

On the Erdős-Szekeres n -interior point problem

Subramanya Bharadwaj B V ¹ Sathish Govindarajan ²
Karmveer Sharma ³

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

Abstract

The n -interior point variant of the Erdős-Szekeres problem is the following: for any $n, n \geq 1$, does there exist a $g(n)$ such that every point set in the plane with at least $g(n)$ interior points has a convex polygon containing exactly n -interior points. The existence of $g(n)$ has been proved only for $n \leq 3$. In this paper, we show that, for point sets having at most logarithmic number of convex layers, $g(n)$ exists for all $n \geq 5$. We also consider a relaxation of the notion of convex polygons and show that for all $n, n \geq 1$, any point set with at least n interior points has an almost convex polygon (simple polygon with at most one concave vertex) that contains exactly n -interior points.

Keywords: Convex polygons, interior points, Erdős-Szekeres problem, j-convexity

1 Introduction

Let $P \subset \mathbb{R}^2$ be a finite set of points in general position. Let $Conv(P)$ denote the convex hull of P , $C(P)$ the set of points which determine the convex hull

¹ Email: subramanya@csa.iisc.ernet.in

² Email: gsat@csa.iisc.ernet.in

³ Email: karm@csa.iisc.ernet.in

of P and $I(P) = P \setminus C(P)$ be the set of points lying in the interior of $Conv(P)$. Interesting questions of the form: “*If $|P|$ is large, then certain special convex subsets $S \subseteq P$ exist*” have been posed and studied in the last few decades.

The earliest classical result in this area is the Erdős-Szekeres Theorem [6] which showed that there exists an integer $f(n)$ such that if $|P| \geq f(n)$ then there exists a convex subset $S \subseteq P, |S| = n$ i.e., a subset which is a convex polygon of size n . In fact they showed that $2^{n-2} + 1 \leq f(n) \leq \binom{2n-4}{n-2} + 1$ [6,7]. They conjectured that the lower bound is tight and this has been proved for $n \leq 6$ [12,16]. There have been improvements on the upper bound over the years [5,13,17]. The current best bounds are $2^{n-2} + 1 \leq f(n) \leq \binom{2n-5}{n-2} + 1$ [18].

A convex subset $S \subseteq P$ is called a n -hole if $|S| = n$ and $|I(S)| = 0$. Let $g(n)$ be the smallest integer such that if $|P| \geq g(n)$, then there is a $S \subseteq P$ such that S is a n -hole. The exact value of $g(n)$ has been found for $n \leq 5$ [10]. Horton showed that for $n \geq 7$, $g(n)$ does not exist [11]. It was recently shown that $g(6)$ is finite by Gerken and Nicholas independently [9,15].

Given n, q the problem of finding $f(n, q)$ such that any point set P with $|P| \geq f(n, q)$ has a convex subset $S \subseteq P, |S| = n$ such that $|I(S)| = 0 \pmod{q}$ was considered by Bialostocki et al [4]. They showed that such a $f(n, q)$ exists for $n = 2 \pmod{q}$ or $n \geq q + 3$. Many other variants of the Erdős-Szekeres problem have been considered. See surveys [14,18] for details.

The following problem pertaining to interior points was posed by Avis et al in 2001 [3]: Is there a smallest integer $g(n)$ such that any point set P with $|I(P)| \geq g(n)$ has a convex subset $S \subseteq P$ with $|I(S)| = n$ i.e. a subset which is a convex polygon that contains exactly n interior points. They showed that $g(1) = 1$, $g(2) = 4$. It was recently shown that $g(3) = 9$ by Wei and Ding [20]. It is not known whether $g(n)$ exists for $n \geq 4$. Lower bounds on $g(n)$ has been considered in [3,8]. It was shown in [3] that $g(n) \geq n + 2$ for $n \geq 4$. This was improved to $g(n) \geq 3n - 1$ for $n \geq 3$ [8]. The best known lower bound is $g(n) \geq 3n$ for $n \geq 3$ [19]. A related problem is to find a $h(n)$ which guarantees the existence of a convex polygon with n or $n + 1$ interior points. This was addressed by Avis et al in [2] where they showed $h(4) = 7$. Another variant is find a $h(n)$ which guarantees the existence of a convex polygon with n or $n + 2$ interior points. This was considered in [21] where it was shown that $h(3) = 8$.

