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Abstract

The n-interior point variant of the Erdos-Szekeres problem is to show the following:
For any n, n ≥ 1, every point set in the plane with sufficient number of interior
points contains a convex polygon containing exactly n-interior points. This has
been proved only for n ≤ 3. In this paper, we prove it for pointsets having atmost
logarithmic number of convex layers. We also show that any pointset containing
atleast n interior points, there exists a 2-convex polygon that contains exactly n-
interior points.
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1 Introduction

Let P ⊂ R2 be a finite set of points in general position. Let Conv(P ) denote
the convex hull of P , C(P ) the set of points which determine the convex hull
of P and I(P ) = |P \ C(P )| be the number of points lying in the interior
of Conv(P ). Interesting questions of the form: “If |P | is large, then certain
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special convex subsets S ⊆ P exist” have been posed and studied in the last
few decades.

The earliest classical result in this area is the Erdos-Szekeres Theorem[4]
which showed that there exists an integer f(n) such that if |P | ≥ f(n) then
there exists a convex subset S ⊆ P such that |C(S)| = n i.e. a subset which
is a convex polygon of size n. A natural question is to find lower and upper
bounds on f(n). This has been well studied and the current best bounds are
2n−2 + 1 ≤ f(n) ≤

(

2n−5
n−2

)

+ 1 [7]. Many other variants of the Erdos Szekeres
problem have been considered. See surveys [6,7] for details.

The following problem pertaining to interior points was posed by Avis et
al in 2001 [3]: Is there a smallest integer g(n) such that any point set P with
I(P ) ≥ g(n) has a convex subset S ⊆ P with I(S) = n i.e. a subset which is
a convex polygon that contains exactly n interior points. They showed that
g(1) = 1, g(2) = 4. It was recently shown that g(3) = 9 by Wei and Ding [9].
It is unknown whether g(n) exists for n ≥ 4. The best known lower bound is
g(n) ≥ 3n for n ≥ 3 [8]. Several variants of this problem have been considered
in [2,5].

In this paper, we show the following:

Theorem 1.1 For any n, n ≥ 4, every point set P with I(P ) internal points
and atmost 1

6
logn I(P ) convex hull layers has a convex subset Si ⊆ P with

I(Si) = i for all i, 0 ≤ i ≤ n.

The notion of convexity has been generalized to j-convexity in [1]. A poly-
gon M is said to be j-convex is every line intersects M in atmost j connected
components. Note that 1-convex is the standard definition of convex polygon.
If the requirement of convex subset S ⊆ P is relaxed to 2-convex subset, the
problem becomes easy. More precisely, we show that any pointset containing
atleast n interior points, there exists a 2-convex polygon that contains exactly
n-interior points for all n ≥ 1.

2 Point sets with 2 convex layers

Definition 2.1 A convex point set P is called monotonic convex if the points
are in monotonic order(increasing or decreasing).

Definition 2.2 Recursively decompose the point set P into disjoint convex
hull layers C(P ), C(I(P )) · · ·. We call this the Convex Hull Decomposition of
P or the CHD of P .

Consider a point set P ∗ whose CHD has two convex layers both of which are
monotonically convex(increasing). Let C∗

2 = C(P ∗) and C∗

1 = I(P ∗)(external
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Fig. 1. arc(x) = {1, 2, 3, 4}
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Fig. 2. Labelling points in C∗

1

and internal). See Figure 1.

Definition 2.3 For x ∈ C∗

2 , let arc(x) ⊆ C∗

1 denote the set of points to which
a straight line can be drawn from x without intersecting Conv(C∗

1).

Note that arc(x) is the set of points ’visible’ from x. See Figure 1. Let
Si ⊆ P ∗ denote a set of points in convex position with I(Si) = i. We will show
that Si exists. Let us index all the points in C∗

1 as 1, 2... and all the points in
C∗

2 also as 1, 2.....

Lemma 2.4 If |arc(x)| = n then for every 0 ≤ i ≤ n − 2 there exists a
Si ⊆ P ∗.

Consider any point y′ ∈ C∗

1 . Let Py′ ⊆ C∗

2 be the set of points from which
y′ is visible. Since y′ is visible from at least one point x ∈ C∗

2 , Py′ 6= φ.

Definition 2.5 We label y′ as d if there exists a x ∈ Py′ such that x is above
y′, as u if there exists a x ∈ Py′ such that x lies below y′ and as du if both
hold.(See Figure 2).

Lemma 2.6 If there is a contiguous set of points in C∗

1 of size at least n + 2
all of which are labelled d or all of which are labelled u then there is a Si ⊆ P ∗

for 1 ≤ i ≤ n.

Proof. Consider a contiguous set of points M = {i′, i′ + 1, ...i′ + r′} with
r′ ≥ n + 1 where all of them have been labelled u. Since i′ + r′ has been
labelled u there exists x ∈ Pi′+r′ such that x is below i′ + r′. x is also below
i′ as otherwise i′ + s′ would be labelled du for some 0 ≤ s′ < r′. Since i′ and
i′ + r′ are both visible from x and x lies below i′, all of i′, · · · , i′ + r′ are visible
from x which implies |arc(x)| ≥ n + 2. From Lemma 2.4 there is a Si ⊆ P ∗

for 1 ≤ i ≤ n. The other case when all the points are labelled d can be argued
similarly. 2



Lemma 2.7 If i′ is labelled d and i′+2 as u or vice versa then i′+1 is labelled
du.

Theorem 2.8 For any n, n ≥ 4 if |C∗

2 | > 2n2, then there exists a Si ⊆ P ∗

for all i, 0 ≤ i ≤ n.

