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Abstract

The n-interior point variant of the Erdős-Szekeres problem is the following: for any
n, n ≥ 1, does there exist a g(n) such that every point set in the plane with at least
g(n) interior points has a convex polygon containing exactly n-interior points. The
existence of g(n) has been proved only for n ≤ 3. In this paper, we show that, for
point sets having at most logarithmic number of convex layers, g(n) exists for all
n ≥ 5. We also consider a relaxation of the notion of convex polygons and show
that for all n, n ≥ 1, any point set with at least n interior points has an almost
convex polygon (simple polygon with at most one concave vertex) that contains
exactly n-interior points.
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1 Introduction

Let P ⊂ R2 be a finite set of points in general position. Let Conv(P ) denote
the convex hull of P , C(P ) the set of points which determine the convex hull
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of P and I(P ) = P \C(P ) be the set of points lying in the interior of Conv(P ).
Interesting questions of the form: “If |P | is large, then certain special convex
subsets S ⊆ P exist” have been posed and studied in the last few decades.

The earliest classical result in this area is the Erdős-Szekeres Theorem [6]
which showed that there exists an integer f(n) such that if |P | ≥ f(n) then
there exists a convex subset S ⊆ P, |S| = n i.e., a subset which is a convex
polygon of size n. In fact they showed that 2n−2+1 ≤ f(n) ≤

(
2n−4
n−2

)
+1 [6,7].

They conjectured that the lower bound is tight and this has been proved for
n ≤ 6 [12,16]. There have been improvements on the upper bound over the
years [5,13,17]. The current best bounds are 2n−2+1 ≤ f(n) ≤

(
2n−5
n−2

)
+1 [18].

A convex subset S ⊆ P is called a n-hole if |S| = n and |I(S)| = 0. Let
g(n) be the smallest integer such that if |P | ≥ g(n), then there is a S ⊆ P
such that S is a n-hole. The exact value of g(n) has been found for n ≤ 5
[10]. Horton showed that for n ≥ 7, g(n) does not exist [11]. It was recently
shown that g(6) is finite by Gerken and Nicholas independently [9,15].

Given n, q the problem of finding f(n, q) such that any point set P with
|P | ≥ f(n, q) has a convex subset S ⊆ P, |S| = n such that |I(S)| = 0(mod q)
was considered by Bialostocki et al [4]. They showed that such a f(n, q) exists
for n = 2(mod q) or n ≥ q + 3. Many other variants of the Erdős-Szekeres
problem have been considered. See surveys [14,18] for details.

The following problem pertaining to interior points was posed by Avis et
al in 2001 [3]: Is there a smallest integer g(n) such that any point set P with
|I(P )| ≥ g(n) has a convex subset S ⊆ P with |I(S)| = n i.e. a subset which
is a convex polygon that contains exactly n interior points. They showed that
g(1) = 1, g(2) = 4. It was recently shown that g(3) = 9 by Wei and Ding
[20]. It is not known whether g(n) exists for n ≥ 4. Lower bounds on g(n)
has been considered in [3,8]. It was shown in [3] that g(n) ≥ n+ 2 for n ≥ 4.
This was improved to g(n) ≥ 3n − 1 for n ≥ 3 [8]. The best known lower
bound is g(n) ≥ 3n for n ≥ 3 [19]. A related problem is to find a h(n) which
guarantees the existence of a convex polygon with n or n + 1 interior points.
This was addressed by Avis et al in [2] where they showed h(4) = 7. Another
variant is find a h(n) which guarantees the existence of a convex polygon with
n or n+2 interior points. This was considered in [21] where it was shown that
h(3) = 8.

For the n-interior point problem posed by Avis et al.[3], existence of g(n)
is known only for n ≤ 3. In this paper, we consider several special cases of the
n-interior point problem and show that g(n) exists for all n. First, we shall
show that g(n) exists for point sets with a small number of convex layers.
More specifically, we prove the following:



Theorem 1.1 For any n, n ≥ 5, every point set P with r ≥ 2 convex lay-
ers and |I(P )| ≥ (64n2)r interior points, has a convex subset Sn ⊆ P with
|I(Sn)| = n.

In other words Theorem 1.1 states that any point set where the number
of convex layers is at most logarithmic in the number of interior points has a
convex subset with n interior points.

We also consider the n-interior point problem where the notion of convex
polygon is relaxed. Specifically we consider the following relaxations:

Definition 1.2 A simple polygon S is said to be almost convex if S contains
at most one concave vertex.

