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Rectangle Stabbing



The Rectangle Stabbing Problem

Given: set of n axis-parallel rectangles R in the two-dimensional plane.
Goal: to compute a set of line segments L that stab all input rectangles.



Horizontal Stabbing Problem



Horizontal Stabbing Problem



General Stabbing Problem



Motivation

Can be viewed as a resource allocation problem.
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Motivation

Can be viewed as a resource allocation problem.

Stabbing is a special case of weighted set cover.

Also has applications in practical problems like VLSI circuit layout.



Past Work

O(1)-approximation [CvDF+18]: Chan, van Dijk, Fleszar, Spoerhase, and Wolff
(ISAAC18) started the study of this problem and gave a constant factor
approximation for general stabbing.

(1+ ε)-approximation (npoly log n time) [EGSV21]: Recently, Eisenbrand, Gallato,
Svensson, and Venzin presented a QPTAS for horizontal stabbing.

This leaves the open question of finding a PTAS for general and horizontal stabbing.



Our Results

There is a polynomial time (1 + ε)-approximation algorithm, for the horizontal
stabbing problem.

There is a polynomial time (2 + ε)-approximation algorithm, for the general
stabbing problem.

There is a polynomial time (1 + ε)-approximation algorithm, for the general
stabbing problem, assuming that each input rectangle has height at least its width.

There is a PTAS for the general square stabbing problem.



Outline of the talk

Pre-processing

Dynamic Programming Algorithm

Construction of DP recursion tree



Pre-processing

Scale the widths so that ε/n < wi ≤ 1.
This also ensures that all the x-coordinates lie in the range [0, n].
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Figure: Preprocessing: Scaling



Pre-processing

Stretch the heights so that all y -coordinates lie in the range [0, 4n2].
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Figure: Preprocessing: Stretching



Pre-processing

Now, we discretize all the x and y -coordinates to multiples of ε/n.
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Figure: Preprocessing: Discretization



Pre-processing

Lemma

By losing a factor (1 + O(ε)) in the approximation ratio, we can assume that the
following properties hold:
(i) Width of every rectangle is in [ εn , 1],
(ii) All x-coordinates are discretized and within [0, n],
(iii) All y-coordinates are discretized and within [0, 4n2].



Dynamic Programming

Now we describe our DP based algorithm, which has
a cell DP(S ,L) for each combination of

a rectangular region S ⊆ [0, n]× [0, 4n2] with
discretized coordinates.
a ‘small’ set L of at most 3(1/ε)3 line
segments with discretized coordinates.

This DP-cell corresponds to the subproblem of
stabbing all rectangles contained in S which are not
already stabbed by L.

Figure: discretized cells and segments
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Dynamic Programming

We do the following operations to produces a set of candidate solutions:

1. Trivial operation: If there is a line segment ℓ ∈ L
such that it divides S into 2 rectangular regions,
then we add ℓ to the subproblem solution, and
recurse on the 2 smaller rectangular cells.



Dynamic Programming

We do the following operations to produces a set of candidate solutions:

2. Add operation: Consider each ‘small sized’ set
L′, of discretized segments contained in S . We
define the solution L′ ∪ SOL(S ,L ∪ L′) as a
candidate solution.
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Dynamic Programming

We do the following operations to produces a set of candidate solutions:

3. Line operation: Consider each line ℓ with
discretized vertical/horizontal coordinates that
divides S into 2 rectangular regions, S1 and S2. If
Rℓ are the rectangles (in S) stabbed by ℓ, do the
following:

1 compute a O(1)-approximate solution L(Rℓ),
for rectangles in Rℓ [CvDF+18].

2 produce the candidate solution as union of
L(Rℓ) and subproblem solutions of S1 and S2.
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Dynamic Programming

We do the following operations to produces a set of candidate solutions:
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Runtime

No. of grid points: Oε(poly(n)).

No. of rectangular cells: Oε(poly(n)).
No. of line segments: Oε(poly(n)).
No. of sets of line segments: Oε(poly(n)).

No. of DP cells: Oε(poly(n)).
Possible no. of line operations: Oε(poly(n)).
Possible no. of add operations: Oε(poly(n)) (note that trivial operations on any
segment can be charged to the corresponding add operation on the same segment).

This brings the total runtime of our algorithm to Oε(poly(n)) as required.
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DP Decision Tree

We define a DP decision tree, as a tree that describes any valid run of a recursive
algorithm that breaks down a given subproblem into smaller subproblems using one of
the 3 valid DP operations.



Tree construction

We define now a DP-decision-tree for which cost(SOL(S ,L)) ≤ (1 + ε)OPT.

We start by defining a hierarchical grid
of vertical lines. The grid lines have
levels. For each level j ∈ N0, there is a
grid line {a+ k · εj−2} × R for each
k ∈ N, and random offset a.

We say that a line segment ℓ ∈ OPT
is of level j if |ℓ| ∈ (εj , εj−1].
We say that a line segment of some
level j is well-aligned if both its
end-points lie on a vertical(/imaginary
horizontal) grid line of level j + 3.

level 0

(1/3)−2
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Tree construction

Lemma

By losing a factor 1 + O(ε), we can assume that each line segment ℓ ∈ OPT is
well-aligned.



Tree construction
(at level j)

At some level j , we do line operations along the grid lines of that level.

εj−2εj−1εj



Tree construction
(at level j)

In a subproblem thus created, if there are more than ε−3 end points of segments from
OPT of level j , do a horizontal line operation to divide into further cells.

εj−2εj−1εj



Tree construction
(at level j)

This is where the magic happens! Do trivial operations, and line operations on
segments from level j − 2.

εj−2εj−1εj



Tree construction
(at level j)

Do appropriate add operations.

εj−2εj−1εj



Random offset gives good solution

Lemma

There is a choice for the offset a, such that the solution SOL([0, n]× [0, 4n2], ∅) in T
has a cost of at most (1 + O(ε))OPT.

Theorem

There is a polynomial time (1 + ε)-approximation algorithm, for the general stabbing
problem, assuming that each input rectangle has height greater than its width.



Results

Corollary

There is a PTAS for the general square stabbing problem.



Results

Corollary

There is a polynomial time (1 + ε)-approximation algorithm, for the horizontal stabbing
problem.



Results

Corollary

There is a polynomial time (2 + ε)-approximation algorithm, for the general stabbing
problem.



Open Questions

Is there a PTAS possible for the general rectangle stabbing problem? Can ideas
from our DP be reused?

Does Cardinality or Constrained Stabbing admit a constant factor approximation?



PTAS for δ-large Rectangles

Preprocess the input (as before) incurring a factor (1 + ε) loss.

Do vertical line operations along level 0 grid lines, and horizontal line operations to
divide instance into smaller cells.

There are at most Oε,δ(1) ‘large’ segments in a cell. Guess them by enumeration.

The remaining instance can now be partitioned into two disjoint instances with
hi ≥ wi and wi > hi .



PTAS for δ-large Rectangles

Theorem

For Gen-Stabbing with δ-large rectangles, there is a (1 + ε)-approximation algorithm
with a running time of (n/ε)O(1/δε3).
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