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Abstract

Given a set of points P ⊆ R2, a conflict-free coloring of P w.r.t. rectangle ranges is an
assignment of colors to points of P , such that each non-empty axis-parallel rectangle T in the
plane contains a point whose color is distinct from all other points in P ∩ T . This notion
has been the subject of recent interest, and is motivated by frequency assignment in wireless
cellular networks: one naturally would like to minimize the number of frequencies (colors)
assigned to base stations (points), such that within any range (for instance, rectangle), there
is no interference. We show that any set of n points in R2 can be conflict-free colored with
O(nβ∗+o(1)) colors in expected polynomial time, where β∗ = 3−

√
5

2 < 0.382.

Keywords. Frequency assignment in wireless networks, conflict-free coloring, axis-parallel
rectangles, boundary sets, monotone sequences

1 Introduction

The study of conflict-free coloring is motivated by the frequency assignment problem in wireless
networks. A wireless network is a heterogeneous network consisting of base stations and agents.
The base stations have a fixed location, and are interlinked via a fixed backbone network, while the
agents are typically mobile and can connect to the base stations via radio links. The base stations
are assigned fixed frequencies to enable links to agents. The agents can connect to any base station,
provided that the radio link to that particular station has good reception. Good reception is only
possible if i) the base station is located within range, and ii) no other base station within range of
the agent has the same frequency assignment (to avoid interference). Thus the fundamental problem
of frequency-assignment in cellular networks is to assign frequencies to base stations, such that an
agent can always find a base station with unique frequency among the base stations in its range.
Naturally, due to cost, flexibility and other restrictions, one would like to minimize the total number
of assigned frequencies.
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The study of the above problem was initiated in [9], and continued in a series of recent papers [3,
4, 5, 6, 8, 11, 12, 15, 16]. For a recent survey on the problem and its applications, refer to [17]. The
conflict-free coloring problem can be formally described as follows. Let P ⊆ R2 be a set of points
andR be a set of ranges (e.g. the set of all discs or rectangles in the plane). A conflict-free coloring
(CF-coloring in short) of P w.r.t. the range R is an assignment of a color to each point p ∈ P such
that for any range T ∈ R with T ∩P ̸= 0, the set T ∩P contains a point of unique color. Naturally,
the goal is to assign a conflict-free coloring to the points of P with the smallest number of colors
possible.

The work in [9] presented a general framework for computing a conflict-free coloring for several
types of ranges. In particular, for the case where the ranges are discs in the plane, they present a
polynomial time coloring algorithm that uses O(log n) colors for conflict-free coloring and this
bound is shown to be tight. This result was then extended in [12] by considering the case where
the ranges are axis-parallel rectangles in the plane. This seems much harder than the disc case,
and the work in [12] presented a simple algorithm that uses O(

√
n) colors. As mentioned in [12],

this can be further improved to O(
√

n log log n/ log n) using the sparse neighborhood property of
the conflict-free graph, as independently observed by Noga Alon, Timothy Chan, and János Pach
and Geza Tóth [2, 15]. Prior to this paper, this was the best known upper bound for CF-coloring
axis-parallel rectangles. A lower bound of Ω(log n) trivially follows from the lower bound for
intervals. A related notion is that of the delaunay graph of a point set P with respect to axis-parallel
rectangles, defined as the graph on the vertex set P , whose two points p, q ∈ P are connected by
an edge if and only if there is an axis-parallel rectangle that contains p and q, but no other points
of P . Chen et al. [7] show that there exists a set of n points for which the maximum size of an
independent set in the conflict-free graph is O(n log2 log n/ log n).

Recent works have shown that one can obtain better upper bounds for special cases of this
problem. In [12], it was shown that for the case of random points in a unit square, O(log4 n) colors
suffice, and for points lying in an exact uniform

√
n ×
√
n grid, O(log n) colors are sufficient.

Chen [5] showed that polylogarithmic number of colors suffice for the case of nearly equal rectangle
ranges. Elbassioni and Mustafa [8] asked the following question: Given a set of points P in the
plane, can we insert new points Q such that the conflict free coloring of P ∪ Q requires fewer
colors? They showed that by inserting O(n1−ϵ) points, P ∪ Q can be conflict free colored using
Õ(n3(1+ϵ)/8) colors.