Proof. We prove by contradiction. Let, if possible, no subset Sn exists in
P ∗. We can visualize the labellings of points in C∗

2 as a m ∗ (n + 1) matrix.
The point i′ is mapped to the (i′mod(n + 1), i′ − i′mod(n + 1)) entry. Since
|C∗

2 | > 2n2, the number of rows m is greater than n + 2 for n ≥ 4. We note
the following properties of the matrix from the above lemmas.

• If the (r, c) entry is d or du then (r + i, c) is d for i ≥ 0. Otherwise let the
point i′ correspond to the (r, c) label and point j′ correspond to (r + 1, c)
label. There is an i ∈ Pi′ such that i is below i′ and a j ∈ Pj′ such that j

is above j′. Now consider the polygon i · · · jj′i′. This is clearly convex and
has j′ − i′ = n points. Hence Sn exists.

• The labellings (r, c), (r, c + 1), · · · (r + 1, 1), · · · , (r + 1, c) cannot all be d or
u, since otherwise by Lemma 2.6, Sn exists.

• If the (r, c) is d and (r, c + 2) entry is u then the (r, c + 1) entry is du and
vice versa (Lemma 2.7). Note that the column calculations are modulo the
appropriate values

We draw the following conclusions from the above properties. Let us assume
that we start from row 2 and traverse the matrix row by row.

• There is an entry du in each row.

• If the (r, c) entry is d or du then (r + i, c) is d for i ≥ 0.

• Two consecutive rows cannot be identical.

Since m > n + 2, we will traverse at least n + 2 rows. But we observe that
after traversing the first n + 2 rows all further rows will have entries d in all
columns. But then, by Lemma 2.6, Sn exists contradicting our assumption.2

Definition 2.9 Given a, b ∈ Ci where Ci is the ith convex layer, let Cab ⊆ Ci

denote the set of points obtained by traversing Conv(Ci) clockwise and let
Pab denote the convex polygon formed by points in Cab.

Theorem 2.10 For any n, n ≥ 4, every point set P whose CHD has exactly
two layers C1 and C2 with |C1| ≥ 16n2 has a subset Si ⊆ P for 0 ≤ i ≤ n .

Proof. We show that we can obtain either a point set P ∗ ⊆ P whose CHD
has two monotonic layers C∗

1 and C∗

2 with |C∗

1 | ≥ 2n2 or a x ∈ C∗

2 with
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Fig. 3. Decomposing a two layer
convex set
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Fig. 4. Obtaining a two layer con-
vex set

|arc(x)| ≥ n2. If |C∗

1 | ≥ 2n2, then Si exists by Theorem 2.8. Otherwise,
Si exists by Lemma 2.4. The topmost, leftmost, bottommost and rightmost
points in C1, namely l′, t′, r′, b′, are visible from the corresponding topmost,
leftmost, bottommost and rightmost points in C2 namely l, t, r, b. See Figure 3.
We have Cl′t′ ∪ Ct′r′ ∪ Cr′b′ ∪ Cb′l′ = C1. Therefore without loss of generality
|Cl′t′ | ≥ 4n2 since |C1| ≥ 16n2. Consider the polygon Plt. We note that
Cl′t′ ⊆ I(Plt)∪arc(t)∪arc(l) which implies |Cl′t′ | ≤ |I(Plt)|+ |arc(t)|+ |arc(l)|
and if both |arc(l′)| < n2 and |arc(t′)| < n2, then I(Pl) ≥ 2n2 and Plt is the
required polygon P ∗. 2

3 Point sets with r convex layers

Theorem 3.1 Let P be a point set whose CHD has r layers C1, · · · , Cr(from
internal to external) r ≥ 2. Define C0 = 1 and let n ≥ 4. If for any i,
1 ≤ i ≤ r, |Ci| ≥ 64n2|Ci−1|, then there exists a subset Si ⊆ P for 0 ≤ i ≤ n.

Proof. Let Ci = {1, · · · , l} and |Ci−1| = t. Set m = 16n2. Since |Ci| ≥
64n2|Ci−1|, l > ((t + 1)(m + 2) + m + 3). Consider the set of polygons
P̂ = {P(1)(m+2), P(m+3)(2m+5), · · · , P((t+1)(m+2)+1)((t+1)(m+2)+m+3)}. See Figure

4. Note for Pab, Pcd ∈ P̂ , I(Pab) ∩ I(Pcd) = φ. This means that there exists
Pab such that I(Pab) = φ as otherwise

∑

Pcd∈P̂ |I(Pcd)| ≥ t + 1. Consider such
a Pab. The line ab induces a natural partition of CiUCi+1 into two point sets
P ′ and P ′′. Wlog P ′ ∩ Ci−1 = φ. Note that P ′ has two convex layers C ′

1, C
′

2

in its CHD and |C ′

1| ≥ 16n2. By Theorem 2.10 Si exists. 2

Corollary 3.2 For any n, n ≥ 4, every point set P that has r layers in its
CHD and I(P ) interior points, I(P ) ≥ pr

−1
p−1

≥ pr where p = 64n2 has a subset
Si ⊆ P for all i, 0 ≤ i ≤ n.

Corollary 3.2 implies Theorem 1.1.



4 2-convex polygon with n interior points

Theorem 4.1 For any n, n ≥ 1, let P be a set of points in the plane such
that Conv(P ) is a triangle and containing atleast n interior points. Then P

contains a 2-convex polygon with exactly n-interior points.

Proof. Wlog, assume that the base AB of the triangle ABC is horizontal
and C lies above AB. Let I(P ) = {p1, p2, . . . , pm}, m ≥ n be the interior
points of P that is sorted by decreasing y-coordinate. Let H be the convex
hull of {B, C, pn+1, pn+2, . . . , pm}. The polygon Q = T \ H is 2-convex and
has exactly n interior points, i.e., points p1, . . . , pn. 2
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