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The bin packing problem is a well-studied problem in combinatorial optimization. In the classical bin
packing problem, we are given a list of real numbers in (0, 1] and the goal is to place them in a minimum
number of bins so that no bin holds numbers summing to more than 1. The problem is extremely important
in practice and finds numerous applications in scheduling, routing and resource allocation problems.
Theoretically the problem has rich connections with discrepancy theory, iterative methods, entropy
rounding and has led to the development of several algorithmic techniques. In this survey we consider
approximation and online algorithms for several classical generalizations of bin packing problem such
as geometric bin packing, vector bin packing and various other related problems. There is also a vast
literature on mathematical models and exact algorithms for bin packing. However, this survey does not
address such exact algorithms.

In two-dimensional GEOMETRIC BIN PACKING, we are given a collection of rectangular items to be
packed into a minimum number of unit size square bins. This variant has a lot of applications in cutting
stock, vehicle loading, pallet packing, memory allocation and several other logistics and robotics related
problems. In d-dimensional VECTOR BIN PACKING, each item is a d-dimensional vector that needs to be
packed into unit vector bins. This problem is of great significance in resource constrained scheduling and
in recent virtual machine placement in cloud computing. We also consider several other generalizations
of bin packing such as geometric knapsack, strip packing and other related problems such as vector
scheduling, vector covering etc. We survey algorithms for these problems in offline and online setting,
and also mention results for several important special cases. We briefly mention related techniques used
in the design and analysis of these algorithms. In the end we conclude with a list of open problems.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The bin packing problem has been the corner stone of
approximation algorithms and has been extensively studied
starting from the early seventies. In the classical BIN PACKING
problem, we are given a list I = {iy, i3, ..., iy} of real numbers
in the range (0, 1], the goal is to place them in a minimum number
of bins so that no bin holds numbers summing to more than 1.

Bin packing is a special case of the one-dimensional CUTTING
sTocK problem [1], loading problem [2] and several scheduling
related problems [3]. One of the first nontrivial results on bin
packing was due to Ullman in 1971 [4]. He studied the problem
from the standpoint of memory allocation problems such as table
formatting, prepaging and file allocation, and noticed that finding
a general placement algorithm for attaining the minimum number
of bins appears to be impractical. He then provided asymptotic
analysis of two heuristics: FIRSTFIT (FF) and BesTFiT (BF). Soon
in 1972, Garey, Graham and Ullman [5], provided more detailed
analysis of four heuristics: FIRSTFIT, BESTFIT, FIRSTFITDECREASING
(FFD) and BESTFITDECREASING (BFD). In his thesis, Johnson [6]
studied several other algorithms and analysis techniques for
bin packing problems. Then Johnson, Demers, Ullman, Garey
and Graham [7] published definitive analysis of the worst case
guarantees of several bin packing approximation algorithms.
The bin packing problem is well-known to be NP-hard [8] and
the seminal work of Johnson et al. initiated an extremely rich
research area in approximation algorithms [9]. In fact the term
approximation algorithm was coined by David S. Johnson [10]
in an influential and prescient paper in 1973 where he studied
algorithms for bin packing and other packing and covering related
optimization problems. The introductory chapter of Handbook
of Approximation Algorithms and Metaheuristics [11] mentions:
“Research on bin packing problem and its variants has attracted very
talented investigators who have generated more than 650 papers,
most of which deal with approximations”. For online algorithms,
bin packing (and related load balancing problem) is one of the
key problems. In the book Online Computation and Competitive
Analysis [12], bin packing has been used as the first introductory
example to explain online algorithms.

Bin packing is also extremely useful in practice and has a lot
of applications in various fields. Skiena [13] has presented market
research for the field of combinatorial optimization and algorithms,
attempting to determine which algorithmic problems are most
in demand for applications, by studying WWW traffic. Both bin
packing and related knapsack problem were among top five most
popular NP-hard problems. The implementations of algorithms for
bin packing and knapsack problems were the most needed among
all NP-hard problems, even more than problems such as set-cover,
traveling salesman and graph-coloring.

Garey and Johnson [14], followed by Coffman et al. [15], gave
comprehensive surveys on bin packing algorithms. Coffman and
Lueker also covered probabilistic analyses of packing algorithms
in detail [16]. Galambos and Woeginger [17] gave an overview
restricted mainly to online variants of bin packing problems. There
had been many surveys on bin packing problems thereafter [11,18,
19]. The most recent, extensive coverage on 1-D bin packing was
given by Coffman et al. [20].

In this survey, we primarily focus on packing in higher dimen-
sions due to its prominence in many real world applications. We
primarily consider two generalizations of bin packing: GEOMETRIC
BIN PACKING and VECTOR BIN PACKING.

In two-dimensional (2-D) GEOMETRIC BIN PACKING (GBP), we
are given a collection of rectangular items to be packed into
a minimum number of unit-size square bins. This variant and
other higher dimensional GBP variants have vast applications in
cutting stock, vehicle loading, pallet packing, memory allocation
and several other logistics and robotics related problems [1,21].
In two dimensions, packing objects into containers has many
important applications, e.g., in the context of cutting out a given
set of patterns from a given large piece of material minimizing
waste, typically in sheet metal processing and apparel fabrication.
In three dimensions, these problems are frequently encountered in
minimizing storage space or container space for transportation. In
this survey we consider the widely studied orthogonal packing case,
where the items must be placed in the bin such that their sides
are parallel to the sides of the bin. In any feasible solution, items
are not allowed to overlap. Here two variants are usually studied,
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(i) where the items cannot be rotated (packing by translations),
and (ii) they can be rotated by 90 degrees (packing by restricted
rigid motions). These variants are also recurrent in practice, e.g., in
apparel production usually there are patterns of weaving or texture
on the material so that the position where a piece should be cut
cannot be rotated arbitrarily.

In d-dimensional VECTOR BIN PACKING (VBP), each item is a
d-dimensional vector that needs to be packed into unit vector
bins. The problem is of great significance in resource constrained
scheduling and appeared also recently in virtual machine place-
ment in cloud computing [22]. For example, consider each job
(item) has multiple resource requirements (dimensions) such as
CPU, memory, 1/0, disk, network etc. and each server (bin) has a
bounded amount of these resources. The goal to assign all jobs to
minimum number of servers, without violating the resource con-
straints, translates to the vector packing problem. Even in two di-
mensions, vector packing has many novel applications in layout
design, logistics, loading and scheduling problems [23,24].

These generalizations have been well studied since the 1970s.
Baker, Coffman, and Rivest first considered orthogonal packings
in two dimensions [25]. At the same time Coffman et al. [26]
gave performance bounds for level-oriented two-dimensional
packing algorithms such as NEXTFITDECREASINGHEIGHT (NFDH) and
FIRSTFITDECREASINGHEIGHT (FFDH). Lodi, Martello and Monaci first
gave a survey on two-dimensional packing problems [27]. Epstein
and van Stee gave a survey in [11] on multi-dimensional bin
packing. There has been consistent progress in the area since then.
We will provide a detailed survey of related works in the later
corresponding sections.

1.1. Organization of the Survey

In Section 2, we introduce related definitions and notation. In
Section 3, we discuss results related to geometric bin packing.
Thereafter in Section 4, we discuss results related to vector packing.
Finally, in Section 5 we conclude with a list of open problems.

2. Preliminaries

In this section we introduce relevant notation and definitions
required to define, analyze and classify bin packing related
problems. Some more additional definitions will be introduced
later on as required.

2.1. Approximation algorithms and inapproximability

Approximation Algorithm is an attempt to systematically
measure, analyze, compare and improve the performance of
heuristics for intractable problems. It gives theoretical insight
on how to find fast solutions for practical problems, provides
mathematical rigor to study and analyze heuristics, and also
gives a metric for the difficulty of different discrete optimization
problems. Let IT be a minimization problem, { be the set of input
instances for I7 and + be an algorithm for I7. Let A(I) be the
objective function value of the solution returned by algorithm 4
on instance I and Opt(I) be the objective function value of the
corresponding optimal solution.

Definition 2.1 (Approximation Ratio). 4 is a p-(multiplicative)-
approximation algorithm if A(I) < p - Opt(I) holds for every input
instancel € {.

The infimum over the set of all values p such that 4 is
p-approximation is called to be the approximation ratio p, of the
algorithm.

In this survey we consider problems for which Opt(I) > 0
where alternatively we can also define:

N 0
Pa =T opt) [

Analogously an algorithm . for a maximization problem IT’ is
called a p-approximation algorithm if A(I) > % - Opt(I) holds for
every instance I of IT’. This asymmetry ensures that p > 1 for all
approximation algorithms.

In some cases, quality of the heuristic is measured in terms of
additive approximation. In other words, an algorithm + for a min-
imization problem I7 is called a o-additive approximation algo-
rithm if A(I) < Opt(I) 4o holds for every instance I of IT. Additive
approximation algorithms are relatively rare. Karmarkar-Karp’s
algorithm [28] for one-dimensional bin packing is one such exam-
ple.

For detailed introduction to approximation algorithms, we
refer the readers to the following books on approximation
algorithms [29,30,11,9].

Definition 2.2 (Polynomial Time Approximation Scheme (PTAS)). A
problem is said to admit a polynomial time approximation scheme
(PTAS) if for every constant ¢ > 0, there is a poly(n)-time
algorithm with approximation ratio (1 + ¢) where n is the size of
the input. Here running time can be as bad as 0(r/(/9)) for any
function f that depends only on ¢.

If the running time of PTAS is O(f (1/¢) - n) for some function f
and a constant ¢ that is independent of &, we call it to be an efficient
polynomial time approximation scheme (EPTAS).

On the other hand, if the running time of PTAS is polynomial in
bothnand 1/¢, it is said to be a fully polynomial time approximation
scheme (FPTAS).

Assuming P % NP, a PTAS is the best result we can obtain
for a strongly NP-hard problem. Already in the 1-D case, a simple
reduction from the PARTITION problem shows that it is NP-hard
to determine whether a set of items can be packed into two
bins or not, implying that no approximation better than 3/2 is
possible. However, this does not rule out the possibility of an
Opt + 1 guarantee where Opt is the number of bins required in the
optimal packing. Hence it is insightful to consider the asymptotic
approximation ratio.