While the CF-coloring problem is closed for disc ranges, the upper bounds are very far from the
currently known lower bounds for axis-parallel rectangular ranges. It remains very interesting to
reduce this gap between upper and lower bounds, and this is, in fact, the main open problem posed
in [12]. In this paper, we improve the upper bound significantly.

Theorem 1.1 Any set of n points in R2 can be conflict-free colored with respect to rectangle ranges

using O(n
β∗+O( 1√

logn
)
) colors, in expected polynomial time, where β∗ = 3−

√
5

2 < 0.382.

An immediate corollary of Theorem 1.1 is that the delaunay graph of any set of points in the
plane with respect to axis-paralled rectangles has an independence number Ω(n0.618).

Our main tool for proving this theorem is a probabilistic coloring technique, introduced in [8],
that can be used to get a coloring with weaker properties, which we call quasi-conflict-free coloring.
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This will be combined with boundary sets, monotone sequences, and careful griding of the point
set, in a recursive way, to obtain the claimed result. We start with some definitions and preliminaries
in Section 2. To illustrate our ideas, we sketch a simple Õ(n6/13) conflict free coloring algorithm
in Section 3. The main algorithm will be given in Section 4. We describe the quasi-conflict-free
coloring technique in a slightly more general form in Section 5. Section 4 contains the analysis of
the main algorithm.

2 Preliminaries

ByR ⊆ 2R
2
, we denote the set of all axis-parallel rectangles. Let P be a set of points in R2.

Definition 2.1 (Conflict-free coloring) A coloring of P is a function χ : P 7→ N from P to some
finite set N . A rectangle T ∈ R is said to be conflict-free with respect to a coloring χ if either
T ∩ P = ∅, or there exists a point p ∈ P ∩ T such that χ(p) ̸= χ(p′) for all points p′ ∈ P ∩ T ,
distinct from p. A coloring χ is said to be conflict-free (w.r.t. R) if every rectangle T ∈ R is
conflict-free w.r.t. χ.

In this paper, we shall say that a given procedure is an f(n)-CF-coloring algorithm if it conflict-
free colors any set of points of size n with at most f(n) colors. It will be convenient to think of the
set of colors N , which we use to color the points, as a subset of the sequences of natural numbers
N∗ = N∪N2∪ . . . This allows us to take unions and products of colors. More precisely, for disjoint
subsets P ′, P ′′ ⊆ P and colorings χ′ : P ′ 7→ N∗ and χ′′ : P ′′ 7→ N∗, we let χ′ + χ′′ denote the
coloring χ : P ′ ∪ P ′′ 7→ N∗ defined by χ(p) = χ′(p) if p ∈ P ′ and χ(p) = χ′′(p) if p ∈ P ′′.
For two colorings χ′, χ′′ : P 7→ N∗, we denote by χ′ × χ′′ the coloring χ : P 7→ N∗ given by
χ(p) = (χ′(p), χ′′(p)) for p ∈ P .

Definition 2.2 (Boundary sets) For a point p = (px, py) ∈ R2, define W1(p) = {q ∈ R2| qx ≥
px, qy ≥ py} to be the upper-right quadrant defined by p. Similarly, let W2(p),W3(p) and W4(p)
be the upper-left, lower-right and lower-left quadrants respectively. Define the boundary set of type
i for P , denoted by Di(P ), 1 ≤ i ≤ 4, as follows:

Di(P ) = {p ∈ P |Wi(p) ∩ P = {p}}.

Definition 2.3 (Monotonic sets) Let P = {p1, p2, . . . , pk} be a set of points that is sorted by x
coordinate. P is (resp. monotonic non-increasing) if pyj ≥ pyi (resp. pyj ≤ pyi ) for all 1 ≤ i < j ≤ k.

It is easy to see that the boundary set of type 2 and 3 (resp. type 1 and 4) are monotonic
non-decreasing (resp. non-increasing); see Figure 1.

