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Abstract

Given a capacitated undirected graph G = (V,E) with a set of terminals
K ⊂ V , a mimicking network is a smaller graph H = (VH , EH) which
contains the set of terminals K and for every bipartition [U,K − U ] of the
terminals, the cost of the minimum cut separating U from K − U in G is
exactly equal to the cost of the minimum cut separating U from K − U in
H.

In this work, we improve both the previous known upper bound of 22
k
[1]

and lower bound of (k+ 1) [2] for mimicking networks, reducing the doubly-
exponential gap between them to a single-exponential gap as follows:

• Given a graph G, we exhibit a construction of mimicking network

with at most k’th Hosten-Morris number (≈ 2( (k−1)
b(k−1)/2c)) of vertices

(independent of the size of V ).

• There exist graphs with k terminals that have no mimicking network

with less than 2
k−1
2 number of vertices.
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1. Introduction

Suppose that there are small number of terminals or clients that are
part of a huge network such as the internet. Often, it is useful to construct
a smaller graph which preserves the properties of the huge network that
are relevant to the terminals. For example, if the terminals or the clients
are interested in routing flows through the large network, one would want
to construct a small graph preserving the routing properties of the original
network. The notion of mimicking networks introduced by Hagerup et al.
[1] is an effort in this direction.

Let G be an undirected graph with edge capacities ce for all e ∈ E, and a
set of k terminals K(⊂ V ) := {v1, v2, . . . vk}. A mimicking network for G is
an undirected capacitated graph H = (VH , EH) such that K ⊆ VH and for
each subset U ⊂ K of terminals, the cost of the minimum cut separating U
from K−U in H is exactly equal to the cost of the minimum cut separating
U and K − U in the graph G. Let us assume G to be connected; otherwise
we can consider each component separately. Here, we will use edge costs and
edge capacities interchangeably. As a corollary, the set of realizable external
flows (possible total flows at terminals) in G is preserved in a mimicking
network. The vertices of the mimicking network that are not terminals,
namely (VH −K) will be referred to as Steiner vertices.

The work of Hagerup et al. [1] exhibited a construction of mimicking

networks with at most 22
k

vertices for every graph with k terminals. Subse-
quently, Chaudhuri et al. [2] proved that there exist graphs that require at
least (k+1) vertices in its mimicking network. The same work also obtained
improved constructions of mimicking networks for special classes of graphs,
namely, bounded treewidth and outerplanar graphs.

Mimicking networks constituted the main building block in the develop-
ment of an O(n) time algorithm for computing the maximum s − t flow in
a bounded treewidth network [1] and for obtaining an optimal solution for
the all-pairs minimum-cut problem in the same class of networks [3].

Closely tied to mimicking networks, is the more general notion of ver-
tex sparsifiers [4] which only approximately preserve the cut values. While
there has been progress [5; 6] in efficient constructions of vertex sparsifiers
without Steiner nodes, the power of vertex sparsifiers with Steiner nodes is
poorly understood [7]. The following question originally posed by Moitra
[4] remains open: Do there exist cut sparsifiers with kO(1) additional Steiner
nodes that yield a better than O(log k/ log log k) approximation? In fact,
Moitra [4] points out that there could exist exact cut sparsifiers with only k
additional Steiner nodes.
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1.1. Our results:

In this paper, we show improved upper and lower bounds for mimicking
networks a.k.a. vertex cut sparsifiers with quality 1.

Theorem 1. There exist graphs with k terminals, for which every mimicking
network has at least 2k−1 − 1 edges and 2(k−1)/2 vertices.

Theorem 2. For every graph G, there exists a mimicking network that has

at most k’th Hosten-Morris number (≈ 2( (k−1)
b(k−1)/2c)) of vertices.

Related Work:. In a concurrent and independent work, Krauthgamer et al.
[8] showed a slightly weaker lower bound of

(
k
k/2

)
(< 2(k−1)) for the number

of edges of mimicking networks. Chambers et al. had mentioned an upper
bound of Dedekind number of vertices for mimicking networks, without an
elaborate proof in [9]. Dedekind number is the number of antichains in the
partial order ⊆ induced on the subsets of a (k − 1)-element set by contain-
ment. Hosten-Morris number is the number of intersecting antichains in
this partial order and thus gives a slight improvement over this bound.