Note that any convex polygon is also almost convex.

Theorem 1.3 For any n, n ≥ 1, every point set P with |I(P )| ≥ n interior
points has an almost convex polygon that contains exactly n interior points.

The notion of convexity has been generalized to j-convexity in [1].

Definition 1.4 A simple polygon S is said to be j-convex is every line inter-
sects S in at most j connected components.

Note that 1-convex is the standard definition of convex polygon. It can be
seen that an almost convex polygon is 2-convex.

Finally, we consider another relaxation where we ask for the existence of
two convex polygons such that the sum of their interior points is exactly n.
We show that the almost convex polygon constructed by the proof of Theorem
1.3 can be partitioned into two convex polygons whose interior points sum up
to n.

Any point set considered in the rest of the paper is assumed to be in general
position i.e. no three points are collinear.

2 Point sets with small number of convex layers

In this section we show that that there exists g(n), such that, any point set
P with a small number of convex layers and at least g(n) interior points has
a convex subset Sn that contains exactly n interior points.

In Section 2.1 we show that Sn exists in points sets with two monotonic
convex layers. In Section 2.2 we extend this argument to show that Sn exists
in point sets with two convex layers. Finally, in Section 2.3, we show that any
point set with r convex layers contains Sn.



Fig. 1. An increasing monotonic con-
vex set Fig. 2. Point set P ∗

2.1 Point sets with 2 monotonic convex layers

Definition 2.1 Let p = (px, py) be a point. A convex point set P = {p1, . . . , pk}
is called increasing monotonic convex if pix ≤ pjx and piy ≤ pjy for all i, j,
1 ≤ i ≤ j ≤ k (See Figure 1).

Definition 2.2 Recursively decompose a given point set P into disjoint con-
vex hull layers C(P ), C(I(P )), . . . . We call this the Convex Hull Decomposi-
tion of P or the CHD of P .

Let P ∗ denote a point set whose CHD has two convex layers both of which
are increasing monotonic convex. Let C∗

2 = C(P ∗) and C∗
1 = I(P ∗) (See

Figure 2). Let us index all the points in C∗
1 as 1, 2, . . . and all the points in

C∗
2 also as 1, 2, . . . assuming a natural order of points. We will also denote a

point in C∗
1 as x′, y′, . . . and a point in C∗

2 as x, y, . . . .

Definition 2.3 For any x ∈ C∗
2 , let arc(x) ⊆ C∗

1 denote the set of points to
which a straight line can be drawn from x without intersecting Conv(C∗

1).

Definition 2.4 We say a point y′ is visible from x if y′ ∈ arc(x).

Note that arc(x) is the set of points visible from x (See Figure 3).

Definition 2.5 For any point y′ ∈ C∗
1 , let arci(y

′) ⊆ C∗
2 be the set of points

from which y′ is visible (See Figure 4).

Since y′ is visible from at least one point x ∈ C∗
2 , arci(y

′) 6= φ.

Definition 2.6 We label y′ ∈ C∗
1 as d (down) if there exists a x ∈ arci(y′)

such that x is above y′, as u (up) if there exists a x ∈ arci(y′) such that x lies
below y′ and as du if both hold (See Figure 4).

Let Sn ⊆ P ∗ denote a set of points in convex position with |I(Sn)| = n.

Lemma 2.7 For any x ∈ C∗
2 , if |arc(x)| = n+ 2, then Sn exists.
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Fig. 4. Labelling points in C∗
1 and

arci(y′) = {1, 2}

Proof. Let y′, z′ ∈ arc(x). Consider triangle xy′z′. It contains |y′ − z′| − 1
vertices. Since this is true for any y′, z′ ∈ arc(x), the claim follows. 2

Lemma 2.8 If i′ is labelled u, then i′ + 1 cannot be labelled d.

Proof. Let x = max(arci(i′)) and y = min(arci(i′ + 1)). Clearly either i′ is
visible from y or i′ + 1 is visible from x, which is a contradiction. 2

Lemma 2.9 If i′ is labelled d (or du) and i′ + n + 1 labelled u (or du) then
Sn exists.