Definition 2.4 (r-Grid) Let r ∈ Z>0 be a positive integer. An r-grid on P (see Figure 2), denoted by
Gr = Gr(P ), is an r×r axis-parallel grid containing all points of P . For i = 1, . . . , r, denote by Ri

and Ci the subsets of P lying in the ith row and column of Gr, respectively. Denote by B(Gr), the
maximum number of points of P in a row or a column of Gr. For 1 ≤ h ≤ 2r−1, let M1

h (resp. M2
h)
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Figure 1: Boundary sets: the shaded region represents the lower right quadrant, and the solid black
points represent the boundary set D3(P ) of type 3.

be the set of grid cells lying along a diagonal h of positive slope (resp. negative slope) in Gr. For
l = 2, 3 (resp. l = 1, 4), letDh

l = ∪(i,j)∈M1
h
Dl(Ri∩Cj) (resp. Dh

l = ∪(i,j)∈M2
h
Dl(Ri∩Cj)) be the

union of boundary sets of type l over grid cells in M1
h (resp. M2

h). Let Dl = ∪(i,j)∈Gr
Dl(Ri ∩ Cj)

be the union of boundary sets of type l over all the grid cells in Gr.

Note that, for l = 2, 3 and 1 ≤ h ≤ 2r − 1, Dh
l is monotonic non-decreasing, since the grid

cells in M1
h , which lie along the diagonal of positive slope, are horizontally and vertically separated

and hence the union of Dl(Ri ∩Cj) (which are monotonic non-decreasing) is also monotonic non-
decreasing. By a similar argument, for l = 1, 4 with M2

h and 1 ≤ h ≤ 2r − 1, Dh
l is monotonic

non-increasing.

Definition 2.5 (Quasi-conflict-free coloring) Given a grid Gr on P , we call a coloring χ : P 7→ N
quasi-conflict-free with respect to Gr, if every axis-parallel rectangle which contains points only
from the same row or the same column of Gr is conflict-free.

Let Gr be an r-grid on a point set P such that B(Gr) = B. It is shown in [8] that there exists a
quasi-conflict-free coloring of Gr requiring Õ(B3/4) colors 1.

3 A simple conflict-free coloring algorithm using Õ(n6/13) colors

In this section, we sketch a simple algorithm for CF-coloring P in order to illustrate the main ideas.
This algorithm CF-colors P using Õ(n6/13) colors. We deliberately skip some technical details in
order to make the main idea as clear as possible. The later sections contain a more detailed analysis.

1Just as O-notation hides constant factors, Õ hides the poly-logarithmic factors
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Figure 2: r-grid Gr: r = 4, B(Gr) = 24, the four types of boundary sets are shown as solid circles
in four different colors, and the remaining points are shown as hollow circles. The shaded cells
represent the set M1

h , for h = 3. Note that some points may be in many different boundary sets. In
this figure, a point belonging to multiple boundary sets is colored by the color of either one of them.

It will be useful first to illustrate the idea behind the O(n1/2)-CF-coloring algorithm in [12].
By the Erdős-Szkeres Theorem [10], the set of points P , regarded as sequence when ordered by the
x-coordinate, has a monotone subsequence of size

√
n. Clearly, the set I consisting of every other

point in this monotone sequence defines an independent set in the conflict-free graph of P . We color
all the points in I with one color, and then recurse on the rest of the points with a different set of
colors. One can easily argue that the resulting coloring will be conflict free since I is an independent
set, and that the total number of colors needed is O(n1/2).

Let A be an O(n1/2) conflict-free coloring algorithm (as the one described above). To reduce
the number of colors needed below O(n1/2), we proceed as follows. Set t = n7/13. As long as the
current point set contains a monotonic sequence of size t, we color alternate points in that sequence
with the same color, remove them, and continue with the remaining points using new colors. Since
we remove Ω(t) points every time, the number of colors used in this process is O(n6/13). Let Q
be the set of points left after this step and let m = |Q|. Now, let r = m

5
13 . Grid Q using Gr such

that each row and column has B = m
8
13 points of P . Compute the boundary sets Dl(Q), 1 ≤ l ≤ 4

and let D = ∪4l=1Dl(Q) and Q′ = Q \ D. We quasi-CF color Q′ with Õ(B3/4) colors using the
algorithm of [8] (which usesA as subroutine). Then, we CF-color D usingA with a different set of
colors.

Lemma 3.1 The above coloring of P is conflict-free.

Proof. Let T ∈ R be a rectangle such that T ∩ P ̸= ∅. We show that T contains a point of unique
color among the points in T ∩ P .
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We consider 3 cases:

Case 1. A monotone sequence of size t is found and we colored every other point in the sequence
(set I) with one color: if (T ∩P )\ I ̸= ∅, then by induction and the fact that I and P \ I are colored
with distinct sets of colors, we know that T ∩ P contains a point of a unique color. If T ∩ P ⊆ I ,
then |T ∩ P | = 1 (since I consists of every other point in a monotone sequence) and the statement
trivially holds.