For the n -interior point problem posed by Avis et al [3], existence of $g(n)$ is known only for $n \leq 3$. In this paper, we consider several special cases of the n -interior point problem and show that $g(n)$ exists for all n . First, we shall show that $g(n)$ exists for point sets with a small number of convex layers. More specifically, we prove the following:

Theorem 1.1 *For any n , $n \geq 5$, every point set P with $r \geq 2$ convex layers and $|I(P)| \geq (64n^2)^r$ interior points, has a convex subset $S_n \subseteq P$ with $|I(S_n)| = n$.*

In other words Theorem 1.1 states that any point set where the number of convex layers is at most logarithmic in the number of interior points has a convex subset with n interior points.

We also consider the n -interior point problem where the notion of convex polygon is relaxed. Specifically we consider the following relaxations:

Definition 1.2 A simple polygon S is said to be *almost convex* if S contains at most one concave vertex.

Note that any convex polygon is also almost convex.

Theorem 1.3 *For any $n, n \geq 1$, every point set P with $|I(P)| \geq n$ interior points has an almost convex polygon that contains exactly n interior points.*

The notion of convexity has been generalized to j -convexity in [1].

Definition 1.4 A simple polygon S is said to be j -convex is every line intersects S in at most j connected components.

Note that 1-convex is the standard definition of convex polygon. It can be seen that an almost convex polygon is 2-convex.

Finally, we consider another relaxation where we ask for the existence of two convex polygons such that the sum of their interior points is exactly n . We show that the almost convex polygon constructed by the proof of Theorem 1.3 can be partitioned into two convex polygons whose interior points sum up to n .

Any point set considered in the rest of the paper is assumed to be in general position i.e. no three points are collinear.

2 Point sets with small number of convex layers

In this section we show that that there exists $g(n)$, such that, any point set P with a small number of convex layers and at least $g(n)$ interior points has a convex subset S_n that contains exactly n interior points.

In Section 2.1 we show that S_n exists in points sets with two monotonic convex layers. In Section 2.2 we extend this argument to show that S_n exists in point sets with two convex layers. Finally, in Section 2.3, we show that any point set with r convex layers contains S_n .

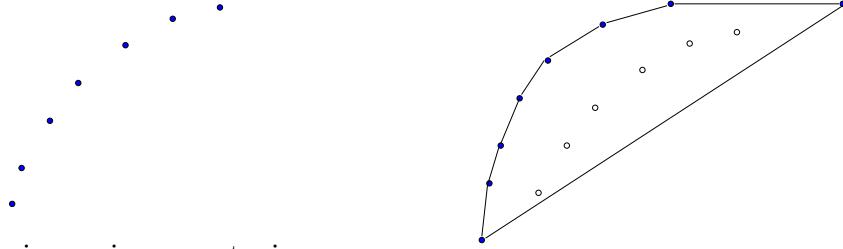


Fig. 1. An increasing monotonic convex set

Fig. 2. Point set P^*

2.1 Point sets with 2 monotonic convex layers

Definition 2.1 Let $p = (p_x, p_y)$ be a point. A convex point set $P = \{p^1, \dots, p^k\}$ is called increasing monotonic convex if $p_x^i \leq p_x^j$ and $p_y^i \leq p_y^j$ for all i, j , $1 \leq i \leq j \leq k$ (See Figure 1).

Definition 2.2 Recursively decompose a given point set P into disjoint convex hull layers $C(P), C(I(P)), \dots$. We call this the Convex Hull Decomposition of P or the CHD of P .

Let P^* denote a point set whose CHD has two convex layers both of which are increasing monotonic convex. Let $C_2^* = C(P^*)$ and $C_1^* = I(P^*)$ (See Figure 2). Let us index all the points in C_1^* as $1, 2, \dots$ and all the points in C_2^* also as $1, 2, \dots$ assuming a natural order of points. We will also denote a point in C_1^* as x', y', \dots and a point in C_2^* as x, y, \dots

Definition 2.3 For any $x \in C_2^*$, let $arc(x) \subseteq C_1^*$ denote the set of points to which a straight line can be drawn from x without intersecting $Conv(C_1^*)$.