2. Preliminaries

In this section, we set up the notation and present formal definitions of
the terms related to mimicking networks. Let c : E → R+

0 be the capacity
function of the graph. Let hG : 2V → R+

0 denote the cut function of G:

hG(A) =
∑
e∈δ(A)

c(e)

where δ(A) denotes the set of edges crossing the cut [A, V \ A]. Now we
define the terminal cut function hGK : 2K → R+

0 on K as

hGK(U) = minA⊂V,A∩K=UhG(A)

In words, hGK(U) is the cost of the minimum cut separating U from
K \ U in G. Let S(U) be the smallest subset of V such that hG(S(U)) =
hGK(U), S(U) ∩K = U i.e., S(U) is the partition containing U in the min-
imum terminal cut separating U from K − U . For any fixed U ⊂ K, the
minimum cut hGK(U) can be computed efficiently. We will sometimes abuse
this notation and use hGK(U) to denote both the size of the minimum termi-
nal cut and the set of edges belonging to the minimum terminal cut.

Contraction of edges will be our main tool to construct mimicking net-
works. Note that given a graph G and an edge e whose endpoints are not
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both terminals, contracting the edge e in the graph G will not decrease the
value of any minimum terminal cut.

Definition 1. A graph H = (VH , EH) is a contraction-based mimicking
network of graph G = (V,E) with terminal set K if there exists a function
f : V → VH such that the edge cost function of H is defined as follows:
cH(y, z) =

∑
u,v|f(u)=y,f(v)=z c(u, v) where (y, z) ∈ E(H) and (u, v) ∈ E(G).

3. Exponential Lower bound

In this section we will exhibit the lower bound on the size of mimicking
networks using a subtle rank argument. For a set of k terminals K, there are
2k−1−1 minimum terminal cuts. Let us enumerate these cuts by [Ui,K \Ui]
for i ∈ {1, 2, · · · p(= 2k−1 − 1)}. Fix p = 2k−1 − 1 for the remainder of the
section. Let hGK(Ui) be the minimum terminal cut separating Ui from the
rest of the terminals for i ∈ {1, 2, · · · p(= 2k−1 − 1)}.

Definition 2. A minimum terminal cut vector (MTCV) mG,K for graph G
with terminal set K, is a p-dimensional vector where i’th coordinate mG,K

i =
hGK(Ui).

Let Mk be the set of all possible minimum terminal cut vectors with
k terminals. Not all vectors v ∈ R2k−1−1 can be minimum terminal cut
vectors. The submodularity of the cut function introduces constraints on
the coordinates of the minimum terminal cut vector. For example there are
3 possible terminal cuts for graphs with terminal set size 3. However [0.1,
0.1, 0.8] is not a valid MTCV. First we prove that these minimum terminal
cut vectors form a convex set.

Lemma 1. Mk is a convex cone in R2k−1−1.

Proof. Note that by scaling the edges of a graph G, the corresponding min-
imum terminal cut vector also scales. Therefore, it is sufficient to show the
convexity of the set Mk.

Let G1 and G2 be graphs with terminal set K of size k. Let N1 and N2

be their set of non-terminals respectively i.e., Ni ∪K = V (Gi) for i = 1, 2.
Note that these graphs might have different edge weights or different number
of vertices. So depending on the edge values minimum terminal cuts will
have different values. Let us assume that t1 and t2 be the minimum terminal
cut vectors for graphs G1 and G2 with the same terminal set K and non
negative edge cost functions C1 and C2 respectively. We claim that for any
nonnegative λ1, λ2 such that λ1 + λ2 = 1, there exists a graph H with
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the same terminal set K and edge cost function C′ such that its minimum
terminal cut vector t′ = λ1t1 + λ2t2. Let H be a complete graph with
V (H) = K ∪N1 ∪N2. We start with all edge costs in H to be 0. Then for
i = 1 and 2, for all edges (u, v) ∈ E(Gi), we increase the cost of edge (u, v)
in H by λiCi(u, v). The final graph has a MTCV of value

∑2
i=1 λiti. We

call H to be a convex combination of G1 and G2 with respect to K.

Now we show the central lemma regarding the range of the minimum
terminal cut vectors.

Lemma 2. The set Mk has nonzero volume.