Definition 2.3 (Asymptotic Approximation Ratio (AAR)). The asymp-
totic approximation ratio o of an algorithm 4 is:

lim sup p%,
nmgo P P 1ei | Opt(I)

In this context the approximation ratio defined as in Defini-
tion 2.1, is also called to be the (absolute) approximation ratio.

Al
where p} = sup{ O |Opt(l) = n}.

Definition 2.4 (Asymptotic PTAS (APTAS)). A problem is said
to admit an asymptotic polynomial time approximation scheme
(APTAS) if for every ¢ > 0, there is a poly-time algorithm with
asymptotic approximation ratio of (1 4 ¢&).

If the running time of APTAS is polynomial in both n and 1/,
it is said to be an asymptotic fully polynomial time approximation
scheme (AFPTAS).

Note that NP optimization problems whose decision versions
are all polynomial time reducible to each other (due to NP-
completeness), can behave very differently in their approximabil-
ity. For example classical bin packing problem admits an APTAS,
whereas no polynomial factor approximation is known for the
traveling salesman problem. This anomaly is due to the fact that
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reductions between NP-complete problems preserve polynomial
time computability, but not the quality of the approximate solu-
tion.

PTAS is the class of problems that admit polynomial time
approximation scheme. On the other hand, APX is the class of
problems that have a constant-factor approximation. A problem
IT, is said to be APX-hard if there is a PTAS-reduction from every
problem 1, € APX to I1;, and to be APX-complete if I7; is
APX-hard and also in APX. In practice, reducing one problem to
another to demonstrate APX-completeness is often done using
other reduction schemes, such as L-reductions and E-reductions,
which imply PTAS reductions. We refer the readers to Chapter
15 of [11] for more details on these complexity classes and
related notion of reductions. Note that PTAS C APX. In fact the
containment is strict unless P = NP.

Theorem 2.5 ([31]). If a problem % is APX-hard then it does not
admit a PTAS unless P = NP.

In fact there is no quasi-polynomial time approximation
scheme (QPTAS) for any APX-hard problem unless NP C QP.

Online algorithms: Optimization problems where the input is
received in an online manner (i.e., the input does not arrive as a
single batch but as a sequence of input portions) and the output
must be produced online (i.e., the system must react in response to
each incoming portion taking into account that future input is not
known at any point in time) are called online problems. Bin packing
is also one of the key problems in online algorithms. Let us define
the notion of a competitive ratio which will be useful when we
discuss some related results in online algorithms in later sections.

Definition 2.6 (Competitive Ratio). An online algorithm 4 for a
minimization problem IT is called c-competitive if there exists a
constant § such that for all finite input sequences I, A(I) < c -
Opt(I) + 4. If the additive constant § < 0, we say « to be strictly
c-competitive.

The infimum over the set of all values c¢ such that 4 is c-
competitive is called the competitive ratio of .

We will sometimes call the above defined competitive ratio to
be asymptotic competitive ratio and strictly competitive ratio to be
absolute competitive ratio. In general, there are no requirements or
assumptions concerning the computational efficiency of an online
algorithm. However, in practice, we usually seek polynomial time
online algorithms. We refer the readers to [32,12] for more details
on online algorithms.

There are few others metrics to measure the quality of a
packing, such as random-order ratio [33], accommodation func-
tion [34], relative worst-order ratio [35], differential approximation
measure [36] etc.

2.2. One dimensional bin packing

Before going to multidimensional bin packing, we give a brief
description of the results in 1-D bin packing. Here we focus
primarily on very recent results. For a detailed survey and earlier
results we refer the interested reader to [20].

2.2.1. Offline 1-D bin packing

The earliest algorithms for one dimensional (1-D) bin packing
were simple greedy algorithms such as FIRSTFIT (FF), NEXTFIT
(NF), FIRSTFITDECREASING (FFD), NEXTFITDECREASING (NFD) etc. In
their celebrated work, de la Vega and Lueker [37] gave the first
APTAS by introducing linear grouping that reduces the number
of different item types. Algorithms based on other item grouping
or rounding based techniques have been used in many related

problems. The result was substantially improved by Karmarkar and
Karp [28] who gave a guarantee of Opt + O(log? Opt) by providing
an iterative rounding for a linear programming formulation.
It was then improved by RothvoR [38] to Opt + O(logOpt -
log log Opt) using ideas from discrepancy theory. Very recently,
Hoberg and RothvofR [39] achieved an approximation with Opt +
O(log Opt) bins using discrepancy method coupled with a novel 2-
stage packing approach. On the other hand, the possibility of an
algorithm with an Opt 4 1 guarantee is still open. This is one of
the top ten open problems in the field of approximation algorithms
mentioned in [30].

Table 1 summarizes different algorithms and their performance
guarantees. Here To, ~ 1.69103 is the well-known harmonic
constant that appears ubiquitously in the context of bin packing.
It is defined as follows: Ty, = Z,O:o] t,%l where t; = 2,tq =
ti(t; — 1) + 1fori > 1.

The Gilmore-Gomory LP relaxation [1] is used in [37,28,38] to
obtain better approximation. This LP is of the following form:

min{1'x|Ax = 1,x > 0}. (1)

Here A is the pattern matrix that consists of all column vectors
{p € N"|pTs < 1} where s := (sq, 52, ..., S;) is the size vector for
the items. Each such column p is called a pattern and corresponds
to a feasible multiset of items that can be assigned to a single
bin. Now if we only consider patterns p € {0, 1}", LP (1) can be
interpreted as an LP relaxation of a set cover problem, in which a
set ] of items has to be covered by configurations from the collection
¢ C 2!, where each configuration C € € corresponds to a set of
items that can be packed into a bin:

min ZxC:Zxczl(iel),xce{O,l}(CeG) ) 2)

Cee Cai

This configuration LP is also used in other algorithms for
multidimensional bin packing and we will continue the discussion
of configuration LPs in later sections.

Let Opt and Opt; be the value of the optimal integer solution and
fractional solution for LP (1) respectively. Although LP (1) has an
exponential number of variables, one can compute a basic solution
x with 1"x < Opt; + § in time polynomial in n and 1/8 using the
Grotschel-Lovasz-Schrijver variant of the Ellipsoid method [44] or
the Plotkin-Shmoys-Tardos framework [45,46]. In fact the analysis
of [39], only shows an upper bound of O(log Opt) on the additive
integrality gap of LP (1). It has been conjectured in [47] that the LP
has the Modified Integer Roundup Property, i.e., Opt < [Opt;] + 1.
The conjecture has been proved true for the case when the instance
contains at most 7 different item sizes [48]. Recently, Eisenbrand
et al. [49] found a connection between coloring permutations
and bin packing, that shows that Beck’s Three Permutation
Conjecture (any three permutations can be bi-colored with O(1)
discrepancy) would imply a O(1) integrality gap for instances
with all items sizes bigger than 1/4. However, Newman, Neiman,
and Nikolov [50] found a counterexample to Beck’s conjecture.
Using these insights Eisenbrand et al. [49] showed that a broad
class of algorithms cannot give an o(logn) gap. Rothvof3 [51]
further explored the connection to discrepancy theory and gave
a rounding using Beck’s entropy method achieving an O(log? Opt)
gap alternatively. The later improvement to O(log Opt) in [38,39]
arose from the constructive partial coloring lemma [52] and gluing
techniques. Recently Goemans and Rothvof3 [53] also have shown
polynomiality for bin packing when there are O(1) number of item
types. Very recently, Jansen and Klein [54] showed that bin packing
isin FPT, parameterized by the number of vertices of an underlying
integer knapsack polytope.

Bin packing problem is also well-studied when the number
of bins is some fixed constant k. If the sizes of the items
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Table 1
Approximation algorithms for one dimensional bin packing.
Algorithm Performance guarantee Techniques

NEXTFIT [7] 2 - Opt Greedy, online,
NEXTFITDECREASING [7] Too - Opt + O(1) [40] Presorting
FIRSTFIT [7] [1.70pt] [41] Greedy, online
FIRSTFITDECREASING [7] %Opt + g [42] Presorting
BESTFIT [7] [1.70pt] [43] Greedy, online

de la Vega and Lueker [37]
Karp and Karmarkar [28]
RothvoR [38]

Hoberg and Rothvof [39]

(1+£)Opt + 0(%)

Opt + O(log? Opt)

Opt+ O(log Opt-log log Opt)
Opt + O(log Opt)

Linear grouping
Iterative rounding
Discrepancy methods
Discrepancy methods

are polynomially bounded integers, then the problem can be
solved exactly using dynamic programming in n°® time, for
an input of length n. Along with APTAS for bin packing, this
implies a pseudo-polynomial time approximation scheme for bin
packing, significantly better than 3/2, the hardness of (absolute)
approximation for the problem. However, Jansen et al. [55] showed
unary bin packing (where item sizes are given in unary encoding)
is W[1]-hard and thus the running time for fixed number of bins
k, cannot be improved to f (k) - n"°® for any function of k, under
standard complexity assumptions.

2.2.2. Online 1-D bin packing

An online bin packing algorithm uses k-bounded space if, for
each item, the choice of where to pack it, is restricted to a set of
at most k open bins. Lee and Lee [56] gave a O(1)-bounded space
algorithm HARMONIC that achieve asymptotic competitive ratio
of Toc ~ 1.69. They also established tightness. For unbounded
space, there had been a series of improvements for the asym?totic
competitive ratio: REFINEDHARMONIC (competitive ratio: % <
1.63597) [56], MoDIFIEDHARMONIC (competitive ratio <1.61562)
and MobpIFIEDHARMONIC2 (competitive ratio <1.61217) [57], HAR-
MONIC++ (competitive ratio <1.58889) [58]. Ramanan et al. [57]
showed that harmonic-type algorithms cannot achieve better than
1.58333 asymptotic competitive ratio. Very recently, this lower
bound was beaten by Heydrich and van Stee [59] who presented
an online algorithm SONOFHARMONIC with asymptotic competitive
ratio of at most 1.5815 using a new type of interval classification.
They also gave a lower bound of 1.5766 for any interval classifica-
tion algorithm. In general the best known lower bound for asymp-
totic competitive ratio is 248/161 ~ 1.54037 [60], improved from
previous best 1.54014 [61]. Very recently, Balogh et al. [62] pre-
sented an online bin packing algorithm with an absolute compet-
itive ratio of 5/3 which is optimal. We refer the readers to [63]
for more variants (such as dynamic bin packing, bin packing with
rejections, bin packing with cardinality constraints, resource aug-
mentation etc.) and techniques related to online bin packing.