Definition 2.4 We say a point y' is visible from x if $y' \in arc(x)$.

Note that $arc(x)$ is the set of points visible from x (See Figure 3).

Definition 2.5 For any point $y' \in C_1^*$, let $arci(y') \subseteq C_2^*$ be the set of points from which y' is visible (See Figure 4).

Since y' is visible from at least one point $x \in C_2^*$, $arci(y') \neq \emptyset$.

Definition 2.6 We label $y' \in C_1^*$ as d (down) if there exists a $x \in arci(y')$ such that x is above y' , as u (up) if there exists a $x \in arci(y')$ such that x lies below y' and as du if both hold (See Figure 4).

Let $S_n \subseteq P^*$ denote a set of points in convex position with $|I(S_n)| = n$.

Lemma 2.7 For any $x \in C_2^*$, if $|arc(x)| = n + 2$, then S_n exists.

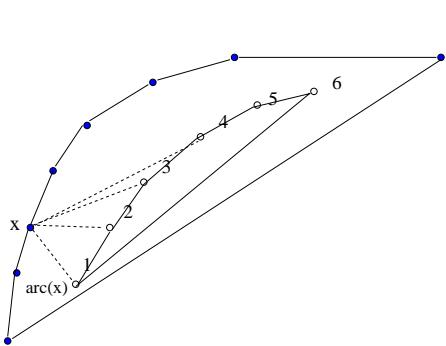


Fig. 3. $arc(x) = \{1, 2, 3, 4\}$

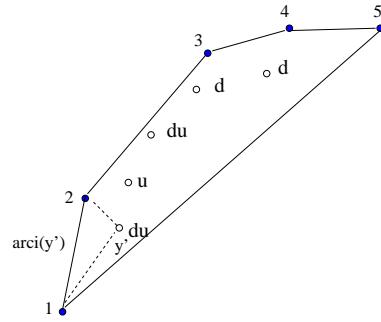


Fig. 4. Labelling points in C_1^* and $arc(y') = \{1, 2\}$

Proof. Let $y', z' \in arc(x)$. Consider triangle $xy'z'$. It contains $|y' - z'| - 1$ vertices. Since this is true for any $y', z' \in arc(x)$, the claim follows. \square

Lemma 2.8 *If i' is labelled u , then $i' + 1$ cannot be labelled d .*

Proof. Let $x = \max(arc(i'))$ and $y = \min(arc(i' + 1))$. Clearly either i' is visible from y or $i' + 1$ is visible from x , which is a contradiction. \square

Lemma 2.9 *If i' is labelled d (or du) and $i' + n + 1$ labelled u (or du) then S_n exists.*

Proof. Without loss of generality let i' be labelled d and $j' = i' + n + 1$ labelled u . There is an $i \in arc(i')$ such that i is above i' and a $j \in arc(j')$ such that j is below j' . Now consider the polygon $i \dots j j' i'$. This is clearly convex and has $j' - i' - 1 = n$ points. Hence S_n exists. \square

Lemma 2.10 *If there is a contiguous set of points in C_1^* of size at least $n + 2$, all of which are labelled d , or all of which are labelled u , then S_n exists.*

Proof. Consider a contiguous set of points $M = \{i', i' + 1, \dots, i' + r'\} \subseteq C_1^*$ with $r' \geq n + 1$, where each point in M is labelled u . Since $i' + r'$ has been labelled u there exists $x \in arc(i' + r')$ such that x is below $i' + r'$. x is also below i' as otherwise $i' + s'$ would be labelled du for some $0 \leq s' < r'$. Since i' and $i' + r'$ are both visible from x and x lies below i' , all of $i', \dots, i' + r'$ are visible from x which implies $|arc(x)| \geq n + 2$. From Lemma 2.7 S_n exists. The argument for the case of all points in M labelled d is similar. \square