Proof. The 0 vector is an MTCV for a completely disconnected graph. For
each i ∈ {1, . . . , p}, we will show that a line segment in the ith direction
belongs to Mk. By the convexity of the set Mk (Lemma 1) this will imply
that the set Mk has nonzero volume, i.e., it is full dimensional.

To demonstrate a line segment along direction i ∈ {1, . . . , p}, we will
show that there exist two MTCVs that differ only in the i’th coordinate and
are the same in all other p− 1 coordinates. Fix a subset Ui of terminals. To
construct MTCVs that differ only on the ith coordinate, construct a graph
Hi for terminal sets Ui as shown in Figure 1. Connect all terminals in K−Ui

Figure 1: Graph corresponding to terminal cut [Ui,K \ Ui]

to a non-terminal u0 with edge costs 1/|K−Ui|. Connect all terminals in Ui
to another non-terminal v0 with edge costs 1/|Ui|. Put an edge between u0
and v0 with edge cost (1−ε) where 0 < ε < min{1/|Ui|, 1/|K−Ui|}. So, the
value of the minimum terminal cut separating Ui from K−Ui is (1− ε) and
it contains only the edge (u0, v0). All other minimum terminal cuts have
value ≤ 1 and do not contain the edge (u0, v0) as any cut containing (u0, v0)
and some other edge has value at least (1−ε)+min{1/|Ui|, 1/|K−Ui|} > 1.
So, we can change the value of ε between 0 and min{1/|Ui|, 1/|K − Ui|} to
obtain a line segment contained in Mk along the direction i.
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Definition 3. For a given graph G with terminal set K, the cut matrix SG
is a p× |E(G)| matrix where Sij = 1 if edge ej ∈ hGK(Ui) and 0 otherwise.

Theorem 3. (Restatement of Theorem 1) There exist graphs with k ter-
minals, for which every mimicking network has at least 2k−1 − 1 edges and
2(k−1)/2 number of vertices.

Proof. Suppose every graph G with k terminals has a mimicking network
with t vertices.

Consider a mimicking network H with t vertices for a graph G with k
terminals. There are 2t−1−1 possible cuts in the graph H. Therefore, there
are at most (2t−1 − 1)p different cut matrices SH of H. The specific cut
matrix SH depends on the weights of the edges in H.

Let us refer to these matrices as S1, S2, . . . , S(2t−1−1)p . Each matrix Si

can be thought of as a linear map Si : R(t
2) → R2k−1−1. For every graph G,

there exists a choice of weights wij for the edges of H, and a choice of the
cut matrix S` (determined by the weights), such that S`w is equal to the
minimum terminal cut vector hGK of the graph G. Therefore, the set Mk of

all the MTCVs is in the union of the ranges of the linear maps {Si}(2
t−1−1)p

i=1 .
However, since Mk has non-zero volume (is of full dimension), at least

one of the linear maps Si must have rank at least 2k−1 − 1. Therefore(
t
2

)
≥ 2k−1 − 1, which implies that t ≥ 2(k−1)/2.

4. Improved Upper Bounds on Size of Mimicking Networks

Theorem 4. (Restatement of Theorem 2) For every graph G, there ex-
ists a mimicking network that has at most k’th Hosten-Morris number (≈
2( (k−1)
b(k−1)/2c)) of vertices.

Proof. We present a more accurate analysis of the algorithm in [1] (restated
in Algorithm 1) that constructs the mimicking network from the graph.

While the algorithm creates 22
k−1−1 clusters, we show that by the prop-

erties of the terminal cut structure many of the clusters are empty. We
upper bound the number of vertices in H by k’th Hosten-Morris number to
complete the proof.

For a terminal cut [U,K − U ] where vk /∈ U , let {S(U), VG − S(U)}
denote the partition induced by the minimum cut separating [U,K − U ].
If there are multiple minimum terminal cuts, we take any one with small-
est cardinality |S(U)|. Now let us prove two structural properties of these
minimum terminal cuts.
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1. Find all minimum terminal cuts using the max-flow algorithm;

2. Partition the graph into 22
k−1−1 clusters C1, C2 · · · C22k−1−1 such

that two vertices u, v belong to the same cluster if they appear on the
same side of all the minimum terminal cuts ;
3. Contract each non-empty cluster into a single node ;
4. Return the contracted graph H ;

Algorithm 1: Algorithm for Exact-Cut-Sparsifier

Lemma 3. If X ⊆ Y ⊆ K then S(X) ⊆ S(Y ).

