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Abstract

Packing and covering problems form a large and important class of problems in computer
science. Many packing and covering problems are known to be NP-hard and hence we study
them in the context of approximation algorithms.

In this thesis, we look at vector bin packing, and vector bin covering which are multidimen-
sional extensions of the bin packing problem and bin covering problems, respectively. In the
vector bin packing problem given a set of vectors S from (0, 1], the aim is to obtain a mini-
mum cardinality partition of S into bins {B;} such that for each B;, we have ||}, B, UHOO < 1.
Woeginger [43] claimed that the vector bin packing has no APTAS. We note a minor oversight
in his proof and revise it to show that there is no algorithm for vector bin packing with an
asymptotic approximation ratio better than % unless P = NP. Vector bin covering is the
covering analogue of the vector bin packing problem where given a set of vectors S from (0, 1]¢,
the aim is to obtain a disjoint family of subsets (also called bins) with the maximum cardinality
such that for each bin B, we have Zve 5 v > 1. We also show that is not possible to obtain an
algorithm with an asymptotic approximation ratio better than g%? unless P = NP.

We also study the multidimensional extensions of min-knapsack problem, which is the cov-
ering variant of the knapsack problem. For vector min-knapsack we obtain a PTAS and a
matching lower bound showing that there is no EPTAS unless W[1]=FPT. In case of the geo-
metric min-knapsack we show that there is no algorithm which can decide if there is a feasible
solution to a given instance hence showing that there is no polynomial-time approximation

algorithm possible for it.
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Chapter 1
Introduction

I get ideas about what’s essential when packing my suitcase.

— Diane von Furstenberg

1.1 Packing and Covering Problems

Packing and Covering problems are two of the most important classes of optimization problems
in computer science. Many of the problems in Karp’s 21 NP-complete problems in [34] are in
fact packing and covering problems.

Roughly speaking, in a packing problem we have some notion of a container and items
which need to be packed into these containers. The objective is to either pack items into a
single container so as to maximize some quantity associated with the items or to pack all the
items into minimum number of containers possible. The archetypical example of the problem
of the first kind is the knapsack problem in which given a set of items I with each item ¢ having
size s; € (0, 1] and profits p;, the aim is to find a subset I’ such that .., s; <land ) ., p; is
maximized. While the quintessential example of a problem of the second kind is the bin packing
problem in which given a set of items I with each item ¢ having size s; € (0, 1], the aim is to
find a minimum cardinality partition of the items into subsets {B;} called bins such that for
each bin }

of a bin or simply configuration. Other examples of packing problems include the set packing

s; < 1. In context of bin packing any subset B C [ is also called a configuration

problem in which given a ground set E = {e;|i € [n]}, a collection of subsets {S1,5,..., 5},
and w; associated with each such subset S;, the aim is find a set of indices I C [m] which
maximizes ) ., w; while S; NSy = () for every j, j € I; the independent set problem in which
given a graph G = (V, E), the aim is to find the maximum cardinality subset I C V such that
for any v,w € I, {v,w} & E; the vertex coloring problem in which given a graph G = (V, E),



the aim is to partition the graph into minimum cardinality family of subsets {C1,...,C,,} of
V called colors such that for each color C;, v,w € C; implies {v,w} & E.

In a similar vein, there is a notion of covering some object using some items. Typically in
covering problems, the objective is either to cover an object with items with least cost or to
cover as many objects as possible. One typical example of problem of the first kind of covering
problem is the set cover problem where given a ground set E = {e;|i € [n]}, a family of subsets
{S1,...,Sn}, and weights w; associated with each set S;, the aim is to obtain a set of indices
I C [m] such that (J,.; S; = £ while minimizing ) ._; w;. A representative problem for the
second kind of problem is the bin covering problem where given a set of items [ with sizes
s; € (0,1], the aim is obtain a minimum cardinality family of disjoint subsets F = {B;} of I
such that for each B; € F, we have } . p s; > 1. Each member of this family can be referred to
as a bin or a unit cover. Other examples of covering problems include the vertex cover problem
where given a graph G = (V, E), the aim is to determine the minimum cardinality subset
C' C V such that for each edge {v,w} € FE either v € C or w € C; the edge cover problem
where given a graph G = (V, F), the aim is to determine the minimum cardinality subset of
edges F' such that for every vertex v there is a w € V such that {v,w} € F. Note that many
of these problems are dual of some packing problem.