Case 2. T ∩D ̸= ∅: The CF-coloring of D guarantees that there is a point p of unique color among
points in T ∩D. Since D and Q′ = Q \D are colored with distinct sets of colors, p is a point of
unique color among points in T ∩ P also.

Case 3. T ∩D = ∅: Let (i, j) be a grid cell of Gr defined by the intersection of row Ri and collumn
Cj . If T contains at least one corner of some grid cell (i, j), T ∩ Dl(Ri ∩ Cj) ̸= ∅ for some
l ∈ {1, . . . , 4} contradicting the fact that T ∩ D = ∅. Therefore in this case, T lies completely
within one row or one column of Gr. Since T ∩ P ̸= ∅ and T ∩ D = ∅, we have T ∩ Q′ ̸= ∅.
The quasi-CF coloring of Q′ guarantees that there is a point p of unique color among the points in
T ∩Q′. p is also a point of unique color among points in T ∩ P . �

We now bound the total number of colors used by our algorithm. As argued before, the number
of colors used in the first step (removing monotonic sequences of size t) is Ω(n6/13). Quasi-CF-
coloring of Q requires Õ(n

8
13

× 3
4 ) = Õ(n6/13) colors. To bound the number of colors used in

CF-coloring D, we first bound the size of D: |Dh
l | ≤ t for all h and l, because each Dh

l is a
monotonic sequence. Since D = ∪l,hDh

l over 1 ≤ h ≤ 2m5/13 − 1, and 1 ≤ l ≤ 4, we have
|D| = O(n12/13). Thus, the CF-coloring of D (using the O(n1/2)-coloring algorithm A) requires
O(n6/13) colors. The total number of colors used by our algorithm is thus Õ(n6/13).

4 Improved Conflict Free Coloring

In the algorithm described in Section 3, we used an O(n1/2)-“black-box” A for CF-coloring the
boundary set D and the quasi-CF-coloring of P ′. As a result we obtained an Õ(n6/13) CF-coloring
algorithm. We can improve this coloring further by using this Õ(n6/13) as a new black-box for
CF-coloring the boundary set D and quasi-CF-coloring of P ′. An easy calculation shows that the
number of colors used is asymptotically smaller than Õ(n6/13).

This bootstrapping approach can be taken to the limit. This results in a sequence of strictly
improved algorithms, A = A0,A1,A2, . . . For k = 1, 2, . . . , the structure of Ak is similar to the
algorithm described in Section 3: Grid the point set P using Gr, where r = n1−αk , for some αk;
Partition P into boundary set D and P ′ = P \ D and use algorithm Ak−1 for CF-coloring D
and quasi-CF-coloring P ′. We choose the parameter αk such that both the CF-coloring of D and
quasi-CF-coloring of P ′ balance-out into using an Õ(nβk) colors, for some βk as small as possible.

Ideally, one would like to always recursively apply algorithm A∞ to get a bound of Õ(nβ∞)
on the number of colors (assuming these limits exist). However, there is a technical problem with
such a recursion: the sublinearity of the bound on the number of colors implies that the power
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of the logarithmic factor increases exponentially2 with k. To solve this problem, we can stop the
recursion at a level of O(log 1

ϵ ), settling at a bound of Õ(nβ∞+ϵ), for any arbitrarily small constant
ϵ > 0. Analysing this approach3 is however technically complicated, and we present an alternate
method here, which is asymptotically better in terms of the number of colors, but with possibly
worse constants.

In the rest of the paper, logarithms are with base 2. Let β∗ = (3 −
√
5)/2, α∗ = 1 − β∗,

c = 219 and n0 = 2(14c)
2
. Define functions α(n) = α∗ − 5c/

√
log n, β(n) = β∗ + 9c/

√
log n and

γ(n) = α∗ − 7c/
√
log n.