Proof. From the submodularity property of cuts, we get

(hG(S(X)) + hG(S(Y ))) ≥ (hG(S(X) ∪ S(Y )) + hG(S(X) ∩ S(Y )))

≥ (hG(S(X ∪ Y ) + hG(S(X ∩ Y ))) = (hG(S(Y )) + hG(S(X))).

Here the second inequality follows from the fact that hG(S(X) ∪ S(Y )) ≥
hG(S(X ∪ Y )) and hG(S(X) ∩ S(Y )) ≥ hG(S(X ∩ Y )). Now as all the
inequalities are tight, we get hG(S(X)∪S(Y )) = hG(S(X∪Y )) = hG(S(Y ))
and hG(S(X) ∩ S(Y )) = hG(S(X ∩ Y )) = hG(S(X)). We have hG(S(X) ∩
S(Y )) = hG(S(X)), but recall that among all the minimum cuts separating
(X,K −X), S(X) has the smallest cardinality. This implies S(X) ⊆ S(Y ).

Lemma 4. If X ∩ Y = φ then S(X) ∩ S(Y ) = φ.

Proof. The lemma follows from Lemma 3 and from X ⊆ K − Y .

Note that each cluster created by Algorithm 1, is basically the intersec-
tion of partitions containing S(X) for some minimum terminal cuts (X,K−
X) and the complement of S(X) for the remaining minimum terminal cuts.
Let B ⊆ {U ⊂ K, vk /∈ U} i.e., B is a collection of subsets of K that do not
contain vk. Let us define A(B) = (∩Z∈BS(Z)) ∩ (∩W⊆{K−vk},W /∈BS(W )).
Each A(B) corresponds to a cluster produced by the algorithm. We will
show that A(B) is empty for many choices of B.

Lemma 5. If A(B) 6= φ then B is an upward closed set i.e., (∀P ∈ B,P ⊆
Q ⊆ {K − vk} ⇒ Q ∈ B).

Proof. Suppose that there exists a Q /∈ B such that for some P ∈ B and
Q ⊇ P . From Lemma 3, S(P ) ⊆ S(Q). By definition, A(B) ⊆ S(P )∩S(Q).
Hence, we get A(B) ⊆ S(P ) ∩ S(Q) = φ, a contradiction.
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From Lemma 5, if A(B) 6= φ then B is an upward closed set. Now
the minimal elements of the upper sets form an antichain. Moreover from
Lemma 4, two completely disjoint elements in B lead to an empty region.
So the number of non-empty clusters is upper bounded by the number of
antichains of subsets of (k − 1)-element sets where any two members of the
antichain have non-empty intersection. This number is k’th Hosten-Morris
number.

The above techniques can be extended to get improved upper bounds
for mimicking networks for several special graph families. For example, for
planar graphs with all terminals on the outer face, the number of vertices
(non-empty clusters) produced by Algorithm 1 is O(k4). The key obser-
vation is that instead of all 2k terminal cuts [U,K − U ], considering only
O(k2) minimum terminal cuts where both U and K−U are contiguous sets
of terminals on the outer face, suffice to get all non-empty regions.

Using this improved upper bound for general graphs and a more careful
analysis of the algorithm for bounded treewidth graphs in [2], we obtain an

improved upper bound of k ·2( (2t+1)
(2t+1)/2) for graphs with treewidth t. Similarly,

a tighter analysis on the number of vertices in the dual graph of the planar
triangulation of an outerplanar graph gives an improved bound of 5k−9 for
the number of vertices in the mimicking network.

Another interesting observation is that we can use Y −∆ reduction, well-
studied in graph theory literature (See [10]), to construct better mimicking
networks for trees. Y −∆ reduction preserves minimum terminal cut values
by applying appropriate edge capacities in each reduction. For example, one
can apply Y −∆ reductions on a tree T with k terminals to obtain a tree T ′

with k terminals such that each non-terminal vertex in T ′ has degree at least
3 and all leaves are terminals. So at most there are (2k − 2) vertices and
(2k − 3) edges. We can add appropriate d(>> Σe∈Ec(e)) capacity edges (if
needed) in T ′ to make the tree 3-regular and the set of terminals as the set
of leaves. Adding these edges does not affect any minimum terminal cuts.
Notice that then we can apply Y −∆ transformation on all nonterminals on
either odd level or even level of this tree. The maximum among the number
of nonterminals in odd and even level is at least dk−22 e and we delete all such

vertices when we apply Y − ∆ transformation. Thus |VH | ≤ k + bk−22 c =

b(3k2 )−1c. This gives a mimicking network for trees with at most b(3k2 )−1c
vertices.
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5. Conclusion