Online bin packing has also been studied in probabilistic
settings. Shor [64] gave tight-bounds for average-case online bin
packing. Other related algorithms for online stochastic bin packing
are Sum of Squares algorithm by Csirik et al. [65] and primal-dual
based algorithms in [66].

2.3. Multidimensional bin packing

We will now discuss preliminaries related to multidimensional
bin packing. We will consider the offline setting, where all items
are known a priori. We also briefly survey results in the online
setting, when the items appear one at a time and we need to decide
packing an item without knowing the future items.

2.3.1. Geometric packing

Definition 2.7 (Two-Dimensional Geometric Bin Packing (2-D GBP)).
In two-dimensional GEOMETRIC BIN PACKING (2-D GBP), we are
given a collection of n rectangular items I := {ry, 5, ..., r,,} where
each rectangle ry, is specified by its width and height (wy, hy) such

that wy, hy are rational numbers in (0, 1]. The goal is to pack all
rectangles into a minimum number of unit square bins.

We consider the widely studied orthogonal packing case, where the
items must be placed in the bin such that their sides are parallel to
the sides of the bin. In any feasible solution, items are not allowed
to overlap. Here two variants are usually studied, (i) where the
items cannot be rotated, and (ii) they can be rotated by 90°.

We will also mention some results related to strip packing and
geometric knapsack problems, two other geometric generaliza-
tions of bin packing, in Section 3.

Definition 2.8 (Strip Packing (2-D SP)). In two-dimensional STRIP
PACKING (2-D SP), we are given a strip of unit width and infinite
height, and a collection of n rectangular items [ := {rq, 15, ..., 'y}
where each rectangle ry is specified by its width and height (wy, hy)
such that wy, hy are rational numbers in (0, 1]. The goal is to pack
all rectangles into the strip minimizing the height.

Strip packing also has a lot of applications in industrial
engineering and computer science. Recently, there have been a lot
of applications of strip packing in electricity allocation and peak
demand reductions in smart grids [67-69].

Definition 2.9 (Geometric Knapsack (2-D GK)). In two-dimensional
GEOMETRIC KNAPSACK (2-D GK), we are given a unit square bin and
a collection of two dimensional rectangles I = {ry, 15, ..., 1}
where eachrectangle ry, is specified by its width and height (wy, hy)
and profit py such that wy, hy, py are rational numbers in (0, 1].
The goal is to find the maximum profit subset that can be feasibly
packed into the bin.

Multidimensional variants of above three geometric problems
are defined analogously using d-dimensional rectangular paral-
lelepipeds (also known as d-orthotope, the generalization of rect-
angles in higher dimensions) and d-dimensional cuboids (also
known as d-cube, the generalization of squares in higher dimen-
sions). We will discuss 3-dimensional variants in more detail in
Section 3.

2.3.2. Vector packing
Now we define vector bin packing, the nongeometric general-
ization of bin packing.

Definition 2.10 (Vector Bin Packing (d-D VBP)). In d-dimensional
VECTOR PACKING (d-D VBP), we are given a set of n rational vectors
I := {vy, vq, ..., vy} from [0, 1]%. The goal is to partition them into
sets (bins) By, By, ..., By, such that ||<713j||oo <1for1 <j<m
where o, = Zviij v; is the sum of vectors in B;, and we want to
minimize m, the number of bins.

In other words, the goal is to pack all the vectors into minimum
number of bins so that for every bin the sum of packed vectors in
the bin should not exceed the vector of the bin in each dimension.

We now define related vector knapsack, vector scheduling and
vector bin covering problems.
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Fig. 1. Two rectangles of size 2 x 2 and £ x 1 can be packed into one unit square
bin. However, vectors (2, 2) and (%, 1) cannot be packed into (1, 1) vector bin.

Definition 2.11 (Vector Knapsack (d-D VK)). In d-dimensional
VECTOR KNAPSACK (d-D VK), we are given a vector bin with
capacity (by, ba, ..., bg) and a collection of n rational vectors I :=
{v1, va, ..., vy} from [0, 1]¢ and profit p; > 0 for each vector v;.
The goal is to find a maximum profit subset S that can be feasibly
packed into the bin, i.e., total size of items in S is bounded by by, for
each dimension k € [d].

For d = 1, this is the classical knapsack problem.

Definition 2.12 (Vector Scheduling (d-D VS)). In d-dimensional
VECTOR SCHEDULING (d-D VS), we are given a set of n rational vectors
I == {vy, va, ..., vy} from [0, 1]¢ and an integer m. The goal is to
partition I into m sets By, By, .. ., By such that maxi<j<m ||0g; [l iS
minimized, where op, = Zv,-eB,- v; is the sum of vectors in B;.

For d = 1, this just reduces to the classical multiprocessor
scheduling.

Definition 2.13 (Vector Bin Covering (d-D VBC)). In d-dimensional
VECTOR BIN COVERING (d-D VBC), we are given a set of n rational
vectors I := {vq, va, ..., vy} from [0, 1] The goal is to partition
them into sets (bins) By, By, ..., By such that og, > 1 in all
dimensions for all j € [m], where op, = Zviij v; is the sum of
vectors in Bj, and we want to maximize m, the number of bins.

For d = 1, bin covering problem admits APTAS [70]. Vector bin
covering is sometimes also called dual bin packing or dual vector
packing in the literature.

2.3.3. Relation between the problems

Fig. 1(a) and (b) show the difference between geometric packing
and vector packing. Given a set of vectors, one can easily determine
whether they can be packed into one unit bin by just checking
whether the sum along each coordinate is at most one or not.
However for geometric bin packing, it is NP-hard to determine
whether a set of rectangles can be packed into one unit square bin
or not, implying that no (absolute) approximation better than 2 is
possible even for 2-D GBP.

Note that both geometric knapsack and strip packing are closely
related to geometric bin packing. Results and techniques related to
strip packing and knapsack have played a major role in improving
the approximation for geometric bin packing. If all items have
same height then d-dimensional strip packing reduces to (d — 1)-
dimensional geometric bin packing. On the other hand to decide
whether a set of rectangles (w;, h;) for i € [n] can be packed into
m bins, one can define a 3-D geometric knapsack instance with n
items (wj, h;, 1/m) and profit (w; - h; - 1/m) and decide if there is
a feasible packing with profit ), (w; - h; - 1/m). Fig. 2 shows the
relation between different generalizations of bin packing.

There are few other generalizations of bin packing such as
weighted bipartite edge coloring. We do not cover them here and
we refer the readers to [71,72].

2.4. Techniques

Now we describe some techniques, heavily encountered in
multidimensional packing.

2.4.1. NEXTFITDECREASINGHEIGHT (NFDH)

Among all the heuristics for geometric packing, NEXTFITDE-
CREASINGHEIGHT (NFDH) is one of the most used heuristics in the
literature. We will discuss several key properties of NFDH that
makes it widely useful. This procedure was introduced by Coffman
et al. [26] for 2-D geometric packing, though Meir and Moser al-
ready used a similar variant for rectangle packing in 1968. NFDH
considers items in a non-increasing order of height and greedily
assigns items in this order into shelves, where a shelf is a row of
items having their bases on a line that is either the base of the
bin or the line drawn at the top of the highest item packed in the
shelf below. More specifically, items are packed left-justified start-
ing from bottom-left corner of the bin, until the next item cannot
be included. Then the shelf is closed and the next item is used to
define a new shelf whose base touches the tallest (left most) item
of the previous shelf. If the shelf does not fit into the bin, the bin
is closed and a new bin is opened. The procedure continues until
all the items are packed. This simple heuristic works quite well for
small items. Some key properties of NFDH are following:

Lemma 2.14 ([73]). Let B be a rectangular region with width w and
height h. We can pack small rectangles (with both width and height
less than &) with total area A using NFDH into B if w > ¢ and
w-h>2A+ w?/8.

Lemma 2.15 ([74]). Given a set of items of total area of V and each
having height at most one, they can be packed in at most 4V + 3 unit
bins by NFDH.

Lemma 2.16 ([26]). Let B be a rectangular region with width w and
height h. If we pack small rectangles (with both width and height less
than ¢) using NFDH into B, total w - h— (w +h) - € area can be packed,
i.e., the total wasted volume in B is at most (w + h) - &.

In fact it can be generalized to d-dimensions.

Lemma 2.17 ([75]). Let C be a set of d-dimensional cubes (where
d > 2) of sides smaller than e. Consider NFDH heuristic applied
to C. If NFDH cannot place any other cube in a rectangle R of size
ry X ry X ---14 (with r; < 1), the total wasted (unfilled) volume
in that bin is at most: £ 3o, 1.

2.4.2. Steinberg’s Packing
Steinberg [76] provided a 2-approximation for strip packing by
the following result:

Theorem 2.18 (A. Steinberg [76]). We are given a set of items I’ and
a bin Q of size w x h. Let Wmax < w and hyax < h be the maximum
width and maximum height among the items in I’ respectively and
a(I') be the total area of the rectangles in I'. Also we denote x, =
max(x, 0). If

2(1(1,) = wh — (Zwmax - w)+(2hmax - h)+
then I’ can be packed into Q in polynomial time.

This algorithm has wide applicability in many other geometric
packing problems as it gives a packing of any set of rectangles into
a bin if their total area satisfies the above constraint.
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2-D GEOMETRIC KNAPSACK — 3-D GEOMETRIC KNAPSACK

2-D STRIP PACKING
1-D BIN PACKING

2-D GEOMETRIC BIN PACKING

VECTOR BIN PACKING

3-D STRIP PACKING

3-D GEOMETRIC BIN PACKING

Fig. 2. Generalizations of bin packing.