Now, as we noted earlier many of the important packing and covering problems are known
to be NP-complete. So, the best we can hope is to get an approximation algorithm' for these
problems. Some of these problems like the knapsack problem admit a FPTAS (see [27, 36]),
while others like bin packing do not have PTAS (folklore) but admit an APTAS, whereas yet
others like the independent set problem and vertex coloring do not even admit a constant
approximation.

Therefore, in this thesis we have studied the approximability of multidimensional variants
of bin packing, bin covering, and min-knapsack (a covering variant of knapsack, see Chapter 4).
We now present a brief survey of existing work on bin packing, bin covering, knapsack and a

few variants thereof.

1.2 Related Works

1.2.1 Bin Packing

Garey et al. [23] were the first to study the bin packing problem. They studied it in the context
of memory allocation and gave some bounds on the asymptotic approximation ratios for first-

fit, best-fit, first-fit decreasing, and best-fit decreasing. There is a well-know reduction from

lsee Chapter 2 for definition of approximation ratio and related notions
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(a) Valid Configuration (b) Invalid Configuration

Figure 1.1: configurations for 2-d vector bin packing

the partition problem to the bin packing problem which not only shows that bin packing is
NP-complete but also show that (absolute) approximation ratio better than 3/2 is not possible
unless P=NP. For this reason the focus of bin packing research has been on getting a better
asymptotic approximation ratio.

de la Vega and Lueker [19] introduced the linear grouping technique, where number of types
of items is reduced by rounding up the sizes of the items, using which they gave an APTAS. This
technique has led to improved algorithms for many related problems. This bound was further
improved in a series of work by Karp and Karmarkar [33], Rothvof [39], and Hoberg and
RothvoB [26] to OPT +O(log? OPT), OPT + O(log OPT log log OPT), and OPT +O(log OPT),
respectively. As the reduction shown above does not even preclude an OPT + 1, therefore it is
an open problem if such an algorithm exists or not.

Two multidimensional variants of bin packing which have been studied in the literature:
(i) vector bin packing (VBP) and (ii) geometric bin packing (GBP). In the vector bin packing
problem given a set of vectors S from (0,1]¢, the aim is to obtain a minimum cardinality
partition of S into bins {B;} such that for each B;, we have szeBi UHOO < 1. As is the case
with many multidimensional extension of problems, we can study vector bin packing under two
regimes: (i) the case where the dimension is part of the input, (ii) the case where the dimension
is a fixed constant.

In the case where the dimension d has been supplied as part of the input de la Vega and
Lueker [19] gave a (d + €) approximation. Bansal et al. [6] discuss a reduction from the vertex
coloring problem to vector bin packing problem with arbitrary dimensions pointed to them by
Jan Vondrak. This reduction shows that there is no d'~¢ approximation for any € > 0 unless
NP=ZPP.

If d is kept constant, i.e., it is not supplied as part of the input then the above bound does

not hold, and in fact much better results are known for this case. The first result breaking the



(a) valid configuration (b) invalid configurations

Figure 1.2: configurations of 2-d dimensional geometric bin packing

barrier of d was the 1+ ed + H.-1 by Chekuri and Khanna [10] where Hy = Zﬁqzl L. Notice
that taking e = é, this implies an O(In d) approximation (in fact Ind+2+~'). This was further
improved to Ind + 1 by Bansal, Caprara and Sviridenko [5] and then to In(d + 1) + 0.807 by
Bansal, Elids, and Khan [6] using the Round and Approx framework. For the d = 2 case these
translate to 1 +1n2 ~ 1.693 and 1 + In(1.5) ~ 1.406. Finally, Sandeep [40] gave an (Ind)
lower bound to match the above algorithms.