The results of this work reduce the gap between the upper and lower
bounds for the size of the mimicking networks on general graphs from
doubly-exponential to exponential. Our techniques also yield improved
bounds for special classes of graphs. The main question that remains open is
whether there exist exponential sized mimicking networks for general graphs.
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Appendix A. Comparison of Different Bounds

Hosten-Morris numbers are a rapidly-growing integer sequence defined
as follows: Consider the partial order ⊆ induced on the subsets of an (n−1)-
element set by containment. The nth Hosten-Morris number Z(n) counts
the number of intersecting antichains in this partial order. Equivalently,
Hosten-Morris numbers counts the number of self-dual monotone Boolean
functions of n variables or the number of simplicial complexes on the set
{1, ..., n− 1} such that no pair of faces covers all of {1, ..., n− 1}. Dedekind
numbers M(n−1) are related numbers which count the number of antichains
in this partial order. Kleitman and Markowsky showed that:(

n

bn/2c

)
≤ logM(n) ≤

(
n

bn/2c

)
(1 +O(log n/n)) (A.1)

Note that M(k−2) ≤ Z(k) ≤M(k−1). Asymptotically Z(k) ≈ 2( (k−1)
b(k−1)/2c).

Table A.1: Different bounds related to N(k)

k Lower Upper k’th (k − 1)th 22
k−1 − 1

bound bound Hosten-Morris Number Dedekind No.

Z(k) M(k − 1)

2 2 2 2 2 3
3 3 3 4 5 15
4 5 5 12 19 255
5 6 6 81 167 65535
6 9 2646 2646 7580 4.29× 109

Appendix B. Improved Constructions for Special Classes of Graphs

Appendix B.1. Bounded Treewidth Graphs

Theorem 5. Let G be a n-vertex network of treewidth t and K is the set
of terminals such that |K| = k, then we can construct a mimicking network

for G that has size at most k · 2( (2t+1)
(2t+1)/2).

Proof. Let us prove this using induction on k. For k ≤ 2(t+1), the induction
hypothesis holds from Theorem 2. Now we assume that the theorem holds
for all k′ < k and we will show that it holds for the graph with k terminals
too.
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Let T = (I, F ) be an augmented binary tree decomposition of G. Let G−v
and G+

v are subgraphs of G spanned by T−v (the subtree of T rooted at v ∈ I)
and T+

v = T \ T−v (the rest of the tree). Define K+
v = K ∩ V (G+

v ), K−v =
K ∩V (G−v ) and U = (X(parent(v))∩X(v)). Note that from the continuity
property of tree decomposition, U is a vertex separator. Now if |K+

v ∪U | < k
and |K−v ∪U | ≤ 2(t+ 1) then we can construct a mimicking network of size

(k − 1) · 2(2(t+1)
(t+1) ) for G+

v with K+
v ∪ U as terminal set and a mimicking

network of size 2(2(t+1)
(t+1) ) for G−v with K−v ∪U as terminal set. Glueing these

two networks at U will give a mimicking network of the required size for G
with terminals K.

Now let us show how to find such a v satisfying |K+
v ∪ U | < k and

|K−v ∪ U | ≤ 2(t + 1). Let w ∈ I such that |K−w | > 2(t + 1). Such a
vertex exists as k > 2(t + 1). Let l and r be the children of w in T . Let
X(l) ∩ X(w) = U,U ∩ K = Z1, U \ K = N i.e., Z1 and N are the set
of terminals and nonterminals in U. Also assume (V (G−l ) \ X(w)) ∩ K =
A, (V (G−r ) \ X(w)) ∩ K = B i.e., A (or B) are the terminals present only
in G−l (or G−r ) but not in X(w). Let Z2 = (X(w) \ (A ∪ B)) ∩ K i.e.,
the set of terminals present in X(w) but not in G−l or G−r . Let |A| =
a, |B| = b, |Z1| = z1, |Z2| = z2. Then the total number of terminals in
Q−w = a + b + z1 + z2 > 2(t + 1). W.l.o.g., assume a > b. Then we get
a > (t + 1) − z1+z2

2 . Also we get, z1 + z2 + N ≤ |X(w)| ≤ (t + 1). On

the other hand, |K+
l ∪ U | ≤ (k − a + N) ≤ k − (t + 1) + z1+z2+N

2 + N
2 ≤

k − (t + 1) + (t+1)
2 + N

2 ≤ k + N−(t+1)
2 < k. Hence if |K−l ∪ U | ≤ 2(t + 1)

then v = l. Otherwise repeat this with l and its children to get the desired
vertex v.