Let P be a set of n points. If n ≤ n0, we use any CF-coloring algorithm to color P . Otherwise,
we use the same approach as in Section 3. Namely, if P contains a monotonic chain of points of
size m = 2nγ(n) then we color alternate points of the chain with one color and recursively color
the rest of the points in P using a new set of colors. Otherwise (the size of any monotonic chain in
P is at most m), we construct a grid G so that each row and column of G contains at most nα(n)

points. Let D be the set of all points belonging to the boundary sets of the cells of G. We conflict
free-color D recursively using our CF-coloring procedure, and quasi-CF-color the rest of the points
using a different set of colors. In the quasi conflict-free coloring algorithm, we use a recursive call to
the conflict-free coloring procedure. (However, since we are calling the quasi conflict-free coloring
algorithm only for smaller-size point sets, there is no circularity here.) The coloring procedure is
given as Algorithm 1.

Algorithm 1 Procedure A(P, S):
Input: A point set P ⊆ R2, |P | = n, a set of colors S
Output: A CF-coloring χ : P 7→ S

1. if n ≤ n0 then
2. return a coloring of P using the O(

√
n)-coloring algorithm

3. else
4. Set α = α∗ − 5c/

√
log n, γ = α∗ − 7c/

√
log n and r ← ⌈n1−α⌉

5. if ∃ a monotonic sequence L of size 2nγ in P then
6. Let I be the set consisting of every other point of L
7. Color every point of I with the same color i ∈ S, i.e. set χ′(p)← i for all p ∈ I
8. χ′′ ← A(P \ I, S \ {i})
9. return χ′ + χ′′

10. else
11. Grid P using Gr

12. Compute the boundary set D w.r.t. Gr

13. χ′ ←QCFC(P \D,A, Gr, S)
14. χ′′ ← A(D,S \ range(χ′))
15. return χ := χ′ + χ′′

2This is essentially a byproduct of the fact that nβ
1 + nβ

2 > (n1 + n2)
β , for 0 < β < 1.

3We refer the interested reader to the conference version of this paper [1] for the details of such a bootstrapping
approach
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The structure of the the above algorithm is the same as the algorithm described in Section 3.
Hence, by Lemma 3.1 the coloring returned by the algorithm is conflict-free.

In the next section, we bound the number of colors needed by the quasi-CF-coloring algorithm.
We use this result in Section 6 to anaylse the number of colors needed by Algorithm 1

5 Generalized quasi-conflict free coloring

Given an r-grid Gr on point set P , we start by coloring the points of each column, using a CF-
coloring algorithmA as a black-box. We use the same set of colors for all columns. Then randomly
and independently for each column, we redistribute the colors on the different color classes of the
column. Finally, a recoloring step is applied on each monochromatic set of points in each row, again
using algorithm A as the CF-coloring procedure. The color assigned to a point is the concatenation
of its first and second colorings. A formal description of this procedure is given as Algorithm 2.

Algorithm 2 Procedure QCFC(P,A, Gr, S):
Input: A point set P ⊆ R2, an f(·)-CF-coloring algorithm A, an r-grid Gr on P , and a set of

possible colors S
Output: A quasi-CF-coloring χ : P 7→ S of P w.r.t. Gr

1. Let h = f(B(Gr)); N = {1, . . . , h}
2. for j = 1, . . . , r do
3. χj ← A(Cj , N)
4. Let π ∈ Sh be a random permutation
5. for all p ∈ Cj do
6. χ′

j(p)← π(χj(p))
7. χ′ ←

∑r
j=1 χ

′
j

8. for i = 1, . . . , r do
9. for ℓ = 1, . . . , h do

10. P ℓ
i ← {p ∈ Ri : χ′(p) = ℓ}

11. χ′′
i,ℓ ← A(P ℓ

i , S)

12. χ′′ ←
∑r

i=1

∑h
ℓ=1 χ

′′
i,ℓ

13. return χ := χ′ × χ′′ (mapped to S)

The following is a straightforward generalization of Theorem 3 in [8], in whichA is used as the
CF-procedure (instead of the

√
n-procedure used in [8]).

Theorem 5.1 Given any point set P ⊆ R2, a grid Gr with B = B(Gr) on P , and an f(·)-conflict-
free coloring algorithm A such that B ≥ 4 and

r · f(B)(logB)(− logB)/8 ≤ 1

2
, (1)

procedure QCFC returns a quasi-conflict-free coloring of Gr using

q(B) = f(B)f

(
B logB

f(B)

)
(2)
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colors, in expected polynomial time.