Proof. Without loss of generality let i′ be labelled d and j′ = i′ + n + 1
labelled u. There is an i ∈ arci(i′) such that i is above i′ and a j ∈ arci(j′)
such that j is below j′. Now consider the polygon i . . . jj′i′. This is clearly
convex and has j′ − i′ − 1 = n points. Hence Sn exists. 2

Lemma 2.10 If there is a contiguous set of points in C∗
1 of size at least n+2,

all of which are labelled d, or all of which are labelled u, then Sn exists.

Proof. Consider a contiguous set of points M = {i′, i′ + 1, ...i′ + r′} ⊆ C∗
1

with r′ ≥ n + 1, where each point in M is labelled u. Since i′ + r′ has been
labelled u there exists x ∈ arci(i′ + r′) such that x is below i′ + r′. x is also
below i′ as otherwise i′ + s′ would be labelled du for some 0 ≤ s′ < r′. Since
i′ and i′ + r′ are both visible from x and x lies below i′, all of i′, . . . , i′ + r′

are visible from x which implies |arc(x)| ≥ n+2. From Lemma 2.7 Sn exists.
The argument for the case of all points in M labelled d is similar. 2

Lemma 2.11 If there exists a contiguous set of points in C∗
1 of size at least

n+ 2 with no point in it labelled du, then Sn exists.

Proof. Consider a contiguous set of points M = {i′, i′+1, ...i′+r′} ⊆ C∗
1 with

r′ = n + 1, where each point in M is labelled u or d (but not du). Suppose





u · · · u u u du

du · · · du u du d

d · · · d · · · · · · · · ·
...

. . .
...

...
...

...

d · · ·u · · · · · · · · · · · ·


Fig. 5. Matrix of labels

i′, . . . , i′ + r′1 is a maximal contiguous subset of points in which each point
has been labelled u, with r′1 < r′. From Lemma 2.8, i′ + r′1 + 1 cannot be
labelled d, which is a contradiction. Hence if i′ is labelled u, every point in
M is labelled u and from Lemma 2.10 Sn exists. Suppose i′, . . . , i′ + r′1 is a
maximal contiguous subset of points in which each point has been labelled d,
with r′1 < r′ and let points i′+ r′1+1, . . . , i′+ r′2 be labelled u, with r′2 ≤ r′. If
r′2 = r′, Sn exists (by Lemma 2.9). Else if r′2 < r′, then i′ + r′2 + 1 is labelled
d which is a contradiction because of Lemma 2.8.

2

We show that Sn always exists if the number of points in C∗
1 is large enough.

Consider the list of labels of points in C∗
1 . The ith entry in the list corresponds

to the label of point i′. We create a matrix M of labels corresponding to this
list in a natural way. The first n+1 entries form the first row, the next n+1
entries the next row and so on. This is a m ∗ (n+ 1) matrix. Formally point
i′ is mapped to (i(mod (n + 1)), i− i(mod (n + 1))) entry in the matrix (See
Figure 5). Note that the last row might not be complete and we leave the rest
of the entries in the matrix undefined..

Let P ∗ be a point set not containing Sn andM be the corresponding matrix
of labels formed as above. We observe the following:

Remark 1: If the (r, c) entry is d or du then (r + i, c) is d for all i ≥ 1
(Lemma 2.9).

Remark 2: The labels (r, c), (r, c+ 1), . . . , (r+ 1, 1), . . . , (r+ 1, c) cannot
all be d or cannot be all u (Lemma 2.10).

Theorem 2.12 For any n, n ≥ 5, if |C∗
1 | ≥ 2n2, then Sn exists.

Proof. We prove by contradiction. Let, if possible, no such subset Sn ⊆ P ∗

exist. We construct the corresponding matrix M of labels as given above. Let
r1 be the smallest row for which (r1, c1) is labelled du for some c1. Without
loss of generality let r1 = 2 and let c1 = 1 (See Figure 5). Consider the
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Fig. 6. Decomposing a two layer convex set