2.4.3. Configuration LP

The best known approximations for most bin packing type
problems are based on strong LP formulations called configuration
LPs. Here, there is a variable for each possible way of feasibly
packing a bin (called a configuration). This allows the packing
problem to be cast as a set covering problem, where each item
in the instance I must be covered by some configuration. Let €
denote the set of all valid configurations for the instance I. The
configuration LP is defined as:

min{ZxC: Zxczl‘v’iel, xczo‘v’Ce@}. (3)

Ceec Cai

As the size of € can possibly be exponential in the size of I, one
typically considers the dual of the LP given by:

max{Zvi: Y wm=ivcee, v,—ZOVieI}. (4)
iel ieC

The separation problem for the dual is the following knapsack
problem. Given set of weights v;, is there a feasible configuration
with total weight of items more than 1. From the well-known
connection between separation and optimization [77,45,44],
solving the dual separation problem to within a (1 4 €) accuracy
suffices to solve the configuration LP within (1 4 &) accuracy. We
refer the readers to [51] for an explicit proof that, for any set family
€ C 21 if the dual separation problem can be approximated
to (1 + e)-factor in time T(n, ¢) then the corresponding column-
based LP can be solved within an arbitrarily small additive error
§ in time poly(n, %) - T(n, .Q(%)). This error term cannot be
avoided as otherwise we can decide the PARTITION problem in
polynomial time. For 1-D BP, the dual separation problem admits
an FPTAS, i.e., it can be solved in time T(n,&) = poly(n, %).
Thus the configuration LP can be solved within arbitrarily small
additive constant error § in time poly(n, %) - poly(n, O(g)). For
multidimensional vector bin packing, the dual separation problem

admits a PTAS, i.e., can be solved in time T(n, &) = O('()). Thus
the configuration LP can be solved within (1 + &) multiplicative
factor in time poly(n, }) - T(n, £2(2)), i.e., in time 0(no¥ Gy,

Note that the configurations in (3) are defined based on the
original item sizes (without any rounding). However, for more
complex problems (say 3-D GBP) one cannot hope to solve such an
LP to within (14-¢) (multiplicative) accuracy, as the dual separation
problem becomes at least as hard as 2-D GBP. In general, given a
problem instance I, one can define a configuration LP in multiple
ways (say where the configurations are based on rounded sizes
of items in I, which might be necessary if the LP with original
sizes is intractable). For the special case of 2-D GBP, the separation
problem for the dual (4) is the 2-D geometric knapsack problem for
which the best known result is only a 2-approximation. However,
Bansal et al. [78] showed that the configuration LP (3) with original
sizes can still be solved to within 1+¢ accuracy (this is a non-trivial
result and requires various ideas).

Similarly for the case of vector bin packing, the separation
problem for the dual (4) is the vector knapsack problem which
can be solved to within 1 + ¢ accuracy [79]. However, there is no
EPTAS even for 2-D vector knapsack [80].

The fact that solving the configuration LP does not incur any
loss for 2-D GBP or VBP plays a key role in the present best
approximation algorithms.

2.4.4. Algorithms based on rounding items to constant number of
types

Rounding of items to O(1) types has been used either implic-
itly [81] or explicitly [37,28,82-84], in almost all bin packing al-
gorithms to reduce the problem complexity and make it tractable.
Let I be a given set of items and s, be the size of item x € I. Define
a partial order on bin packing instances as follows: I < ] if there
exists a bijective function f : I — J such thats, < s;(, for each
item s € I.] is then called a rounded up instance of I. One of the
key properties of rounding items is as follows:

Lemma 2.19 ([28]). I < ] implies Opt(I) < Opt()).

There are typically two types of rounding: either the size of an
item in some coordinate (such as width or height) is rounded in
an instance-oblivious way (e.g., in harmonic rounding [56,82], or
rounding sizes to geometric powers [28]), or it is rounded in an
input sensitive way (e.g., in linear grouping [37]).

Linear grouping: Linear grouping was introduced by Fernandez
de la Vega and Lueker [37] in the first approximation scheme for
1-D bin packing problem. It is a technique to reduce the number of
distinct item sizes. The scheme works as follows, and is based on
a parameter k, to be fixed later. Sort the n items by nonincreasing
size and partition them into [1/k] groups such that the first group
consists of the largest [nk] pieces, next group consists of the next
[nk] largest items and so on, until all items have been placed in
a group. Apart from the last group all other groups contain [nk]
items and the last group contains < nk items. The rounded instance
T is created by discarding the first group, and for each other group,
the size of an item is rounded up to the size of the largest item in
that group. The following lemma shows that the optimal packing
of these rounded items is very close to the optimal packing of the
original items.

Lemma 2.20 ([37]). Let I be the set of items obtained from an input
I by applying linear grouping with group size [nk], then

opt(I) < Opt(l) < Opt(I) + [nk]

and furthermore, any packing of I can be used to generate a packing
of I with at most [nk] additional bins.

If all items are >¢, then ne < Opt. So, for k = &2 we get that
any packing of I can be used to generate a packing of I with at most
[ne?] < ne?+1 < e-Opt+1additional bins. See [71] for a slightly
modified version of linear grouping that does not lose the additive
constant of 1.

Geometric grouping: Karmarkar and Karp [28] introduced a
refinement of linear grouping called geometric grouping with
parameter k. Let (I) be the smallest item size of an instance I. For
r=20,1,..., |log, ﬁj, let I be the instance consisting of items
i € I'such thats; € (20D 27]. Let J, be the instances obtained
by applying linear grouping with parameter k - 2" to I.. If ] = U, J;
then:
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Lemma 2.21 ([28]). Opt(J) < Opt(I) < Opt()) + k[log, {5 -

Harmonic rounding: Lee and Lee [56] introduced a HARMONIC
algorithm (harmonicy) for online 1-D bin packing, where each item
jwiths; € (q%, %] forq € {1,2,...,(k — 1)}, is rounded to
1/q. Then q items of type 1/q can be packed together in a bin.
So for each type q, we open one bin B, and only items of type q
are packed into that bin and a new bin for type q items is opened
when By is full. Let t; = 1, tg4q = te(ty + 1) forqg > 1.
Let m(k) be the integer with tyy < k < tmao41. It is shown
in [56] that the asymptotic approximation ratio of harmonicy is

To=Yn® 14 L.k Whenk— 00, To = 1.691..., this

q=1 t fm(k)+1
is the harmoglic cor(lgtant, ubiquitous in bin packing. Caprara [82]
introduced the HARMONICDECREASINGHEIGHT algorithm for 2-D
GBP with asymptotic approximation ratio of T.,, where widths are
rounded according to harmonic rounding and then same width
items are packed using NFDH. We refer the readers to [85] for
more related applications of the HARMoNIc algorithm in online and
bounded space algorithms.

2.4.5. Round and Approx (R&A) Framework

Now we describe the R&A Framework as described in [86]. It
is the key framework used to obtain present best approximation
algorithms for 2-D geometric bin packing and vector bin packing.
It uses a p-approximation algorithm that rounds the items to O(1)
types, as a subroutine to obtain (1 + In p) approximation. The
framework is described as follows:

1. Solve the LP relaxation of (3) using the APTAS ([78] for
2-D GBP, [79] for VBP). Let x* be the (near)-optimal solution of
the LP relaxation and let z* = ) ._, x¢. Let r the number of
configurations in the support of x*.

2. Initialize a |@|-dimensional binary vector x" to be an all-0
vector. For [(In p)z*] iterations repeat the following: select a
configuration C’ € € at random with probability x7, /z* and let
X, =1

3. Lgt S be the remaining set of items not covered by X, i.e.,i € S
ifand only if ) "~;xz = 0.0On et S, apply the p-approximation
algorithm « that rounds the items to O(1) types and then pack.
Let x* be the solution returned by » for the residual instance S.

4. Returnx = x" + x°.

Let Opt(S) and A(S) denote the value of the optimal solution
and the approximation algorithm used to solve the residual
instance, respectively. Since the algorithm uses randomized
rounding in step 2, the residual instance S is not known in advance.
However, the algorithm should perform “well” independent
of S. For this purpose, Bansal, Caprara and Sviridenko [86]
defined the notion of subset-obliviousness where the quality of
the approximation algorithm to solve the residual instance is
expressed using a small collection of vectors in R,

Definition 2.22. An asymptotic p-approximation for the set
covering problem defined in (1), is called subset-oblivious if, for
any fixed ¢ > 0, there exist constants k, A, 8 (possibly dependent
on &), such that for every instance I of (1), there exist vectors
vl v?, ..., v* € R that satisfy the following properties:

1. ZieC vf < A, for each configurationC € Candj=1,2,...,k;

2.0pt() > Y viforj=1,2,....k

3. AGS) < pYisvl + €0pt(I) + B, foreach S € Iandj =
1,2,...,k

Roughly speaking, the vectors are analogues to the sizes of items
and are introduced to use the properties of the dual of (1). Property
1 says that the vectors divided by constant A must be feasible for
(2). Property 2 provides lower bound for OPT(I) and Property 3

guarantees that the A(S) is not significantly larger than p times
the lower bound in Property 2 associated with S.
The main result about the R&A is the following.

Theorem 2.23 (Simplified). If a problem has a asymptotic
p-approximation algorithm that is subset oblivious, and the config-
uration LP with original item sizes can be solved to within (1 + ¢)
accuracy in polynomial time for any ¢ > 0, then the R&A framework
gives a (1 + In p)-asymptotic approximation.

Very recently, Bansal and Khan [87] extended the R&A
framework to any constant rounding based algorithms for 2-D GBP.
Then Bansal, Elias and Khan [88] further showed that any constant
rounding based algorithm for VBP is also subset-oblivious.

One can derandomize the above procedure and get a determin-
istic version of R&A method in which Step 2 is replaced by a greedy
procedure that defines x" guided by a suitable potential function.
See [86] for the details of derandomization.

3. Geometric bin packing

In this section we give an extensive survey of the literature
related to geometric packing and other related problems.

3.1. Geometric bin packing

Two-dimensional geometric bin packing (GBP) is substantially
different from the 1-D case. Bansal et al. [75] showed that 2-D bin
packing in general does not admit an APTAS unless P = NP.