Geometric bin packing is in fact a class of problems. In geometric bin packing problems
the bins and the items are replaced by some geometric object. The most commonly studied
type? is where the bin is a square, cube, or d-dimensional hypercube (for d > 4) while the
items are rectangles, cuboids, and d-dimensional hyper-rectangles, respectively. More precisely,
in the 2-dimensional geometric bin packing problem we are given a set of rectangular items [
with each item having a height h; € (0, 1], width w; € (0, 1], the aim is to find the minimum
cardinality partition of I into subsets {B;} and map each item j to a rectangular region R; =
(;,1; +w;) x (bj,bj + hj), or Rj = (1;,1; + hj) x (bj, b; + w,) if rotations are allowed, such that
(i) for any item j € I, R; C [0,1] x [0,1], and (ii) for any two items j,j' € B;, R; N R = 0.

We have much stronger inapproximability results for geometric bin packing, i.e., we know
that the (absolute) approximation ratio of any algorithm for the 2-dimensional geometric bin
packing can not be better than 2 unless P=NP. Furthermore, it is not even possible to obtain
an algorithm with asymptotic ratio better than 1 + ﬁ and 1+ ﬁ for the version with and
without rotations, respectively [4, 12]. Caprara, Lodi, and Monaci [9] gave an APTAS for 2-
dimensional GBP restricted to shelf packing while Caprara [8] showed that the ratio of optimal
solution of 2-dimensional GBP to 2-dimensional GBP restricted to shelf packing is T,, ~ 1.691

ultimately obtaining a T, + € approximation. Bansal et al. [5] introduced the Round and

Ly 2 0.57721 is the Euler-Mascheroni constant
2geometric bin packing without any qualification will refer to this type.




(a) Invalid Configuration (b) Valid Configuration

Figure 1.3: configurations of vector bin covering

Approx framework which when used along with the shelf packing due to Caprara et al. gives
an 1+1n(T,,) ~ 1.52 approximation. Jansen and Pradel [28] improved it to 1.5 approximation
using a non-trivial structure of packing. Bansal and Khan [3] used the Round and Approx
framework to obtain a In1.5 + 1 ~ 1.406 approximation. This is currently the best known

algorithm for both with and without rotations.

1.2.2 Bin Covering

Assmann et al. [2] were the first to look at the bin covering problem. They showed an approxi-
mation ratio of 2 for a greedy algorithm. A reduction from the partition problem can be used to
show that it is NP-hard to obtain a 2 — e absolute approximation ratio for bin covering problem.
Therefore, as is the case with bin packing and its variants the asymptotic approximation ratio is
the focus of current research and to that end the adjective asymptotic will be dropped hereon.

Csirik et al. [17] gave 4/3 approximation for the bin covering problem. Csirik, Johnson and
Kenyon [18] obtained an APTAS for the problem. Later, Jansen and Solis-Oba [29] obtained
an AFPTAS.

Similar to bin packing we can generalize it to (i) vector bin covering and (ii) geometric bin
covering in higher dimensions.

In the vector bin covering problem, given a set of vectors S from (0,1]%, the aim is to
obtain a disjoint family of subsets (also called bins) with the maximum cardinality such that
for each bin B, we have ) v > 1. For vector bin covering, Alon et al. [1] gave an O(Ind)

approximation for d-dimensional vector bin covering. This the best approximation algorithm



(a) valid configuration (b) invalid configuration

Figure 1.4: configurations of geometric bin covering

known for both the fixed and arbitrary dimension regimes. For the special case of d = 2, the
same paper give a 2-approximation. In terms of inapproximability results Sandeep [40] showed
a Q(b{gﬂ%) lower bound for arbitrary dimensions.

