxes in Rd

Orthogonally project each box r ∈ C to the d axes to get
a set of intervals Ci for each axis i
if All the Ci are k-piercable then

Obtain S′

Bruteforce check if S′ is k-piercable

if S′ is k-piercable then
return Grid neighbours of piercing set

else
return false

end if
else

return false
end if

The proof of Theorem 3 directly leads to a 2d-approximate
FPT algorithm for the minimum piercing problem on boxes.
Given a collection of boxes C Algorithm 1 returns no if C is
not k-piercable and returns a piercing set of size atmost 2dk
otherwise.

Obtaining Ci takes O(dn) time. Checking if each Ci
is k-piercable takes O(dn log n) time. Obtaining S′ takes
O(dn log k) time. The bruteforce check takes O(k4k) time.
Hence the whole algorithm takes O(dn log n+ k4k) time.
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5 Conclusion

In this paper we prove that any family of pseudolines with
(k2+k+1, k)-property is k-piercable. We extend this result
for other families of geometric objects with discrete intersec-
tion, i.e., polynomial curves and hyperplanes. It is an inter-
esting question to fully charaterise such families of objects
for which g(k, d) is finite. We also pose a relaxed variant
of this problem as the k-Helly problem and show non-trivial
bounds for a family of boxes in Rd. An interesting open
problem is to obtain tight bounds on the k-Helly problem for
other families of geometric objects in Rd.
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