6 Analysis

We now show an improved bound on the number of colors required for conflict free coloring a set
of n points. Namely, we show that any set of points n can always be conflict-free colored with
f(n) := nβ(n) colors. The function f(n) is clearly monotonically increasing and is chosen so that
it satisfies the following.

Claim 6.1 For n > n0, f(n), α(n) and γ(n) satisfy the following inequalities:4

f(n) ≥ 1 + f(n− nγ(n)) (3)

f(n) ≥ f(16 · n1−α(n)+γ(n)) + f(nα(n)) · f(n
α(n) log nα(n)

f(nα(n))
) (4)

n1−α(n) · f(nα(n)) · (log nα(n))(− lognα(n))/8 ≤ 1

2
(5)

We defer the proof of the above inequalities and first show the following.

Theorem 6.1 Any set of n points can be conflict-free colored using f(n) colors.

Proof. We show that Algorithm 1 requires f(n) colors to CF-color any point set P of size n. The
proof is by induction on n. The theorem is trivially true for n ≤ n0 since for such n, β(n) > 1
and therefore f(n) > n. Let P be a set of n > n0 points and assume that for point sets of smaller
size the statement is true. If P contains a monotonic chain of points of size u = 2nγ(n) then the
algorithm colors alternate points of the chain with one color and recursively colors the rest of the
points in P using a new set of colors. Thus we have colored the point set using 1 + f(n − nγ(n))
colors which by the first inequality in Claim 6.1 is at most f(n). On the other hand, if the size of
any monotonic chain in P is at most u, then we construct a grid G so that each row and column
of G contains at most nα(n) points. There are n1−α(n) rows and columns in G. Let D be the set
of all points belonging to the boundary sets of the cells of G. Since D can be partitioned into at
most 8 · n1−α(n) monotonic sets, we have |D| ≤ u · 8 · n1−α(n) ≤ 16 · n1−α(n)+γ(n). We conflict
free color D using f(16 · n1−α(n)+γ(n)) colors and quasi conflict-free color the rest of the points
using a different set of colors. For this, we invoke the algorithm described in Section 5 with the grid
G. Since by Eq. (5), condition (1) is satisfied, we are guaranteed by Theorem 5.1 to use at most
f(nα(n)) ·f(n

α(n) lognα(n)

f(nα(n))
) colors for the quasi-conflict free coloring step. By the second inequality

in Claim 6.1 the total number of colors used is at most f(n). �

4It may appear that the first two inequalities are in the wrong direction i.e., instead of ≥, there should be ≤ in these
inequalities. However, we stress that these are not recurrence relations. The function f(n) gives an upper bound on the
number of colors required. Hence, it makes sense to argue that f(n), the number of colors allowed, is large enough so
that we may conflict-free color any set of n points with so many colors.
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Proof of Claim 6.1. For brevity of notation, we denote, respectively, α(n), β(n) and γ(n) by
α, β and γ, whenever convenient. Let us start with the first inequality.

f(n)− f(n− nγ) = nβ −mβ(m) ( where m = n− nγ )

= 2β(n) logn − 2β(m) logm = 2β(m) logm(2β(n) logn−β(m) logm − 1)

≥ f(m) · (2β∗ log (n/m) − 1) ( using the expressions for β(m) and β(n) and that m < n )

≥ f(m) · β∗ log (n/m)/2 ( since 2x − 1 ≥ x/2 for all x )

= 0.5β∗ · f(m) · log (1 + nγ/m)

≥ 0.5β∗ · f(m) · n
γ

m
(since log2 (1 + x) ≥ x for 0 ≤ x ≤ 1 and nγ ≤ m for n > n0)

≥ 0.5β∗ · f(m) · m
γ

m
( since m < n )

= 0.5β∗ ·m(β∗+9c/
√
logm)+(α∗−7c/

√
logn)−1 = 0.5β∗ ·m9c/

√
logm−7c/

√
logn

≥ 0.5β∗ ·m2c/
√
logm (since m < n)

≥ 1 ( for n > n0)

The first inequality follows by rearranging the terms. We prove the second inequality in two parts.
We show that the quantities f(16 · n1−α+γ) and f(nα) · f(n

α lognα

f(nα) ) are both at most f(n)/2. It
follows that their sum is at most f(n). We first observe some simpler inequalities that we need. For
any λ > 0,

f(nλ) = (nλ)β
∗+9c/

√
lognλ

= nλβ∗+9c
√
λ/

√
logn (6)