Lemma 2.11 *If there exists a contiguous set of points in C_1^* of size at least $n + 2$ with no point in it labelled du , then S_n exists.*

Proof. Consider a contiguous set of points $M = \{i', i' + 1, \dots, i' + r'\} \subseteq C_1^*$ with $r' = n + 1$, where each point in M is labelled u or d (but not du). Suppose

$$\begin{bmatrix} u & \dots & u & u & u & du \\ du & \dots & du & u & du & d \\ d & \dots & d & \dots & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ d & \dots & u & \dots & \dots & \dots \end{bmatrix}$$

Fig. 5. Matrix of labels

$i', \dots, i' + r'_1$ is a maximal contiguous subset of points in which each point has been labelled u , with $r'_1 < r'$. From Lemma 2.8, $i' + r'_1 + 1$ cannot be labelled d , which is a contradiction. Hence if i' is labelled u , every point in M is labelled u and from Lemma 2.10 S_n exists. Suppose $i', \dots, i' + r'_1$ is a maximal contiguous subset of points in which each point has been labelled d , with $r'_1 < r'$ and let points $i' + r'_1 + 1, \dots, i' + r'_2$ be labelled u , with $r'_2 \leq r'$. If $r'_2 = r'$, S_n exists (by Lemma 2.9). Else if $r'_2 < r'$, then $i' + r'_2 + 1$ is labelled d which is a contradiction because of Lemma 2.8.

□

We show that S_n always exists if the number of points in C_1^* is large enough. Consider the list of labels of points in C_1^* . The i th entry in the list corresponds to the label of point i' . We create a matrix M of labels corresponding to this list in a natural way. The first $n + 1$ entries form the first row, the next $n + 1$ entries the next row and so on. This is a $m * (n + 1)$ matrix. Formally point i' is mapped to $(i \bmod (n + 1), i - i \bmod (n + 1))$ entry in the matrix (See Figure 5). Note that the last row might not be complete and we leave the rest of the entries in the matrix undefined..

Let P^* be a point set not containing S_n and M be the corresponding matrix of labels formed as above. We observe the following:

Remark 1: If the (r, c) entry is d or du then $(r + i, c)$ is d for all $i \geq 1$ (Lemma 2.9).

Remark 2: The labels $(r, c), (r, c + 1), \dots, (r + 1, 1), \dots, (r + 1, c)$ cannot all be d or cannot be all u (Lemma 2.10).

Theorem 2.12 *For any n , $n \geq 5$, if $|C_1^*| \geq 2n^2$, then S_n exists.*

Proof. We prove by contradiction. Let, if possible, no such subset $S_n \subseteq P^*$ exist. We construct the corresponding matrix M of labels as given above. Let r_1 be the smallest row for which (r_1, c_1) is labelled du for some c_1 . Without loss of generality let $r_1 = 2$ and let $c_1 = 1$ (See Figure 5). Consider the