For the geometric bin covering problem, it is known that there is no APTAS even in two
dimensions (for both with and without rotation) [12]. There is no further literature known to

the author on the geometric bin covering problem.

1.2.3 Knapsack
As we have already remarked the classical knapsack has an FPTAS (see [27, 306]).

Similar to problems discussed above knapsack can also be generalized to (i) vector knap-
sack (aka packing integer program) and (ii) geometric knapsack. The m-dimensional vector

knapsack, also known as Packing Integer Program (PIP), is

max Z C;; (1.1a)
]

jE[mM

Subject to,
alr <1 i € [m] (1.1b)
z; € {0,1} J € [n] (1.1c)

where ¢; > 0, a; > 0. Frieze and Clarke [21] considered the case where m is a fixed constant,
i.e., not part of the input and obtained a PTAS using a simple LP rounding scheme. Kulik and
Sachnai [35] showed that PIP does not have an EPTAS by reducing a parameterized version of
the subset sum problem, known as the sized subset sum.

For the sake of brevity we discuss only the 2-dimensional geometric knapsack (2DGK)

problem. In the 2-dimensional geometric knapsack given a set of items I with each item i



having a height h; € (0,1], width w; € (0,1}, and profit p; > 0, the aim is obtain subset
I’ C I and map each item in i € I’ to a rectangular region R; = (I;,l; + w;) X (b;,b; + h;)
(or Ry = (Is,1; + hi) x (bi, bi + w;) if rotations are allowed) such that ), p; is maximized
while satisfying the constraint: (i) R; N Ry = () for any 4,7’ € I’ and (ii) R; C [0,1] x [0,1].
We get the cardinality 2DGK if p; = 1 for all items. Leung et al. [37] showed that there is
no FPTAS for 2DGK unless P=NP even for packing square (therefore even if rotations are
allowed). Grandoni et al. [24] showed that there is no EPTAS for 2DGK even if rotations are
allowed unless W[1]=FPT. Jansen and Zhang [31, 30] gave (2 + ¢) approximation for 2DGK
even for both with and without rotations. Gélvez et al. [22] achieved an approximation ratio
less than 2 for all four cases, i.e., 1.72, 1.89, % + €, and % + € for cardinality 2DGK, weighted
2DGK, weighted 2DGK with rotation, and cardinality 2DGK with rotation, respectively by
obtaining a PTAS for a problem called L-packing. It is an open problem to determine if there
is PTAS for 2DGK for any of these cases. Finally we would like to remark that 3DGK is known
to not have a PTAS unless P = NP [12].

In the interest of brevity we end our survey here but an interested reader can look at the

survey on packing problems by Christensen et al. [14].

1.3 Organization of the thesis

The Chapter 2 discusses elementary concepts on approximation and inaproximability. Chapter 3
shows that there is no APTAS for 2-dimensional vector bin packing and 2-dimensional vector
covering problem while pointing out an oversight in a previously known proof the same fact.
In Chapter 4 we look at the multidimensional variants of the min-knapsack problem (covering
analogue of the knapsack problem). Finally, in Chapter 5 we discuss the findings of this thesis

and look at some worthwhile directions for future research on packing and covering problems.



Chapter 2

Preliminaries

2.1 Approximation Algorithms

The class of NP-hard problems has escaped attempts by many to provide an “efficient” solution.
Though no proof, as of writing, is known for P#NP, it is now widely accepted among computer
scientists. But, for many of these problems efficient heuristics were known. It so turns out
that many of these heuristics have a bounded error with respect to the optimal solution. More

precisely,

Definition 2.1. If an algorithm A outputs a feasible solution for any instance of a given maxi-

mization (or minimization) problem, then the (absolute) approzimation ratio of A is sup; O};TI;()I)

(or sup; % respectively).