Using the above with λ = α,

f(nα) = nαβ∗+9c
√
α/

√
logn = nα∗β∗+(9c

√
α−5cβ∗)/

√
logn (7)

It follows from the above that

f(nα) ≤ nα∗β∗+(9c
√
α∗−5cβ∗)/

√
logn (since α∗ ≥ α ) (8)

f(nα) ≥ nα∗β∗
(since (9

√
α− 5β∗) ≥ 0 for n > n0 ) (9)

From the above, we get

nα lognα

f(nα)
≤ nα log nα

nα∗β∗ ≤ nα∗(1−β∗)−5c/
√
logn+log lognα/ logn

≤ nα∗(1−β∗)−(5c−1)/
√
logn ( since 1/

√
log n ≥ log log nα/ log n for n > n0 ) (10)

10



Therefore,

f(
nα lognα

f(nα)
) ≤ f(nα∗(1−β∗)−(5c−1)/

√
logn)

= nτβ∗+9c
√
τ/

√
logn ( using Eq. (6) with λ = τ, where τ = α∗(1− β∗)− (5c− 1)/

√
log n )

≤ nα∗β∗(1−β∗)−(5c−1)β∗/
√
logn+9c

√
α∗(1−β∗)/

√
logn

= nα∗β∗(1−β∗)+(9cα∗−(5c−1)β∗)/
√
logn) ( since 1− β∗ = α∗ ) (11)

Using Eq. (8) and Eq. (11),

f(nα) · f(n
α log nα

f(nα)
) ≤ nα∗β∗(2−β∗)+(9c(α∗+

√
α∗)−(10c−1)β∗)/

√
logn

≤ nβ∗+(9c−1)/
√
logn ( since (9c(α∗ +

√
α∗)− (10c− 1)β∗) ≤ 9c− 1 and α∗β∗(2− β∗) = β∗ )

= nβ−1/
√
logn

≤ nβ/2 ( for n > n0 ) (12)

On the other hand,

f(16 · n1−α+γ) = f(16 · n1−2c/
√
logn) ≤ f(n1−c/

√
logn) ( since nc/

√
logn ≥ 16 for n > n0 )

= nβ∗(1−c/
√
logn)+9c

√
1−c/

√
logn/

√
logn ( using Eq. (6) )

≤ nβ∗−cβ∗/
√
logn+9c/

√
logn = nβ−cβ∗/

√
logn

≤ nβ/2 ( for n > n0 ) (13)

From Eq. (12) and Eq. (13), we conclude the second inequality in the Claim.

Finally, it remains to verify the third inequality:

n1−α · f(nα) · (log nα)(− lognα)/8 ≤ n1−α+α∗β∗+(9c
√
α∗−5cβ∗)/

√
logn−α log lognα

8 ( Using Eq. (8) )

= n1−α∗+5c/
√
logn+α∗β∗+(9c

√
α∗−5cβ∗)/

√
logn−α log lognα

8

≤ n0.62+10.2c/
√
logn− 1

32
log logn1/4

(since α ≥ 1
4 for n > n0 )

≤ n1.35− 1
32

log logn1/4
( since

√
log n ≥ 14c for n > n0 )

≤ n1.35−43.6/32 ( since log log n1/4 ≥ 43.6 for n > n0 )

≤ n−0.01 <
1

2
( for n > n0 )

The claim follows. �
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A Proof of Theorem 5.1

Let χi, χ
′, χ′′, h, P ℓ

i be as defined in the procedure, and χ = χ′ × χ′′ be the coloring returned in
Step 13. The theorem follows from the following two claims.

Claim A.1 ([8]) χ is quasi-conflict-free.

Proof. Let T ∈ R be any rectangle that lies completely inside a row or a column of Gr, such that
T ∩ P ̸= ∅. If T contains only points belonging to a single column Cj of Gr, then the fact that
algorithm A returns a conflict-free coloring of Cj and the definition of χ′

j imply that T contains a
point p ∈ T ∩ Cj such that χ′

j(p) ̸= χ′
j(p

′) for all p′ ∈ T ∩ P , p′ ̸= p. Then χ′(p) and hence χ(p)
is different in the first coordinate from χ(p′) for every p′ ∈ T ∩ P , p′ ̸= p. Now assume that T
contains only points belonging to a single row i of Gr. Since T ∩ P ̸= ∅, there is an ℓ ∈ [h] such
that T ∩ P ℓ