Appendix B.2. Trees

We will use Y −∆ reduction to construct better mimicking network for
tree. Y −∆ reducibility is well-studied in graph theory literature (See [10]).

A graph G is said to be Y −∆ reducible to a simple graph H, if G can
be reduced to H by repeated applications of following four reductions and
two transformations. We claim that Y − ∆ reduction preserves minimum
terminal cut values by applying appropriate edge capacities in each reduc-
tion as follows:
R0: Loop reduction: Just delete the loop.
R1: Degree-one reduction: Delete a degree one non-terminal and its incident
edge. Note that the incident edge on the non-terminal does not take part in
any minimum terminal cut
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R2: Series reduction: Delete a degree two non-terminal y and its two inci-
dent edges xy and yz and add a new edge xz with capacitymin(c(x, y), c(y, z)).
R3: Parallel reduction: Replace parallel edges by a single edge with capacity
of the new edge as the sum of the capacity of parallel edges .
Y − ∆ transformation: Let x be a degree 3 nonterminal with neighbors
u, v and w, then we can delete x and add edges (u, v), (v, w), (w, u) with

edge capacities c(u,x)+c(v,x)−c(w,x)
2 , c(v,x)+c(w,x)−c(u,x)2 and c(u,x)+c(w,x)−c(v,x)

2
respectively.
∆− Y transformation: Delete the edges of a ∆ xyz, add in a new vertex w
and new edges wx,wy,wz with edge capacity c(x, y)+c(x, z), c(x, y)+c(y, z)
and c(x, z) + c(y, z) respectively.

Theorem 6. Given an undirected, capacitated tree T = (V,E) and a set
K ⊂ V of terminals of size k, we can construct a mimicking network TH =
(VH , EH) which is a tree and |VH | ≤ 2k−2. We can also create a mimicking
network of T which is outerplanar and has at most b(3k2 ) − 1c vertices and
(2k − 3) edges.

Proof. Assume we get the tree T ′ after applying reductions R0-R3 of Y −∆
reduction on T . It follows that each non-terminal vertex in T ′ has degree at
least 3 and all leaves are terminals. So at most there are (2k−2) vertices and
(2k−3) edges. Let d >> Σe∈Ec(e). Now we add appropriate d capacity edges
(if needed) in T ′ to make the tree 3-regular and the set of terminals as the set
of leaves. Adding these edges does not affect any minimum terminal cuts.
Notice that we can apply Y −∆ transformation on all nonterminals on either
odd level or even level. The maximum among the number of nonterminals
in odd and even level is at least dk−22 e and we delete all such vertices when

we apply Y −∆ transformation. Thus |VH | ≤ k+bk−22 c = b(3k2 )−1c. As an
outerplanar graph remains outerplanar after applying Y −∆ transformation,
the resultant graph obtained from T is an outerplanar graph.

Appendix B.3. Outerplanar Graphs

Theorem 7. Given an undirected outerplanar graph G = (V,E) with a set
K ⊂ V of terminals of size k ≥ 3, 5k− 9 vertices are sufficient to construct
an exact cut sparsifier.

Proof. Let us assume the graph to be 2-connected, otherwise appropriate 0-
cost edges can be added to make it 2-connected keeping the outerplanarity
property intact. Consider the dual graph of the planar triangulation of G.
Removing the vertex corresponding to the outer face gives a dual tree T .
We will refer to the vertices of the tree T as nodes. Removing the degree 3
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nodes divides T into several components that are paths or isolated vertices.
We will slightly abuse notation and call isolated vertices as paths of length
0. If some component contains a leaf node of T we call it a leaf-path and
otherwise call it a nonleaf-path. If ui is a node of T , then we denote D(ui)
to be the dual face corresponding to ui in G.