For some problems (e.g., bin packing) looking at the absolute approximation ratio is counter-
productive as many of these problems admit algorithms which perform well in all but some
edge cases and these edge cases generally consist of instances of low value solutions. To get
an accurate reflection of their performance the following performance measure is generally

considered:

Definition 2.2. If an algorithm A outputs a feasible solution for any instance of a given

maximization (or minimization) problem, then the asymptotic approximation ratio of A is

lim sup,,_, ., max { Oj(TI()I) |OPT(I) = n} (or lim sup,,_, ., max {O‘;(—TI()M OPT(I) = n})

For any given problem our aim is in general to get a class of algorithms which can give
us answers arbitrarily close to the optimal, i.e., we have an algorithm with the approximation

ratio of our choosing.



Definition 2.3. A family of algorithms (which run in time polynomial in the input size) {Ac} -,
where A, has an approrimation ratio of 1 + € is known as a polynomial time approzimation
scheme (PTAS). A family of algorithms {Ac} ., where A has an asymptotic approrimation

ratio of 1 + € is known as an asymptotic polynomial time approzimation scheme (APTAS).

It may be occur to the reader at this stage that surely obtaining a better solution should
take more time. And indeed in most cases running time does increase with decreasing €. So,
to distinguish between PTAS which perform well with respect to time following notions are

studied in the literature.

Definition 2.4. A family of algorithms { Ac} ., which run in time f(€)-p(n) wheren is the input
size, f is an arbitrary function and p is a polynomial with each A. having an approximation
ratio of 1 + € is known as an efficient polynomial time approximation scheme (EPTAS). A
family of algorithms {Ac} ., which run in time p(1/e,n) where n is the input size and p is a
polynomial with each A, having an approximation ratio of 1+ € is known as a fully polynomial

time approximation scheme (FPTAS).

For an introduction to the topic of approximation algorithm the reader can refer the books
by Williamson and Shmoys [42], and Vazirani [41].

2.2 Inapproximability

Though all the inapproximability results are based on the assumption that P # NP or similar
widely believed complexity theoretic assumptions, the techniques used to obtain such results
can be quite varied even on the high level. Some of the simplest results are obtained by simply
reducing an NP-hard problem A to a approximation of the problem B. These reductions rely on
creating a gap between the optimal value of instances generated for a “no” instance of problem
A and a “yes” instance of problem A. This means for minimization problems we show it is
NP-hard to distinguish between instances for which all solution are at least some value s and
instance for which there is a solution of value less than c¢. For example, in the reduction from
partition to bin packing, we show s = 3 and ¢ = 2. Then there are the gap preserving reductions
which starting from such a gap result show another gap result. Hastad’s [25] inapproximability
results on Vertex Cover, Max-E3-Lin-2, Max-E3-SAT etc. are all examples of such reductions.
The third family of methods relies on the study of what are called approximation preserving

reduction.



2.2.1 Approximation preserving reductions

In study of approximation algorithm one of the most important class of problems are those
for which one can find a constant approximation (whether such an approximation is known is
a different question entirely). So, we define the class APX to be the class of problems with
a polynomial time algorithm with constant approximation ratio. The class PTAS is the class
of problems with a PTAS. A reduction from a problem A to B in this context will refer to a
tuple of polynomial time computable functions (f,g) where if x is instance of A then f(z) is
an instance of B and if y is solution to f(x) then g(x,y) is a solution to problem A. We call
a reduction approximation preserving if it preserves membership in APX, or PTAS, or both.

Before describing such reductions we need the following definition,

Definition 2.5. Given a solution S to an instance I of a problem P, its error E(I,S) is,

(2.1)

Mngmw{vma mwm}_l

OPT(I)’ V(I,S)

The following notion of reductions are known to preserve membership in APX, PTAS,

respectively [16].

Definition 2.6. Let F,G be two optimization problems, F is said to be A-reducible to G, in
symbols F <4 G, if there is a reduction (f,q) from F to G such that, for any solution y of

f():
E(f(x),y) < e= E(x,9(z,y)) < c(e) (2.2)

where ¢ is some function.