i ̸= ∅. Since A returns a conflict-free coloring χ′′
i,ℓ of P ℓ

i , there is a point p ∈ T ∩ P ℓ
i ,

such that χ′′
i,ℓ(p) ̸= χ′′

i,ℓ(p
′) for all p′ ∈ T ∩P ℓ

i , p′ ̸= p. Thus if p′ ∈ T ∩Ri, then either p′ ∈ P ℓ′
i for

ℓ′ ̸= ℓ in which case χ′(p′) ̸= χ′(p), or p′ ∈ P ℓ
i but χ′′(p′) ̸= χ′′(p). In both cases χ(p′) ̸= χ(p).

�

Claim A.2 With probability at least 1/2, | range(χ)| ≤ q(B) given by Eq. (2).

Proof. Fix a row i ∈ [r]. For a column j ∈ [r] and a color ℓ ∈ [h], let Aℓ
i,j = {p ∈ Ri ∩

Cj : χj(p) = ℓ} be the set of points in cell (i, j) assigned color ℓ by the initial (column) coloring
χj . We may assume5 that Algorithm 1 produces a coloring such that all color classes have a size
bounded by 2B/h:

|Aℓ
i,j | ≤ 2B/h. (14)

Recall that, for any j ∈ [r] and ℓ ∈ [h], all the points p ∈ Aℓ
i,j get the same random color χ′

j(p) in
Step 6. Thus we can think of the coloring in Step 6 as of permuting randomly the colors to the sets
Aℓ

i,j , and may use χ′(Aℓ
i,j) to denote the color assigned in Step 6 to all points in Aℓ

i,j .

5First split all color classes that have size larger than B/h into classes of size at most B/h each. Then pack these
classes together into new classes of sizes between B/h and 2B/h. It follows that the total number of classes obtained is
h and each class has size at most 2B/h.
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For j ∈ [r] and ℓ, ℓ′ ∈ [h], let Y ℓ′,ℓ
i,j be an indicator random variable that takes value 1 if and

only if χ′
j(A

ℓ′
i,j) = ℓ, i.e., if all the points in column j assigned initially color ℓ′ are reassigned

color ℓ by χ′
j (if Aℓ′

i,j is empty, then the corresponding random variable is 0 with probability 1). Let

Y ℓ
i = |P ℓ

i | =
∑r

j∈[r], ℓ′∈[h] |Aℓ′
i,j |Y

ℓ′,ℓ
i,j be the random variable giving the number of points of row i

colored ℓ by χ′. Then an easy calculation shows that

E[Y ℓ
i ] =

∑
j∈[r], ℓ′∈[h]

|Aℓ′
i,j | · E[Y

ℓ′,ℓ
i,j ] =

∑
j∈[r], ℓ′∈[h]

|Aℓ′
i,j |
h
≤ B

h
, (15)

since the total number of points in row i of Gr is at most B.
Note that the variable Y ℓ

i is the sum of negatively correlated random variables6, and thus apply-
ing the Chernoff bound7, we get by Eq. (15) and Eq. (14)

Pr[Y ℓ
i ≥

B

h
· logB] ≤ e−

logB ln(logB)
8 . (16)

Thus, the probability that there exist i and ℓ such that Y ℓ
i > B logB

h is at most

rh(logB)−(logB)/8 ≤ 1

2
,

by condition (1). Therefore with probability at least 1/2, |P ℓ
i | ≤ B logB/h for all i and ℓ. Since

algorithm A has guarantee f(·), with constant probability, the total number of colors needed is

| range(χ)| ≤
h∑

ℓ=1

f(|P ℓ
i |) ≤ h · f(B logB/h) = q(B),

as claimed. �

6That is, for any subset {Xi : i ∈ S} of these variables, Pr[
∧

i∈S(Xi = 1)] ≤
∏

i∈S Pr[Xi = 1].
7In particular, the following version [14]: Let X =

∑n
i=1 aiXi be the weighted sum of negatively correlated random

variables Xi ∈ {0, 1}. Then Pr[X ≥ (1+ θ)µ] ≤ e−
µ
4a

(1+θ) ln(1+θ), for θ ≥ 1, a ≥ max{a1, . . . , an} and µ ≥ E[X].
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