sequence of rows r1, . . . , rn+3, where ri+1 = ri+1, 1 ≤ i < n+3. For i < n+2
if (ri, c) = du (or d) then (rj, c) = d for all j, i < j ≤ n + 2 (Remark 1).
Hence (ri, 1) = d for all i, 2 ≤ i ≤ n + 3. Also if for any i, 2 ≤ i ≤ n + 1,
(ri, c) = d for all c, 1 ≤ c ≤ n + 1, then Sn exists (Remark 2). Otherwise we
note that (ri, 1) = d and (ri+1, 1) = d, and (ri, 1), . . . , (ri+1, 1) is a contiguous
sequence of n+ 2 labels. Therefore by Lemma 2.11 there exists a c such that
(ri, c) = du. Let d(r) represent the number of entries labelled d in row r. If
for some i, 1 ≤ i ≤ n + 1, (ri, c) = d for all c, 1 ≤ c ≤ n + 1 then Sn exists
(Remark 2). Otherwise d(ri) < d(ri+1) for all i, 1 ≤ i ≤ n + 1 since a du or
d entry in (ri, c) implies a d entry in (ri+1, c) (Remark 1). Since d(r2) ≥ 1,
d(rn+2) ≥ n + 1 i.e. (rn+2, c) = d for all c, 1 ≤ c ≤ n + 1. Also (rn+3, 1) = d.
By Remark 2 Sn exists which is a contradiction. We note that the entries in
the matrix are well defined for the above ranges if n ≥ 5

2

2.2 Point sets with two convex layers

Definition 2.13 Given a, b ∈ Ci where Ci is the ith convex layer, let Cab ⊆ Ci

denote the set of points obtained by traversing Conv(Ci) clockwise from a to
b and let Pab denote the convex polygon formed by points in Cab.

Theorem 2.14 For any n, n ≥ 5, every point set P whose CHD has exactly
two layers C1 and C2 (internal and external) with |C1| ≥ 8n2 + 8n + 8 has a
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subset Sn.

Proof. The topmost, leftmost, bottommost and rightmost points in C1, namely
l′, t′, r′, b′, are visible from the corresponding topmost, leftmost, bottommost
and rightmost points in C2 namely l, t, r, b(See Figure 6). We have Cl′t′∪Ct′r′∪
Cr′b′ ∪ Cb′l′ = C1. Therefore without loss of generality |Cl′t′| ≥ 2n2 + 2n + 2
since |C1| ≥ 8n2 + 8n + 8. Consider the polygon Plt (the corresponding set
is Clt). We note that Cl′t′ ⊆ I(Clt) ∪ arc(t) ∪ arc(l) which implies |Cl′t′| ≤
|I(Clt)| + |arc(t)| + |arc(l)|. If |arc(l)| ≥ n + 2 or |arc(t)| ≥ n + 2 then
Sn exists.(Lemma 2.7). Else if |arc(l)| ≤ n + 1 and |arc(t)| ≤ n + 1, then
|I(Clt)| ≥ 2n2. The point set P ∗ = Clt ∪ I(Clt) has two increasing monotonic
convex layers C∗

1 and C∗
2 with |C∗

1 | ≥ 2n2. Hence by Theorem 2.12 Sn exists.2

2.3 Point sets with r convex layers

Theorem 2.15 Let P be a point set whose CHD has r layers C1, · · · , Cr

(from internal to external) r ≥ 2. Define |C0| = 1 and let n ≥ 5. If for any i,
1 ≤ i ≤ r, |Ci| ≥ 64n2|Ci−1|, then Sn exists.

Proof. Let Ci = {1, · · · , l} and |Ci−1| = t. Set m = 8n2 + 12n + 16.
Since |Ci| ≥ 64n2|Ci−1|, l > ((t + 1)(m + 2) + m + 3). Consider the set
of polygons P̂ = {P(1)(m+3), P(m+3)(2m+5), · · · , P((t+1)(m+2)+1)((t+1)(m+2)+m+3)}
(See Figure 7). Let Cab be the set of points coresponding to Pab for any a, b.
Let Ĉ = {C(1)(m+3), C(m+3)(2m+5), · · · , C((t+1)(m+2)+1)((t+1)(m+2)+m+3)}. Note
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Fig. 8. Convex layers C and C ′ and the almost convex polygon M (shown in dark
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that for Cab, Ccd ∈ Ĉ, I(Cab) ∩ I(Ccd) = φ. This means that there exists Cab

such that I(Cab) = φ as otherwise
∑

Ccd∈Ĉ |I(Ccd)| ≥ t + 1. Consider such a
Cab. The line ab induces a natural partition of Ci ∪ Ci+1 into two point sets
P ′ and P ′′. Wlog P ′ ∩ Ci−1 = φ. The line ab intersects Conv(Ci+1) in two
line segments. Let the endpoints of the line segments be a′ ∈ P ′, a′′ ∈ P ′′