We define D(P ) to be the dual complex of a path P := u1, u2 . . . um in T
so that D(P ) = G[∪ui∈V (P )D(ui)] i.e., subgraph induced by vertices in the
dual of P . Assume C0, C1, C2, C3, C4 are the sets of leaf-paths whose corre-
sponding dual complexes in G contain 0, 1, 2, 3 or > 3 terminals. Similarly
assume C5, C6, C7 are the sets of non-leaf paths whose corresponding dual
complexes in G contain 0, 1 or > 1 terminals respectively. Let ci = |Ci| for
i ∈ [7]. Note that we can delete paths in C0 as their dual complexes are not
a part of any minimum terminal cuts.

Now we will find the mimicking networks of dual complexes of all leaf-
paths and nonleaf-paths and glue them together at the splitting vertices
(dual complexes of degree 3 nodes in T ). Essentially we are splitting the
original graph G into several subgraphs at D(vi)’s where vi ∈ T, deg(vi) = 3.
After the splitting, apart from the terminals in K, we consider the splitting
vertices also as terminals and thus dual complexes of leaf-paths in C1, C2, C3

contain at most 3, 4, 5 terminals respectively. Similarly, dual complexes
of non-leafpaths in C5, C6 contain at most 4, 5 terminals respectively. So
dual complexes of paths in C1, C2, C3, C5, C6 can be replaced by mimicking
networks of size 3, 5, 6, 5 and 6 respectively. C4 and C7 need special care.

For P ∈ C4(|P ∩K| = xP ), start with the leaf node and divide the path
into disjoint subpaths P 4

0 , P
4
1 , . . . , P

4
s such that the number of terminals

(including splitting vertices as terminals) in the dual complexes of these
subpaths are at most 5 and |D(P 4

0 ) ∩ K| ≥ 4, and |P 4
s ∩ K| ≥ 1 and for

Pi(i 6= 0, s), |P 4
i ∩K| ≥ 3. Find mimicking network of D(P 4

i ) for i = 0, 1, . . . s
and then glue them back together to get mimicking network of D(P ). Now
each time when we glue back a mimicking network of size m, we increase the
number of vertices by (m−2), apart from the first mimicking network. Thus,

the mimicking network for P consists of ≤ 2+(6−2)+ (xP−4)
2 (6−2)+(5−2) =

(2xP + 1) vertices.
Similarly, for nonleaf-path P ∈ C7 (|P ∩ K| = wP ), we can divide the

path into disjoint subpaths P 7
0 , P

7
1 , . . . , P

7
t such that the number of terminals

(including splitting vertices as terminals) in the dual complexes of these
subpaths are at most 5. The mimicking network for P consists of ≤ 2+(6−
2) + (wP−1)

2 (6− 2) = (2wP + 4) vertices.
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Counting terminals on all the paths gives the following inequality:

(c1 + 2c2 + 3c3 + c6 +
∑
P∈C4

xP +
∑
P∈C7

wP ) ≤ k (B.1)

On the other hand, the number of non-leaf path is at most k − 3. Thus we
get the following inequality:

(c5 + c6 + c7) ≤ (k − 3) (B.2)

Similarly, the number of degree 3 nodes in T ≤ (c1 + c2 + c3 + c4 − 2).
Recall that each time when we glue back a mimicking network of size m, we
increase the number of vertices by (m − 2), apart from the first mimicking
network. Then the size of the mimicking network
≤ 2 + c1(3− 2) + c2(5− 2) + c3(6− 2) + c5(5− 2) + c6(6− 2) +

∑
P∈C4

(2xP +
1− 2) +

∑
P∈C7

(2wP + 4− 2) + (c1 + c2 + c3 + c4 − 2)
= 2+2c1+4c2+5c3+3c5+4c6−2+c4+

∑
P∈C4

(2xP +1−2)+
∑

P∈C7
(2wP +

4− 2)
=2c1 + 4c2 + 5c3 + 3c5 + 4c6 + 2c7 +

∑
P∈C4

(2xP ) +
∑

P∈C7
(2wP )

≤ 2(c1 + 2c2 + 3c3 + c6 +
∑

P∈C4
(xP ) +

∑
P∈C7

(wP )) + 3(c5 + c6 + c7)
≤ 2k + (3k − 9) = 5k − 9.
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