On the positive side, there has also been a long sequence
of works giving improved approximation algorithms. We refer
readers to [27] for a review of several greedy heuristics such
as NEXTFITDECREASING, FIRSTFITDECREASING, BESTFITDECREASING,
FINITEBESTSTRIP, FLOORCEILING, FINITEFIRSTFIT, KNAPSACKPACKING,
FINITEBOTTOMLEFT, ALTERNATEDIRECTIONS etc. For the case when
we do not allow rotation, until the mid 90’s the best known bound
was a 2.125 approximation [89], which was improved by Kenyon
and Rémila [90] to a 2 + & approximation (this follows as a
corollary of their APTAS for 2-D strip packing) for any ¢ > 0.
Caprara in his break-through paper [82] gave an algorithm for 2-
D bin packing attaining an asymptotic approximation of T (~
1.69103). For the case when rotations are allowed, Miyazawa
and Wakabayashi [91] gave an algorithm with an asymptotic
performance guarantee of 2.64. Epstein and Stee [92] improved it
to 2.25 by giving a packing where, in almost all bins, an area of
4/9 is occupied. Finally an asymptotic approximation guarantee
arbitrarily close to 2 followed from the result of [93]. This was
later improved by Bansal et al. [86] to (In(Ty) + 1) =~ 1.52,
for both the cases with and without rotation, introducing a novel
randomized rounding based framework: Round and Approx (R&A)
framework. Jansen and Pradel [83] improved this guarantee further
to give a 1.5-approximation algorithm. Their algorithm is based on
exploiting several non-trivial structural properties of how items
can be packed in a bin.

Very recently, Bansal and Khan [87] gave a polynomial
time algorithm with an asymptotic approximation guarantee of
In(1.5) + 1 &~ 1.405 for 2-D GBP. This is the best algorithm known
so far, and holds both for the case with and without rotations.
The main idea behind this result is to show that the Round
and Approx (R&A) framework introduced by Bansal, Caprara and
Sviridenko [86] (See Section 2.4.5) can be applied to the (1.5 + &)-
approximation result of Jansen and Prddel [83]. They give a more
general argument to apply the R&A framework directly to a wide
class of algorithms. In particular, they show that any algorithm
based on rounding the (large) items into O(1) types, is subset-
oblivious. The main observation is that any p-approximation based
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on rounding the item sizes, can be related to another configuration
LP (on rounded item sizes) whose solution is no worse than p
times the optimum solution. They also give some results to show
the limitations of rounding based algorithms in obtaining better
approximation ratios. There are typically two types of rounding:
either the size of an item in some coordinate (such as width or
height) is rounded up in an instance-oblivious way (e.g., harmonic
rounding [56,82], or geometric rounding [28]), or it is rounded up
in an input sensitive way (e.g. linear grouping [37]). They show
that any rounding based algorithm that rounds at least one side of
each large item to some number in a constant-size collection values
chosen independent of problem instance (let us call such rounding
input-agnostic), cannot have an approximation ratio better than
3/2. For arbitrary constant rounding based algorithms they show
a hardness of 4/3.

We remark that there is still a huge gap between these upper
bounds and known lower bounds. In particular, the best known
explicit lower bound on the asymptotic approximation for 2-D BP
is currently 1+ 1/3792 and 1 4 1/2196, for the versions with and
without rotations, respectively [94]. The best asymptotic worst-
case ratio that is achievable in polynomial time for d-dimensional
GBP ford > 2is Tgo*‘ [82], and in fact it can be achieved by an
online algorithm using bounded space. There are no known explicit
better lower bounds for higher dimensions.

In non-asymptotic setting, without rotations there are
3-approximation algorithms by Zhang [95] and also by Harren and
van Stee [96]. Harren and van Stee [97] gave a non-asymptotic
2-approximation with rotations. Independently this approxima-
tion guarantee is also achieved for the version without rota-
tions by Harren and van Stee [98] and Jansen et al. [99]. These
2-approximation results match the non-asymptotic lower bound
for this problem, unless P = NP.

3.2. Online packing

Coppersmith and Raghavan [100] first studied online multidi-
mensional GBP and gave algorithms with asymptotic competitive
ratio of 3.25 and 6.35 for dimension d = 2 and 3 respectively. Csirik
and van Vliet [101] gave an algorithm with competitive ratio Tgo
(This gives 2.859 for 2-D) for arbitrary dimension d. Epstein and
van Stee [92] achieved the same ratio of Tgo only using bounded
space and showed it to be the optimal among all bounded space
algorithms. For d = 2, there has been a common approach to use
two 1-D online bin packing algorithm A and B to get algorithm
A ® B. Intuitively, algorithm A assigns items to slices of height 1
and a determined width depending on the width of the item de-
cided by the algorithm. Algorithm B assigns slices to bins accord-
ing to its type. This resulting algorithm is called A x B.A ® Bis a
randomized algorithm that uses A x B and B x A with equal prob-
ability. In 2002, Seiden and van Stee [102] proposed an elegant al-
gorithm called H ® C, comprised of the HARMONIC algorithm H
and the IMPrROVEDHARMONIC algorithm C, for the 2-D online bin
packing problem and proved that the algorithm has an asymp-
totic competitive ratio of at most 2.66013. Han et al. [103] gave
an improved upper bound of 2.5545. Their main idea is to develop
new weighting functions for HARMoNIc++ algorithm and propose
new techniques to bound the total weight in a rectangular bin. The
best known lower bound is 1.907 by Blitz, van Vliet and Woegin-
ger [104], which is unpublished and now lost (See [63]). The pre-
vious best result was 1.856 [105]. We refer the readers to a recent
article by van Stee [106] for a discussion on these lower bounding
techniques.

Fujita and Hada [107] first considered 2-D online bin packing
with rotations and gave two algorithms. Epstein [108] gave
an improved bounded space algorithm with competitive ratio
2.54679 and showed a lower bound of 2.53536 for bounded space

algorithms. For unbounded space, Epstein [ 109] gave an algorithm
with asymptotic competitive ratio of 2.45. Later Epstein and van
Stee [110] gave an algorithm with asymptotic competitive ratio of
2.25.

For 3-D online bin packing, calculations based on present
techniques are messy. Han et al. [103] mentions their algorithm
gives 4.3198-competitive ratio. Blitz, van Vliet and Woeginger
claimed a lower bound of 2.111 [104] in their lost manuscript and
the penultimate best was 2.043 by van Vliet [ 105].

3.3. Square packing

Leungetal.[111] have shown that even the special case of pack-
ing squares into square is still NP-hard. Kohayakawa et al. [112]
gave a (2 — (2/3)? + &) asymptotic approximation for packing
d-dimensional cubes into unit cubes. Later Bansal et al. [75] have
given an APTAS for the problem of packing d-dimensional cubes
into d-dimensional unit cubes.

For the special case where items are squares, there is also a large
number of results for online packing. Coppersmith and Ragha-
van [100] showed their algorithm gives asymptotic competitive ra-
tio of 2.6875 in this case. They also gave a lower bound of 4/3. Sei-
den and van Stee [102] gave an algorithm with asymptotic com-
petitive ratio of 2.24437. Epstein and van Stee [113] have shown
an upper bound of 2.2697 and a lower bound of 1.6406 for online
square packing, and an upper bound of 2.9421 and a lower bound
of 1.6680 for online cube packing. The upper bound for squares can
be further reduced to 2.24437 using a computer-aided proof. Later
Han et al. [114] get an upper bound of 2.1187 for square packing
and 2.6161 for cube packing. For bounded space online algorithms,
Epstein and van Stee [ 115] showed lower and upper bounds for op-
timal online bounded space hypercube packing till dimensions 7.
In particular, for 2-D it lies in (2.3634, 2.3692) and for 3-D it lies in
(2.956, 3.0672). Very recently, Heydrich et al. [ 116] have improved
the lower bound for online square packing to 1.6707. They also
show that the Harmonic-type algorithms cannot break the barrier
of 2 for d = 2 by giving lower bound of 2.02 for that case. For large
dimensions, their lower bound tends to 3.

Table 2 summarizes present best approximation/inapproxi-
mability results for geometric bin packing. Here OFF denotes
offline, ON denotes online, REC denotes rectangles, CUB denotes
cubes, WR denotes with rotation and NR denotes without rotation.

3.4. Resource augmentation

Due to pathological worst-case examples, bin packing has been
well-studied under resource augmentation, i.e., the side length of
the bin is augmented to (1 + ¢) instead of one. This is also known
as bin stretching. Though 2-D GBP does not admit an APTAS, Bansal
etal.[75] gave a polynomial time algorithm to pack rectangles into
at most m number of bins of size (1 + ¢) x (1 + &) where m is the
optimal number of unit bins needed to pack all items. Later Bansal
and Sviridenko [118] showed that this is possible even when we
relax the size of the bin in only one dimension.

3.5. Strip packing

STRIP PACKING is a natural generalization of the 1-D BIN PACKING
problem (when all the rectangles have the same height) and
MAKESPAN MINIMIZATION (when all the rectangles have the same
width). This problem is also closely tied with the geometric bin
packing problem. As we had stated earlier, the best approximation
algorithm for 2-D GBP used to be a factor (2 + ¢) and was a
corollary from the APTAS for 2-D strip packing due to Kenyon and
Rémila [90]. In the 2-D variant, we are given a strip with width
one and unlimited height and the goal is to pack 2-D rectangular
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Table 2
Present state of the art for geometric bin packing.
Problem Dim. Subcase Best algorithm Best lower
bound
d .
OFF-REC-WR asymp?: 1.405 [87] 14+1/3792[94]
2 abs’: 2[97] 2 (folklore)
OFF-REC-NR asymp: 1.405 [87] 14+1/2196[94]
abs: 2 [98] 2 (folklore)
. Td—1
Geometric bin packing . OFF-REC-NR asymp: T4 ! for d > 2 [82] 141/2196 [94]
OFF-CUB asymp: PTAS [75] NP-hard
abs: 2 [75] 2[117]
ON-REC-NR asymp: 2.5545 [103] 1.856 [105]
2 ON-REC-WR asymp: 2.25 [110] 1.6707 [116]
ON-CUB asymp: 2.1187[114] 1.6707 [116]
3 ON-REC-NR asymp: 4.3198 [103] 2.043[105]
ON-CUB asymp: 2.6161 [114] 1.6707 [116]

¢ Here asymp. means asymptotic approximation guarantee.

b Here abs. means absolute approximation guarantee.

items into the strip so as to minimize the height of the packing.
In three dimensions, we are given 3-D rectangular items each of
whose dimensions is at most one and they need to be packed into
a single 3-D box of unit depth, unit width and unlimited height so
as to minimize the height of the packing.