and b′ ∈ P ′, b′′ ∈ P ′′ respectively. Let arcS(x) denote arc(x) ∩ S for a set
S of points. Cab ⊆ I(Ca′b′) ∪ arcP ′(a′′) ∪ arcP ′(b′′) ∪ arcP ′(a′) ∪ arcP ′(b′). If
arcP ′(a′′) ≥ n+2 or arcP ′(b′′) ≥ n+2 or arcP ′(a′) ≥ n+2 or arcP ′(b′) ≥ n+2
then Sn exists (Lemma 2.7). Else P ∗ = Ca′b′ ∪ I(Ca′b′) is a pointset with two
convex layers with |I(P ∗)| = |I(Ca′b′)| ≥ 8n2 + 8n + 8. Hence by Theorem
2.14 Sn exists. 2

Theorem 2.15 implies Theorem 1.1.

3 Almost convex polygon with n interior points

In this section we show that any point set P with at least n interior points
contains an almost convex polygon with n points in its interior.

Proof of Theorem 1.3:

Proof. Consider the convex hull layers in the convex hull decomposition
CHD(P ). Let C and C ′ be the convex hull layers such that they are consecu-
tive in CHD(P )(inside to outside) and |I(C)| ≤ n and |I(C ′)| > n.(This will
always happen as |I(P )| ≥ n) If |I(C)| = n, then C is the required convex
polygon. Let us assume that |I(C)| = n− t, t > 0.
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Fig. 9. The almost convex polygon M is split into a convex polygon and a triangle
using the chord connecting vertex (t+ 1) and (m− 1)′.

We construct an almost convex polygon M using the vertices of C and
C ′ as follows: Let x′ be any vertex of C ′ and x′x be the tangent from x′

to C (as shown in Figure 8). We number the vertices of C ′ (resp. C) as
1′, 2′, . . . x′ (resp. 1, 2, . . . , x) in clockwise order starting with the clockwise
adjacent vertex of x′ (resp. x). Let m′ ∈ C ′ be the vertex with smallest index
such that vertex (t + 1) ∈ arc(m′). Since every vertex of C is present in the
arc of some vertex of C ′, vertex m′ exists. M is given by the simple polygon
x′, 1′, 2′, . . . ,m′, (t+ 1), (t+ 2) . . . , x (boundary of M is shown as solid line in
figure 8). M contains exactly n interior points (t points of C and n− t points
of I(C)). It can seen that M is almost convex since all vertices of M , except
vertex (t+ 1), are convex. 2

Since any almost convex polygon is 2-convex, we have the following corollary:

Corollary 3.1 For any n, n ≥ 1, every point set P with I(P ) ≥ n contains a
2-convex polygon with exactly n interior points.

Finally, we prove the following corollary that shows the existence of two
convex polygons that contain n-interior points in total.

Corollary 3.2 For any n, n ≥ 1 and every point set P with I(P ) ≥ n, there
exists two convex polygons M1 and M2 such that |I(M1)|+ |I(M2)| = n.

Proof. We show that the almost convex polygon M constructed by the proof
of Theorem 1.3 can be partition into two convex polygonsM1 andM2. If vertex
t + 1 ∈ C is convex, then M is convex and we are done. Let us assume that
vertex t+1 ∈ C is concave. Sincem′ ∈ C ′ is picked as the smallest index vertex



such that vertex (t+1) ∈ arc(m′), m′ lies to the right of line connecting t+1
and t (See figure 9). Also, m′ lies below the line connecting t+2 and t+1 since
t+1 ∈ C is assumed to be concave. Now, the chord connecting t+1 ∈ C and
(m−1)′ ∈ C ′ partitionsM intoM1 = x′, 1′, 2′, . . . , (m−1)′, (t+1), (t+2), . . . , x
and triangleM2 = (m−1)′,m′, (t+1). M1 is convex since vertex t+1 is convex.
Also, |I(M1)|+ |I(M2)| = n since every interior point of M is an interior point
of either M1 or M2. 2

4 Conclusion

In this paper, we have considered two special cases of the n-interior point
variant of the Erdős-Szekeres problem. We have shown that g(n) ≤ (64n2)r

for all n, n ≥ 5, for point sets with r ≥ 2 convex layers. We have also shown
that g(n) = n for all n, n ≥ 1, when the notion of convex polygon is relaxed
to almost convex polygon.

For arbitrary point sets, existence of g(n) is known only for n ≤ 3. The
main open problem is to show that g(n) exists for all n.
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