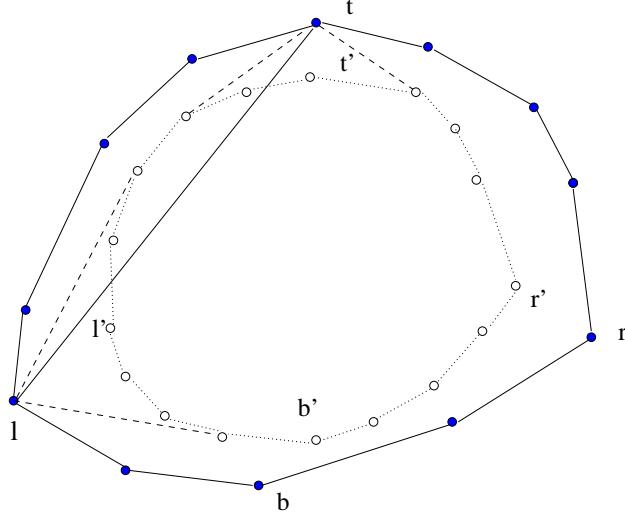


Fig. 6. Decomposing a two layer convex set

sequence of rows r_1, \dots, r_{n+3} , where $r_{i+1} = r_i + 1$, $1 \leq i < n+2$. For $i < n+2$ if $(r_i, c) = du$ (or d) then $(r_j, c) = d$ for all j , $i < j \leq n+2$ (Remark 1). Hence $(r_i, 1) = d$ for all i , $2 \leq i \leq n+3$. Also if for any i , $2 \leq i \leq n+1$, $(r_i, c) = d$ for all c , $1 \leq c \leq n+1$, then S_n exists (Remark 2). Otherwise we note that $(r_i, 1) = d$ and $(r_{i+1}, 1) = d$, and $(r_i, 1), \dots, (r_{i+1}, 1)$ is a contiguous sequence of $n+2$ labels. Therefore by Lemma 2.11 there exists a c such that $(r_i, c) = du$. Let $d(r)$ represent the number of entries labelled d in row r . If for some i , $1 \leq i \leq n+1$, $(r_i, c) = d$ for all c , $1 \leq c \leq n+1$ then S_n exists (Remark 2). Otherwise $d(r_i) < d(r_{i+1})$ for all i , $1 \leq i \leq n+1$ since a du or d entry in (r_i, c) implies a d entry in (r_{i+1}, c) (Remark 1). Since $d(r_2) \geq 1$, $d(r_{n+2}) \geq n+1$ i.e. $(r_{n+2}, c) = d$ for all c , $1 \leq c \leq n+1$. Also $(r_{n+3}, 1) = d$. By Remark 2 S_n exists which is a contradiction. We note that the entries in the matrix are well defined for the above ranges if $n \geq 5$

□

2.2 Point sets with two convex layers

Definition 2.13 Given $a, b \in C_i$ where C_i is the i th convex layer, let $C_{ab} \subseteq C_i$ denote the set of points obtained by traversing $Conv(C_i)$ clockwise from a to b and let P_{ab} denote the convex polygon formed by points in C_{ab} .

Theorem 2.14 For any n , $n \geq 5$, every point set P whose CHD has exactly two layers C_1 and C_2 (internal and external) with $|C_1| \geq 8n^2 + 8n + 8$ has a

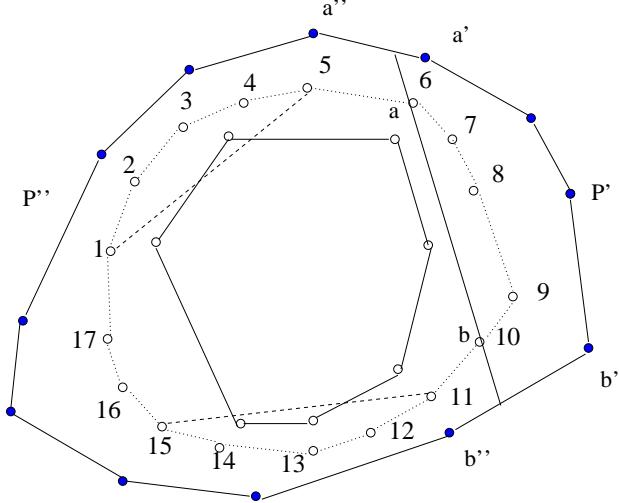


Fig. 7. Obtaining a two layer convex set

subset S_n .

Proof. The topmost, leftmost, bottommost and rightmost points in C_1 , namely l', t', r', b' , are visible from the corresponding topmost, leftmost, bottommost and rightmost points in C_2 namely l, t, r, b (See Figure 6). We have $C_{l't'} \cup C_{t'r'} \cup C_{r'b'} \cup C_{b'r'} = C_1$. Therefore without loss of generality $|C_{l't'}| \geq 2n^2 + 2n + 2$ since $|C_1| \geq 8n^2 + 8n + 8$. Consider the polygon P_{lt} (the corresponding set is C_{lt}). We note that $C_{l't'} \subseteq I(C_{lt}) \cup \text{arc}(t) \cup \text{arc}(l)$ which implies $|C_{l't'}| \leq |I(C_{lt})| + |\text{arc}(t)| + |\text{arc}(l)|$. If $|\text{arc}(l)| \geq n + 2$ or $|\text{arc}(t)| \geq n + 2$ then S_n exists. (Lemma 2.7). Else if $|\text{arc}(l)| \leq n + 1$ and $|\text{arc}(t)| \leq n + 1$, then $|I(C_{lt})| \geq 2n^2$. The point set $P^* = C_{lt} \cup I(C_{lt})$ has two increasing monotonic convex layers C_1^* and C_2^* with $|C_1^*| \geq 2n^2$. Hence by Theorem 2.12 S_n exists. \square