First let us discuss offline absolute approximation algorithms
for 2-D strip packing. Baker et al. [25] introduced the problem
in 1980 and gave an algorithm with absolute approximation ra-
tio of 3. Later Coffman et al. [26] introduced two level-oriented
algorithms: NEXTFITDECREASINGHEIGHT (NFDH), FIRSTFITDECREAS-
INGHEIGHT (FFDH) [26], achieving absolute approximation ratio as
3 and 2.7 respectively. Let hyax be the largest height of any rectan-
gle in the input set. Observe that trivially OPT > hy.x. Sleator [119]
gave an algorithm that generates packing of height 20PT + hmﬁ"‘
hence achieving a 2.5 approximation. Afterwards, Steinberg [76]
and Schiermeyer [120] independently improved the approxima-
tion ratio to 2. Harren and van Stee [98] first broke the barrier of 2
with their 1.9396 approximation. For the absolute approximation,
the present best approximation is due to Harren et al. [121] who
have given a (5/3 4 ¢)-approximation whereas the lower bound is
3/2 which follows from one dimensional bin packing.

Recently, there has been progress on pseudo-polynomial time
absolute approximation of strip packing. Nadiradze et al. [122]
overcame the 3/2-inapproximability barrier by presenting a (1.4+
€)-absolute approximation algorithm with pseudo-polynomial
running time. Then Galvez, Grandoni, Ingala and Khan [123]
pushed approach of [122] to its limit and gave improved
approximation of % + ¢ in pseudo-polynomial time. They also
extended the algorithm to the case with rotations and achieved the
same approximation factor by using a dynamic program to pack
a container-based packing. Jansen et al. [ 124] also independently
achieved the same factor. Adamaszek et al. [ 125] showed that it is
NP-hard to approximate strip packing better than 12/11 even for
polynomially bounded data. This also shows strip packing admits
no QPTAS, unless NP C DTIME (2P los(my,

For asymptotic approximation, NFDH and FFDH algorithms
by Coffman et al. [26], achieve approximations of 2 and 1.7,
respectively. After a sequence of improvements [126,127], the
seminal work of Kenyon and Rémila [90] provided an APTAS with

an additive term O (h‘“;") using a nice interplay of techniques like
&

fractional strip packing, linear grouping and a variant of NFDH. The
latter additive term was subsequently improved to hy,.x by Jansen
and Solis-Oba [128].

Strip packing with rotations is much less studied in the
literature. It seems that most techniques that work for the case
without rotations can be extended to the case with rotations,
however this is not always a trivial task. In particular, it is not

hard to achieve a 2 + ¢ approximation, and the 3/2 hardness
of approximation extends to this case as well [128]. In terms of
asymptotic approximation, Miyazawa and Wakabayashi [91] gave
an algorithm with asymptotic performance ratio of 1.613. Later,
Epstein and van Stee [110] gave a % asymptotic approximation.
Finally, Jansen and van Stee [93] achieved an APTAS for the case
with rotations.

Now we discuss online algorithms for 2-D strip packing.
Baker and Schwartz [129] showed that FIRSTFIT has asymptotic
performance ratio 1.7. Csirik and Woeginger [130] improved it to
Too ~ 1.691 using the HARMONIC algorithm as a subroutine. They
also mention a lower bound of 1.5401. Recently Han et al. [131]
have shown that strip packing achieves the same asymptotic
approximation ratio as well as same asymptotic competitive ratio
as 1-D BP. For the absolute competitive ratio, Brown et al. [ 132] have
given a lower bound of 2. Kern and Paulus [ 133] gave lower bound
of 2.457 with an algorithm with matching competitive ratio for
the lower bound input sequence. Later Harren and Kern [ 134] gave
a lower bound of 2.589 and they gave an algorithm with 2.618-
competitive ratio for their lower bound example. For the upper
bound, Hurink and Paulus [135] and Ye et al. [ 136] independently
achieved the same competitive ratio: % + 4/10 ~ 6.6623.

3-D strip packing is acommon generalization of both the 2-D bin
packing problem (when each item has height exactly one) and the
2-D strip packing problem (when each item has width exactly one).
Li and Cheng [137] were among the first people who considered
the problem. They showed 3-D versions of FFDH and NFDH have
unbounded worst-case ratio. They gave a 3.25 approximation
algorithm, and later gave an online algorithm with upper bound
of Tgo ~ 2.89[138] using the HARMONIC algorithm as a subroutine.
Bansal et al. [139] gave a 1.69 asymptotic approximation for the
offline case. Recently Jansen and Prddel [ 140] further improved it
to 1.5. Both these two algorithms extend techniques from 2-D bin
packing.

3.6. Shelf and guillotine packing

For d = 2, many special structures of packings have been
considered in the literature, because they are both easy to deal with
and important in practical applications. Among these, very famous
are the two-stage packing structures, leading to two-dimensional
shelf bin packing (2SBP) and two-dimensional shelf strip packing
(2SSP). Two-stage packing problems were originally introduced by
Gilmore and Gomory [20] and, thinking in terms of cutting instead
of packing, requires that each item be obtained from the associated
bin by at most two stages of cutting.
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(a) Two-stage packing.

(b) Guillotine packing.

(c) Non-guillotine packing.

Fig. 3. Different types of packing.

In two-stage packing, in the first stage, the bins are horizontally
cut into shelves. The second stage produces slices, which contain a
single item by cutting the shelves vertically. Finally, an additional
stage (called trimming) is allowed in order to separate an item from
a waste area. See Fig. 3(a) for an example of two-stage packing.
Two-stage packing is equivalent to packing the items into the bins
in shelves, where a shelf is a row of items having their bases
on a line that is either the base of the bin or the line drawn at
the top of the highest item packed in the shelf below. Formally,
a shelf is a set S of items such that total width Zjes wj < 1;
its height h(S) is given by maxcs h;. Many classical heuristics for
2-D strip packing [26,129,130] and 2-D GBP [89], including NFDH
and FFDH, construct solutions that are in fact feasible for the two-
stage versions. Moreover, Caprara et al. [74] presented an APTAS,
for both 2SBP and 2SSP. Given this situation, it is natural to ask
for the asymptotic worst-case ratio of general packing versus two-
stage packing. Csirik and Woeginger [130] showed ratio of 2SSP
versus 2-D strip packing is equal to T... Caprara [82] showed
the ratio of 2SBP versus 2-D GBP is also equal to T... Both their
algorithms are online and based on HARMONICDECREASINGHEIGHT
(HDH) heuristic. Now consider the optimal 2SBP solution in which
the shelves are horizontal as well as the optimal 2SBP solution in
which they are vertical. (Recall that near-optimal 2SBP solutions
can be found in polynomial time [74].) There is no evidence that
the asymptotic worst-case ratio between the best of these two
solutions and the optimal 2-D GBP can be as bad as T, and in fact
Caprara conjectured that this ratio is 3/2. On the other hand, he also
mentions that there are examples where we cannot do better than
T, if both solutions are formed by the HDH algorithm in [82].

Seiden and Woeginger [141] observed that the APTAS of
Kenyon and Rémila [90] can easily be adapted to produce a near-
optimal packing in three stages for 2-D strip packing, showing
that the asymptotic worst-case ratio of 2-D strip packing versus its
k-stage version is 1 for any k > 2, and leading to an APTAS for the
latter.

Bansal et al. [81] provided an APTAS for the guillotine case,
i.e., the case in which the items have to be packed in alternate
horizontal and vertical stages but there is no limit on the number of
stages that can be used. In the guillotine case, there is a sequence
of edge-to-edge cuts parallel to one of the edges of the bin. See
Fig. 3(b) for an example of guillotine packing and Fig. 3(c) for an
example that is not a guillotine packing. Recently Abed et al. [ 142]
studied other related packing problems under guillotine cuts. They
also made a conjecture that, for any set of n non-overlapping
axis-parallel rectangles, there is a guillotine cutting sequence
separating £2(n) of them. A proof of this conjecture will imply a
0O(1)-approximation for Maximum Independent Set Rectangles, a
related NP-hard problem. We refer the readers to [143] for more
on guillotine packing.

3.7. Geometric knapsack

For 2-D GEOMETRIC KNAPSACK (GK), a result of Steinberg [76]
for strip packing translates into a (3 + ¢) approximation [144].
Present best known approximation algorithms for both the cases
with and without orthogonal 90 degree rotations, are due to Jansen
and Zhang [145] and has an approximation guarantee of (2 + ¢).
The same authors [146] also gave a faster and simpler (2 + ¢)-
approximation for the unweighted case without rotations. On the
other hand, only known inapproximability result is that there is no
FPTAS unless P = NP, even for packing squares into squares [111].
PTAS are known for special cases when resource augmentation
is allowed in one dimension [147] for both the cases with and
without rotations, all items are square [148,149] or all items are
small [150]. Very recently, Heydrich and Wiese [149] gave an
EPTAS for the square case. Bansal et al. [78] gave a PTAS for
the special case when the range of the profit-to-area ratio of the
rectangles is bounded by a constant for both the cases with and
without rotations.

Recently Adamaszek and Wiese [151] gave a quasi-PTAS for
weighted geometric knapsack for both the cases with and without
rotations, assuming the input data to be quasi-polynomially
bounded integers. Their techniques also extend the corridor and
cycle decomposition techniques of [152] that states that there is
a (1 + e)-approximate solution such that the knapsack is divided
into O, (1) thin corridors and each item is contained in one corridor.
They partition the corridors into (log n)% (" boxes and guessing of
these boxes take n®©"” " time. Very recently, Abed et al. [142]
obtained another quasi-PTAS for the version with guillotine cut
under similar assumptions.

For 3-D, Diedrich et al. [ 153] have given 7 4 ¢ and 5 + ¢ approx-
imation, for the cases without and with rotations, respectively.

3.8. Other related problems

There are many other related geometric packing/covering prob-
lems such as MAXIMUM INDEPENDENT SET RECTANGLES [ 152], ONLINE
SQUARE-INTO-SQUARE PACKING [ 154], GEOMETRIC SET COVER/HITTING
SET PROBLEM [ 155], ANCHORED RECTANGLE PROBLEM [ 156], MAXIMAL
AXIS-PARALLEL RECTANGLES [ 157], CIRCLE/SPHERE PACKING [ 158] etc.
We do not cover these problems in this survey.

Table 3 summarizes present best results for strip packing
and geometric knapsack. As previously, OFF denotes offline, ON
denotes online, REC denotes rectangles, CUB denotes cubes, WR
denotes with rotation and NR denotes without rotation.