Definition 2.7. Let F,G be two optimization problems, F is said to be P-reducible to G, in
symbols F <p G, if there is a reduction (f,g) from F to G such that, for any solution y of

f(z):
E(f(x),y) < c(e) = E(z,g(x,y)) <€ (2.3)

Figure 2.1: complexity classes for approximation algorithms

where ¢ is some function.

10



Finally, we define APX-hard as the class of problems P such that any problem P’ € APX
is P-reducible to P. Since we know there are problems in APX and not in PTAS, e.g., bin
packing, and P-reductions preserve membership in PTAS, therefore, there is no PTAS possible
for APX-hard problems. For a more complete treatment of this subject the reader can consult

the survey by Crescenzi [15].

2.2.2 Parameterized Complexity and Non-Existence of EPTAS

Till now we have considered only one possible solution to dilemma presented to us by NP-hard
problems, i.e., approximation algorithms which try to find a close to optimal solution to all
instances of the problem under consideration. The other direction to consider is to look at
obtaining an exact solution to a subset of instances. In this section we turn our attention to
decision problems. An instance of a parameterized problem is of form (x, k) where k is called
the parameter. For this discussion assume that k is a positive integer. We can slice a given
parametrized problem L into Ly = {(x,k)|(x,k) € L} for each k. Ly is called the k-th slice of
L. The objective here is to find algorithms whose runtime is a polynomial for any fixed slice.

That is we want algorithms whose runtime is at most f(k)|z|® where ¢ is a constant.

Definition 2.8. We say a (parameterized) problem P is fixed-parameter tractable (FPT) if
there is an algorithm A, a constant ¢ and function f such that A can decide if (x,k) € P in a
most f(k)|x|¢ steps.

In context of parameterized algorithms the appropriate notion of reduction would be one

which retains membership in FPT.

Definition 2.9. We say a (parameterized) problem P fized parameterized reducible to P’ if
there are functions f, g, h, and a constant ¢ such that (i) (f(x,k),g(k)) € L' iff (x,k) € L and
(ii) f(x, k) is computable in time h(k)|x|°.

There is a class of problems called W[1] for which it is believed that W[1] # FPT. Hence,
showing a problem is W[1]-hard is sufficient to show it is not in FPT.

Finally, for optimization problems the natural parameterization is to have z as the original
instance and k as the value of the optimal solution. If for such a natural parameterization we
are able to show that it is not in FPT then there is no EPTAS for the original optimization
problem. In fact, if there was an EPTAS for the natural parameterization of such a problem
then it is easy to see A.(x) > k if and only if OPT > k where ¢ = 1/2k (for a minimization
problem).

11



Chapter 3

Vector Bin Packing

3.1 Overview
It was believed that Woeginger [43] showed that there is no APTAS for vector bin packing

with d > 2. However, as we show in Section 3.3, there was a minor oversight in the original
proof. Specifically, an essential claim made in the proof fails to hold for a few special cases. We
also examine some natural modifications to the claim, which exclude those special cases. We

conclude that it is impossible to obtain the final result if we try to use the same arguments.

391
390

Chlebik and Chlebikové [13]. Hence, we present a revision to the original proof in Section 3.2.

Unfortunately, this oversight is also present in the lower bound for vector bin packing by
Although our proof uses essentially the same construction as the original proof, the final analysis
is slightly different, and the main ideas for the analysis are borrowed from [4, 12]. Specifically,
we have obtained a gap reduction instead of an approximation ratio preserving reduction. The
APX-hardness of vector bin packing, though not stated explicitly, was considered to be a simple
corollary of the original result (see [4]) which showed an approximation preserving reduction.
Although the revised proof gives us a constant lower bound on the approximation ratio, we
cannot conclude that the vector bin packing problem is APX-hard. Though Sandeep [40]
showed that the best approximation factor any algorithm can have, for high enough value of d,
is Q(log d), We note that Sandeep’s lower bound of 2(In d) does not hold for low dimensions, and
hence, it does not even rule out the possibility of APTAS in the 2-dimensional case. Finally, we
adapt our proof for vector bin covering to show that there is no APTAS for vector bin covering
with dimension d > 2.