2.3 Point sets with r convex layers

Theorem 2.15 *Let P be a point set whose CHD has r layers C_1, \dots, C_r (from internal to external) $r \geq 2$. Define $|C_0| = 1$ and let $n \geq 5$. If for any i , $1 \leq i \leq r$, $|C_i| \geq 64n^2|C_{i-1}|$, then S_n exists.*

Proof. Let $C_i = \{1, \dots, l\}$ and $|C_{i-1}| = t$. Set $m = 8n^2 + 12n + 16$. Since $|C_i| \geq 64n^2|C_{i-1}|$, $l > ((t+1)(m+2) + m + 3)$. Consider the set of polygons $\hat{P} = \{P_{(1)(m+3)}, P_{(m+3)(2m+5)}, \dots, P_{((t+1)(m+2)+1)((t+1)(m+2)+m+3)}\}$ (See Figure 7). Let C_{ab} be the set of points corresponding to P_{ab} for any a, b . Let $\hat{C} = \{C_{(1)(m+3)}, C_{(m+3)(2m+5)}, \dots, C_{((t+1)(m+2)+1)((t+1)(m+2)+m+3)}\}$. Note

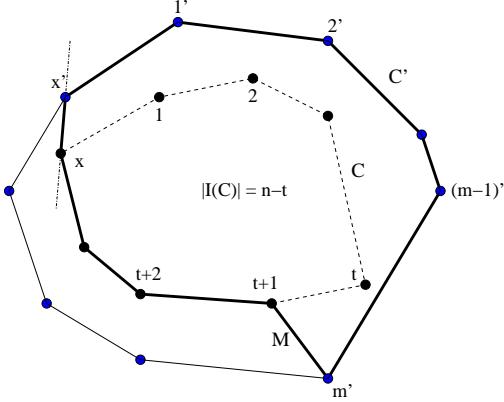


Fig. 8. Convex layers C and C' and the almost convex polygon M (shown in dark boundary)

that for $C_{ab}, C_{cd} \in \hat{C}$, $I(C_{ab}) \cap I(C_{cd}) = \phi$. This means that there exists C_{ab} such that $I(C_{ab}) = \phi$ as otherwise $\sum_{C_{cd} \in \hat{C}} |I(C_{cd})| \geq t + 1$. Consider such a C_{ab} . The line ab induces a natural partition of $C_i \cup C_{i+1}$ into two point sets P' and P'' . Wlog $P' \cap C_{i-1} = \phi$. The line ab intersects $\text{Conv}(C_{i+1})$ in two line segments. Let the endpoints of the line segments be $a' \in P', a'' \in P''$ and $b' \in P', b'' \in P''$ respectively. Let $\text{arc}_S(x)$ denote $\text{arc}(x) \cap S$ for a set S of points. $C_{ab} \subseteq I(C_{a'b'}) \cup \text{arc}_{P'}(a'') \cup \text{arc}_{P'}(b'') \cup \text{arc}_{P'}(a') \cup \text{arc}_{P'}(b')$. If $\text{arc}_{P'}(a'') \geq n+2$ or $\text{arc}_{P'}(b'') \geq n+2$ or $\text{arc}_{P'}(a') \geq n+2$ or $\text{arc}_{P'}(b') \geq n+2$ then S_n exists (Lemma 2.7). Else $P^* = C_{a'b'} \cup I(C_{a'b'})$ is a pointset with two convex layers with $|I(P^*)| = |I(C_{a'b'})| \geq 8n^2 + 8n + 8$. Hence by Theorem 2.14 S_n exists. \square

Theorem 2.15 implies Theorem 1.1.