4. Vector bin packing

In this section we survey the previous work on VECTOR PACKING
and its variants.
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Table 3
Present state of the art for strip packing and geometric knapsack.
Problem Dim. Subcase Best algorithm Best lower bound
OFF-REC-WR asymp: PTAS [93] NP-hard
2 abs: 2 +¢[121] 32
OFF-REC-NR asymp: PTAS [90] NP-hard
Strip packing ) OFF-REC-NR asymp: 1.5 [140] 1+ 1/2196 [94]
OFF-CUB asymp: PTAS [139] NP-hard
2 ON-REC-NR asymp: Too [130] 1.5401[130]
3 ON-REC-NR asymp: 2.5545 [103]* 1.907 [104]
d>3 ON-REC-NR asymp: T4 [101] — 3 (ford — 00)[106]
OFF-REC-NR 2 4 e [145] No FPTAS [111]
. 2 OFF-REC-WR 2+ ¢ [145] No FPTAS [111]
Geometric knapsack OFF-CUB PTAS [148] No FPTAS [111]
3 OFF-REC-NR 7+ e[153] No FPTAS [111]
OFF-REC-WR 54 ¢[153] No FPTAS [111]

2 See [106] for the modified algorithm.
4.1. Offline vector packing

The first paper to obtain an APTAS for 1-D bin packing
by Fernandez de la Vega and Lueker [37], implies a (d + ¢)
approximation for vector packing problem. Woeginger [159]
showed that there exists no APTAS even for d = 2 unless P = NP.
However some restricted class of vectors may still admit an APTAS.
For example, consider the usual partial order on d dimensional
vectors, where (X1, X2, ..., Xq) < (¥1, Y2, ..., Yyq) ifand only ifx; <
y;foralli € [d]. The hard case for the lower bound comes when the
items are pairwise incompatible. The opposite extreme case, when
there is a total order on all items, is easy to approximate. In fact, a
slight modification of de la Vega and Lueker [37] algorithm yields
an APTAS for subproblems of d-dimensional VBP with constant
Dilworth number. After nearly twenty years, offline results for
the general case were improved by Chekuri and Khanna [160].
They gave an algorithm with asymptotic approximation ratio of
(1+ed+Hq /) where Hy = 14+1/2+- - -+1/k, is the k’th Harmonic
number. Considering ¢ = 1/d, they show that for fixed d, vector bin
packing can be approximated to within O(In d) in polynomial time.
Bansal, Caprara and Sviridenko [86] then introduced the Round and
Approx framework and the notion of subset oblivious algorithm
and improved it further to (1 + Ind). Both these algorithms run
in time that is exponential in d (or worse). Yao [161] showed that
no algorithm running in time o(nlogn) can give better than a d-
approximation.

For arbitrary d, Chekuri-Khanna [160] showed vector bin
packing is hard to approximate to within a d'/2~¢ factor for all fixed
¢ > 0 using a reduction from GRAPH COLORING problem. This can
be improved to d'~¢ by using the following simple reduction. Let G
be a graph on n vertices. In the d-dimensional VBP instance, there
will be d = n dimensions and n items, one for each vertex. For
each vertex i, we create an item i that has size 1 in coordinate i and
size 1/n in coordinate j for each neighbor j of i, and size 0 in every
other coordinate. It is easily verified that a set of items S can be
packed into a bin if and only if S is an independent set in G. Thus
we mainly focus on the case when d is a fixed constant and not part
of the input.

The two dimensional case has received special attention.
Kellerer and Kotov [162] designed an algorithm for 2-D vector
packing with worst case absolute approximation ratio as 2. On the
other hand there is a hardness of 3/2 for absolute approximation
ratio that comes from the hardness of 1-D bin packing.

Very recently, Bansal, Elias and Khan [88] have given improved
approximation for multidimensional vector packing. They give
a polynomial time algorithm with an asymptotic approximation
guarantee of (1+1In(1.5)+¢) ~ (1.405+¢) for 2-D vector packing
and aInd 4+ 0.807 + 04(1) + e-approximation for d-dimensional

vector packing. This overcomes a natural barrier of (1 4 Ind) of
R&A framework due to the fact that one cannot obtain better than
d-approximation using rounding based algorithms. They circum-
vent this problem based on two ideas.

First, they show a structural property of vector packing that any
optimal packing of m bins can be transformed into nearly f%’"} bins
of two types:

1. Either a bin contains at most two items and these items are large
in at least one dimension, or

2. The bin has slack in one dimension (i.e., the sum of all vectors in
the bin is at most 1 — § for some constant §). They then search
(approximately) over the space of such “well-structured”
1.5-approximate solutions. However, as this structured solution
(necessarily) uses unrounded item sizes, it is unclear how to
search over the space of such solutions efficiently. So a key idea
is to define this structure carefully based on matchings, and use
an elegant recent algorithm for the multiobjective-multibudget
matching problem by Chekuri, Vondrak, and Zenklusen [163].

The second step is to apply the subset oblivious framework to
the above algorithm. There are two problems. First, the algorithm
is not rounding-based. Second, even proving subset obliviousness
for rounding based algorithms for vector packing is more involved
than for geometric bin-packing. To get around these issues,
they use additional technical observations about the structure of
d-dimensional VBP.

Another consequence of these techniques is the following tight
(absolute) approximation guarantee. They show that for any small
constant ¢ > 0, there is a polynomial time algorithm with an
almost tight absolute approximation ratio of (1.5 + ¢) for 2-D
vector packing.

4.2. Online vector packing

A generalization of the FIRSTFIT algorithm by Garey et al. [ 164]
gives d + % competitive ratio for the online version. Galambos
et al. [165] showed a lower bound on the performance ratio of
online algorithms that tends to 2 as d grows. The gap persisted for
a long time, and in fact it was conjectured in [166] that the lower
bound is super constant, but sublinear. Azar et al. [ 167] settled the
status by giving £2(d'~?) information theoretic lower bound using
stochastic packing integer programs and ONLINE GRAPH COLORING
problem [168] where a sequence of nodes arrives online along
with edges to previously arrived neighbors and the transparent
adversary reveals the color it gives to a node immediately after
the online algorithm assigns its color. In fact their result holds
for arbitrary bin size B € Z* if the bin is allowed to grow. In
particular, they show that for any integer B > 1, any deterministic
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online algorithm for VBP has a competitive ratio of Q(d%’s). For

{0, 1}-VBP the lower bound is .Q(dBl*l’E). They also provided an
improved upper bound for B > 2 with a polynomial time algorithm
for the online VBP with competitive ratio: O(d'/®~" log d®/B+1),
for [0, 11 vectors and O(d'/®logd®+V/B), for {0, 1}¢ vectors.
Recently, Azar et al. [169] studied the online vector packing for
small vectors (relative to the size of a bin). For this special case
when each vector’s coordinates are at most 0(¢?/ log d), they give
a constant competitive ratio of (14 ¢)e for arbitrarily large d. For 2-
D, they present a FIRSTFIT variant with a competitive ratio ~ 1.48
and another essentially tight algorithm (not via a FIRSTFIT variant)
with a competitive ratio arbitrarily close to 4/3. They also defined
a splittable model, where a vector v can be split into arbitrary many
fractions v - g, v - ap, ..., V- O, Zi o; = 1 (here, each fractional
vector v - «; can be placed into a different bin). In this setting,
they gave an e(1+ ¢)-competitive algorithm. Later they [ 170] gave
tight lower bound on the competitive ratio when vectors are small
(evenin the splittable, randomized setting) which approaches e for
arbitrarily large d.

4.3. Vector knapsack

KNAPSACK (one-dimensional) problem is one of the most well-
studied NP-complete problems in combinatorial optimization.
There exists FPTAS by Ibarra and Kim [171], later on improved
by Lawler [172]. We refer the readers to [173] for detailed survey
on 1-D knapsack. However, for d-dimensional vector knapsack, it
is well-known that there is no FPTAS unless P = NP, already
for d = 2. Frieze and Clarke [79] gave a PTAS for d-dimensional
knapsack using the dual simplex algorithm for LP. Subsequently,
Caprara et al. [174] gave a scheme with improved running time
of 0(n'%¢1-9). However, there is no EPTAS even for 2-D vector
knapsack [80], unless W[1] = FPT. In fact they used a reduction
from a parameterized version of SUBSET suMm, known as SIZED
SUBSET SUM, to show that unless all problems in SNP are solvable
in sub-exponential time, there is no approximation scheme for 2-D
vector knapsack whose running time is f(l/e)n"(M). Note that,
for the case where d = 1, an EPTAS exists even for the multiple
knapsack problem [175].

4.4. Vector scheduling

For d = 1, VECTOR SCHEDULING becomes the well-studied MUL-
TIPROCESSOR SCHEDULING problem when jobs are scheduled into
bins or identical machines. In a more general version, machine
speeds can differ (called uniform machines) or jobs can have ar-
bitrary different vector values in different machines (called un-
related machines). We refer the readers to the book on schedul-
ing [ 176] for more details on different variants for scheduling prob-
lem. Vector scheduling (with identical machines) is strongly NP-
hard, i.e., admits no FPTAS [177]. The classical result of Hochbaum
and Shmoys [ 178] first gave a PTAS. A series of work [ 179,180] then
culminated into an EPTAS with running time 0(20(/¢%) 4 0y,
The main idea of [ 180] is to use a fast IP in constant dimensions, to-
gether with existence of optimal integer solutions with small sup-
port using techniques from [181]. These results can mostly be ex-
tended to uniform machines [182,180].

For d-dimensional offline vector scheduling, the first major re-
sult was obtained by Chekuri and Khanna [160]. They obtained
an algorithm with running time n/9°“ | i, a PTAS when d is
a fixed constant. PTASes are known for several other generaliza-
tions [183-185]. Bansal et al. [186] improved the running time of
the PTAS to 0(2(1/9°"™** ¥ 4 nd) Using a reduction from 3-D
MATCHING they also showed that for any ¢ < 1, there is a d(¢) so
that there is no (14-¢)-approximation algorithm with running time

021/9°@ (nd)°M), unless NP C N, DTIME(2™ ). For arbitrary

d, Chekuri and Khanna [160] obtained O(In? d)-approximation us-
ing approximation algorithms for packing integer programs (PIPs)
as a subroutine. They also showed that, when m is the num-
ber of bins in the optimal solution, a simple random assignment
gives O(Indm/ InIn dm)-approximation algorithm which works
well when m is small. Furthermore, they showed that it is hard
to approximate within any constant factor when d is arbitrary.
This w(1) lower bound is still the present best lower bound for
the offline case. Harris and Srinivasan [187] gave a randomized
O(log d/ loglog d)-approximation algorithm using Moser-Tardos
framework with partial resampling. In fact their algorithm works
even for unrelated machines. We refer the readers to [ 188] for more
related literature on vector scheduling.

In the online setting, for d = 1, Graham [189] gave a (2 —
1/m)-competitive algorithm for identical machines. Then a series
of papers [190-194] led to the present best ratio of 1.9201 [195]
and the present best lower bound of 1.880 [196] for deterministic
algorithms. For unrelated machines, Aspnes et al. [197] obtained
competitive ratio of O(logm) for makespan minimization. For
arbitrary d and identical machines, Meyerson et al. [198] gave
deterministic online algorithms with O(logd) competitive ratio.
Im et al. [199] recently gave an algorithm with O(log d/ log log d)-
competitive ratio. They also show tight information theoretic
lower bound of £2(logd/ loglogd). Surprisingly this is also the
present best offline algorithm! For unrelated machines, Meyerson
et al. [198] gave O(logm + logd)-competitive algorithm. Im
et al. [199] provided a matching lower bound. Note that we have
used Lo, norm in the definition of vector scheduling. However,
other norms such as L; (for total machine load), L, (for disc storage)
etc. have also been studied and Im et al. extends their results to
asymptotic tight upper and lower bounds for any general L, norm.

4.5. Vector bin covering

1-D VECTOR BIN COVERING was first investigated by Assman
et al. [200,201]. They showed an online greedy algorithm is
2-competitive. Later Csirik and Totik [202] showed a tight
information-theoretic lower bound to prove that the greedy
algorithm achieves the best possible ratio. In fact from a reduction
from PARTITION problem, unless P = NP it is NP-hard to get
(2 — ¢e)-approximation for offline bin covering. However, for the
offline case, asymptotic worst case ratios of 3/2 and 4/3 was
given [203]. Later, Csirik et al. [204] gave an APTAS for the problem.
Finally, Jansen and Solis-Oba gave an AFPTAS [70] by using the
potential price directive decomposition method of Grigoriadis and
Khachiyan [205]. Csirik, Frenk, Galambos and Rinnooy Kan [206]
gave a probabilistic analysis of 1-D and 2-D bin covering problems.
Gaizer [207] gave an offline 2-approximation algorithm for d =
2. We refer the readers to [208] for some more related results.
For d-dimensional vector bin covering problem, Alon et al. [209]
gave an online algorithm with competitive ratio 2d, for d >
2, and they showed an information theoretic lower bound of
MT“. For the offline version, they give an algorithm with an
approximation guarantee of O(logd). For d = 2, they gave a
simple 2-approximation algorithm and for d > 2, they used
area of compact vector summation [210] to construct a simple
d-approximation algorithm, which outperforms the O(logd)-
approximation algorithm for small d. Table 4 summarizes present
best approximation/inapproximability results for vector packing
and related variants.

5. Open problems

In this section we conclude by listing ten major open problems
related to multidimensional bin packing.
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Table 4
Present state of the art for vector packing and related variants.

Problem Subcase

Best algorithm

Best lower bound

Offline (constant d)

Ind 4 0.807 + 04(1) + € (asymp.”) [88]

APX-hard [159]

1.405 + ¢ (asymp.) [88]

APX-hard [159]

Vector bin packing Offline (d = 2) 3/2+ ¢ (abs?) 58] 3z
Offline (arbitrary d) 1+ ed + 0(In 1)(asymp.) [160] di—ed
Online d+ Z[164] 2(d'*) [167]
Offline (d = 1) EPTAS [180] No FPTAS [177]
) Online (d = 1) 1.9201[195] 1.880[196]
Vector scheduling Offline (constant d) PTAS [ 160] No EPTAS [ 186]
Offline (arbitrary d) O( 5ot s) [187,199] w(1) [160]
Online O(%) [199] g(lo‘g"fﬂ‘g’d) [199]
Vector knapsack Offline (d = 1) FPTAS [171,172] NP-hard
Offline (arbitrary d) PTAS [174] No EPTAS [80]
Offline (d = 1) AFPTAS [70] NP-hard
Vector bin covering Online (d = 1) 2[201] 2[202]
Offline (arbitrary d) O(logd) [199] NP-hard
Online (arbitrary d) 2d [209] 241 1209]

¢ Here asymp. means asymptotic approximation guarantee.
b Here abs. means absolute approximation guarantee.

¢ Follows from the fact that even 1-D bin packing cannot be approximated better than 3/2.

4 See the reduction in Section 4.1.

Problem 1 (Tight Approximability of Bin Packing). The present best
polynomial-time algorithm for 1-D BP by Hoberg and Rothvof8 [39],
uses Opt + O(logOpt) bins. Proving one could compute a
packing with only a constant number of extra bins will be a
remarkable progress and is mentioned as one of the ten most
important problems in approximation algorithms [30]. Consider
the seemingly simple 3-PARTITION case in which all n items have
sizes s; € (1/4,1/2). Recent progress by [50] suggests that
either O(logn) bound is the best possible for 3-Partition or some
fundamentally new ideas are needed to make progress.

Problem 2 (Integrality Gap of Gilmore-Gomory LP). It has been
conjectured in [47] that the Gilmore-Gomory LP for 1-D BP has
Modified Integer Roundup Property, i.e, Opt < [Opt;] + 1. The
conjecture has been proved true for the case when the instance
contains at most 7 different item sizes [48]. Settling the status for
the general case is an important open problem in optimization.

Problem 3 (Tight Asymptotic Competitive Ratio for Online BP). The
present best algorithm for online bin packing is by Heydrich and
van Stee [59] who presented an online algorithm with asymptotic
performance ratio of at most 1.5815 using a new type of interval
classification. They also gave a lower bound of 1.5766 for any
interval classification algorithm. In general the best known lower
bound for asymptotic competitive ratio is 1.54014 [130]. Giving
a stronger lower bound using some other construction is an
important question in online algorithms. We also discussed (AQB)-
type algorithms for 2-D online GBP in Section 3.2 where two 1-D
online bin packing algorithms A and B are used to give algorithm
for 2-D online GBP. With the recent progress in 1-D online BP [59],
it is an open question whether one can get 1.5815? ~ 2.502
competitive ratio for 2-D online GBP.

Problem 4 (Improved Approximability for Geometric Bin Packing
and Strip Packing). There is a huge gap between the best approx-
imation guarantee and hardness of geometric bin packing. There
are no explicit inapproximability bounds known for multidimen-
sional bin packing as function of d, apart from the APX-hardness in
2-D. Thus there is a huge gap between the best algorithm (1.69¢~",
i.e., exponential in d) and the hardness. Improved inapproximabil-
ity, as a function of d, will be an interesting hardness result. One
direction to get an improved approximation can be to extend R&A

framework to d-D GBP or other related problems. However, there
one key bottleneck is to find a good approximation algorithm to
find the solution of the configuration LP. A poly(d) asymptotic ap-
proximation for the LP will give us a poly(d) asymptotic approx-
imation for d-D GBP, a significant improvement over the current
best ratio of 2°¥ for d > 2.

Problem 5 (Improved Approximability for Vector Bin Packing). Sim-
ilarly, there are no explicit inapproximability bounds known for
vector bin packing as function of d, apart from the APX-hardness
in 2-D. Thus there is a gap between the best algorithm (O(In d) for
vector packing for d > 2) and the hardness. Improved inapprox-
imability, as a function of d, will be an interesting hardness result
even in this case.

Problem 6 (Improved Approximability for Geometric Knapsack).
Finding a PTAS for 2-D geometric knapsack (with or without
rotations) is one of the major problems related to bin packing. Even
for unweighted geometric knapsack (with or without rotations)
factor 2 is the best known approximation.

Problem 7 (Tight Ratio Between Optimal Guillotine Packing and
Optimal Bin Packing). Improving the present guarantee for 2-
D GBP will require an algorithm that is not input-agnostic. In
particular, this implies that it should have the property that it
can round two identical items (i.e., with identical height and
width) differently. One such candidate is the guillotine packing
approach [81]. It has been conjectured that this approach can
give an approximation ratio of 4/3 for 2-D GBP. At present the
best known upper bound on this gap is T., =~ 1.69 [74].
Guillotine cutting also has connections with other geometric
packing problems such as GEOMETRIC KNAPSACK and MAXIMUM
INDEPENDENT SET RECTANGLES [142]. Though there is a QPTAS for
guillotine knapsack (for inputs being quasi-polynomially bounded
integers), there is no known polynomial time approximation.
Finding a PTAS for 2-D guillotine knapsack is an interesting open
problem.

Problem 8 (Tight Ratio Between Optimal Two-Stage Packing and
Optimal Bin Packing). Caprara conjectured [82] that there is a two-
stage packing that gives 3/2 approximation for 2-D bin packing. As
there are PTAS for 2-stage packing [74], this will give another 3/2
approximation for 2-D BP and coupled with R&A method this will



H.IL Christensen et al. / Computer Science Review 24 (2017) 63-79 77

give another (1.405+¢) approximation. Presently the upper bound
between best two-stage packing and optimal bin packing is T, A
1.69. As 2-stage packings are very well-studied, this question is
of independent interest and it might give us more insight on the
power of Guillotine packing.

Problem 9 (Tight Absolute Approximation for 2-D SP). As we had
earlier mentioned, there is a gap between the best upper bound
of (5/3+¢) [121] and lower bound of 3/2. Tightening the gap is an
interesting open problem.

Problem 10 (Improved Pseudo-Polynomial Time Approximation).
Pseudo-polynomial time (PPT) approximation is not well under-
stood for geometric packing problems. In many cases we can break
the barrier of polynomial time approximation by using pseudo-
polynomial time approximation. For example, for strip packing
there is PPT ‘5‘ + & approximation [123,124] whereas 3/2 is the
polynomial time hardness (unless P = NP). Very recently, for strip
packing a PPT hardness of 12/11 (unless NP C DTIME(2PoWg(n)y))
was shown [125]. Finding tighter PPT hardness/algorithmic results
for strip packing or other related problems will be interesting.

Finally, finding faster heuristics that work well in practice, is also a
very important problem.
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