3 Almost convex polygon with n interior points

In this section we show that any point set P with at least n interior points contains an almost convex polygon with n points in its interior.

Proof of Theorem 1.3:

Proof. Consider the convex hull layers in the convex hull decomposition $CHD(P)$. Let C and C' be the convex hull layers such that they are consecutive in $CHD(P)$ (inside to outside) and $|I(C)| \leq n$ and $|I(C')| > n$. (This will always happen as $|I(P)| \geq n$). If $|I(C)| = n$, then C is the required convex polygon. Let us assume that $|I(C)| = n - t$, $t > 0$.

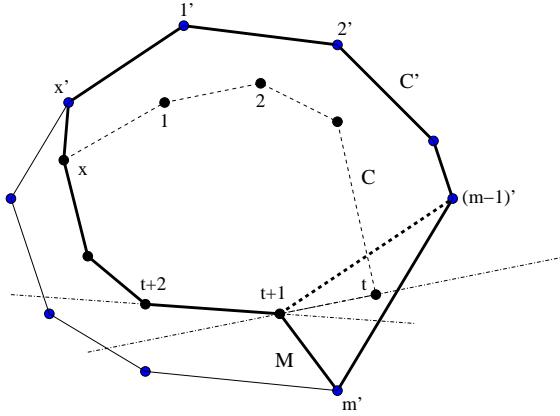


Fig. 9. The almost convex polygon M is split into a convex polygon and a triangle using the chord connecting vertex $(t + 1)$ and $(m - 1)'$.

We construct an almost convex polygon M using the vertices of C and C' as follows: Let x' be any vertex of C' and $x'x$ be the tangent from x' to C (as shown in Figure 8). We number the vertices of C' (resp. C) as $1', 2', \dots, x'$ (resp. $1, 2, \dots, x$) in clockwise order starting with the clockwise adjacent vertex of x' (resp. x). Let $m' \in C'$ be the vertex with smallest index such that vertex $(t + 1) \in \text{arc}(m')$. Since every vertex of C is present in the arc of some vertex of C' , vertex m' exists. M is given by the simple polygon $x', 1', 2', \dots, m', (t + 1), (t + 2), \dots, x$ (boundary of M is shown as solid line in figure 8). M contains exactly n interior points (t points of C and $n - t$ points of $I(C)$). It can be seen that M is almost convex since all vertices of M , except vertex $(t + 1)$, are convex. \square

Since any almost convex polygon is 2-convex, we have the following corollary:

Corollary 3.1 *For any $n, n \geq 1$, every point set P with $I(P) \geq n$ contains a 2-convex polygon with exactly n interior points.*

Finally, we prove the following corollary that shows the existence of two convex polygons that contain n -interior points in total.

Corollary 3.2 *For any $n, n \geq 1$ and every point set P with $I(P) \geq n$, there exists two convex polygons M_1 and M_2 such that $|I(M_1)| + |I(M_2)| = n$.*

Proof. We show that the almost convex polygon M constructed by the proof of Theorem 1.3 can be partitioned into two convex polygons M_1 and M_2 . If vertex $t + 1 \in C$ is convex, then M is convex and we are done. Let us assume that vertex $t + 1 \in C$ is concave. Since $m' \in C'$ is picked as the smallest index vertex

such that vertex $(t+1) \in \text{arc}(m')$, m' lies to the right of line connecting $t+1$ and t (See figure 9). Also, m' lies below the line connecting $t+2$ and $t+1$ since $t+1 \in C$ is assumed to be concave. Now, the chord connecting $t+1 \in C$ and $(m-1)' \in C'$ partitions M into $M_1 = x', 1', 2', \dots, (m-1)', (t+1), (t+2), \dots, x$ and triangle $M_2 = (m-1)', m', (t+1)$. M_1 is convex since vertex $t+1$ is convex. Also, $|I(M_1)| + |I(M_2)| = n$ since every interior point of M is an interior point of either M_1 or M_2 . \square

4 Conclusion

In this paper, we have considered two special cases of the n -interior point variant of the Erdős-Szekeres problem. We have shown that $g(n) \leq (64n^2)^r$ for all $n, n \geq 5$, for point sets with $r \geq 2$ convex layers. We have also shown that $g(n) = n$ for all $n, n \geq 1$, when the notion of convex polygon is relaxed to almost convex polygon.

For arbitrary point sets, existence of $g(n)$ is known only for $n \leq 3$. The main open problem is to show that $g(n)$ exists for all n .

References

- [1] Aichholzer, O., F. Aurenhammer, F. Hurtado, P. A. Ramos and J. Urrutia, *Two-convex polygons*, European Workshop on Computational Geometry (2009), pp. 447 – 451.
- [2] Avis, D., K. Hosono and M. Urabe, *On the existence of a point subset with 4 or 5 interior points*, in: *Japanese Conference on Discrete and Computational Geometry*, Lecture Notes in Computer Science **1763**, 1998 pp. 57–64.
- [3] Avis, D., K. Hosono and M. Urabe, *On the existence of a point subset with a specified number of interior points*, Discrete Mathematics **241** (2001), pp. 33–40.
- [4] Bialostocki, A., P. Dierker and B. Voxman, *Some notes on the erdős-szekeres theorem*, Discrete Mathematics **91** (1990), pp. 231–238.
- [5] Chung, F. R. K. and R. L. Graham, *Forced convex n -gons in the plane*, Discrete and Computational Geometry **19** (1998), pp. 367–371.
- [6] Erdos, P. and G. Szekeres, *A combinatorial problem in geometry*, Compositio Mathematica **2** (1935), pp. 463–470.
- [7] Erdos, P. and G. Szekeres, *On some extremum problems in elementary geometry*, Ann. Universitatis Scientiarum Budapestinensis **3/4** (1960), pp. 463–470.

- [8] Fevens, T., *A note on point subsets with a specified number of interior points*, in: *Japanese Conference on Discrete and Computational Geometry*, Lecture Notes in Computer Science **2866**, 2002 pp. 152–158.
- [9] Gerken, T., *Empty convex hexagons in planar point sets*, *Discrete and Computational Geometry* **39** (2008), pp. 239–272.
- [10] Haborth, H., *Konvexe f -nfecke in ebenen punktmengen*, *Elementary Mathematics* **33** (1978), pp. 116–118.
- [11] Horton, J. D., *Sets with no empty convex 7-gons*, *Canadian Mathematical Bulletin* **26** (1983), pp. 482–484.
- [12] Kalbfleisch, J. D., J. G. Kalbfleisch and R. G. Stanton, *A combinatorial problem on convex regions.*, in: *Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing*, (1970), pp. 180–188.
- [13] Kleitman, D. J. and L. Pachter, *Finding convex sets among points in the plane*, *Discrete and Computational Geometry* **19** (1998), pp. 405–410.
- [14] Morris, W. and V. Soltan, *The erdos-szekeres problem on points in convex position - a survey*, *Bulletin of the American Mathematical Society* **37** (2000), pp. 437–458.
- [15] Nicolas, C. M., *The empty hexagon theorem*, *Discrete and Computational Geometry* **38** (2007), pp. 389–397.
- [16] Szekeres, G. and L. Peters, *Computer solutions to be the 17-point erös- szekeres problem*, *The Anazian journal* **48** (2006), pp. 151–164.
- [17] Toth, G. and P. Valtr, *Note on the erdos-szekeres theorem*, *Discrete and Computational Geometry* **19** (1998), pp. 457–459.
- [18] Toth, G. and P. Valtr, *The erdos-szekeres theorem: upper bounds and related results*, *Combinatorial and Computational Geometry* **52** (2005), pp. 557–568.
- [19] Wei, X. and R. Ding, *More on planar point subsets with a specified number of interior points*, *Mathematical Notes* **83** (2008), pp. 684–687.
- [20] Wei, X. and R. Ding, *More on an erdos-szekeres-type problem for interior points*, *Discrete and Computational Geometry* **42** (2009), pp. 640–653.
- [21] Wei, X., W. Lan and R. Ding, *On the existence of a point subset with three or five interior points*, *Mathematical Notes* **88** (2010), pp. 103–111.