As is the case in [43] and [4], we start with maximum 3-dimensional matching (denoted by
MAX-3-DM) and reduce it to an instance of 4-Partition and finally reduce it to a vector bin pack-

ing instance. In a 3-dimensional matching instance we have three sets X = {z1,29,...,2,},Y =
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{y1,92, ..., ys}, and Z = {21, 20,...,2,} and we are given a set of tuples 7' C X x Y x Z. The
aim is to find the maximum cardinality subset 7" C T such that no element from X,Y, or Z
occurs in more than one tuple. In the bounded variant of MAX-3-DM (denoted by MAX-3-DM-
B), it is assured that any element which belongs to either X, Y, or Z will appear in at most B
tuples. Kann [32] showed that bounded maximum matching with bound 3 is MAX SNP-hard
which in turn implies it is APX-hard. Later, it was shown by Petrank [38] that it is NP-hard
to distinguish between instances where there is a solution 7" with |7'| = ¢ and from instances
for which every solution 77, |T"| < (1 — €)q for a constant e. There is also a more restricted
variant of the problem, which is frequently studied where there are exactly B tuples for each
element of the sets XY, and Z called the exact maximum 3-dimensional matching (denoted
by MAX-3-DM-EB). In case of MAX-3-DM-E2 it was shown by Berman and Karpinski [7]
that it is NP-hard to approximate with ratio better than %, which Chlebik and Chlebikové [11]
improved to 32. Finally, Chlebik and Chlebikova [12] also note an useful corollary of their 32
bound, which is the following result for the promise variant of MAX-3-DM-E2,

Theorem 3.1. [12] Let Iy be a MAX-3-DM-E2 instance comprising of sets X,Y,Z and
tuples T C X xY x Z with |X| = |Y| = |Z| = q. Then, it is NP-hard to distinguish
between the case with OPT(Iy) > [Boq] and OPT(Iy) < |apq], where ap = 0.9690082645
and By = 0.979338843.

Finally, for our vector bin covering result we use the same reduction to 4-Partition to finally

obtain a reduction to a vector bin covering instance.

3.2 Vector Bin Packing has no APTAS

In this section, we prove our main result, i.e., there is no APTAS for vector bin packing. We do
so by modifying the construction in the original proof given in [43] by adding a set of dummy
vectors!. The final analysis is based on the analysis in [4] for the geometric bin packing lower
bound.

We start by defining a few integers based on the given MAX-3-DM instance [I;. Let
r = 64q, where ¢ = |X| =|Y| = |Z| and b = r* + 15. Define integers z/, 9/, z} corresponding to

'We have tried to stay as close to the original proof as possible in terms of notations and arbitrary choices.
Yet we have made two notable changes, (i) using r = 64¢, and (ii) using #; ;1) to denote a tuple.
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x; € X,y; €Y,z € Z to be,

T =iar+1,
Y, =ir? +2,
2 =ir® + 4,

and for ¢ ;1) = (2,5, 2,) € T define ¢, ;, as,
Hogay = 7' =k = jr? —ir 48,

Let U’ be the set of integers constructed as above. Also, note that for any integer o’ € U’
constructed as above we have 0 < a’ < b. These integers were constructed so that the following
statement holds (cf. Observation 2 in [43]).

Lemma 3.1. A set of four integers from U’ add up to b if and only if they correspond to some
elements x; € X,y; € Y, 2z, € Z and tuple t( jr) € T where t(;jx) = (i, Y, 2k)-

Proof. (If) Suppose x; € X,y; € Y, 2, € Z and t(;jx) € T where t; jry = (25, y;, 2) then it is
easy to verify that indeed
tigw T2+ Y+ 2=

(Only if) Conversely, suppose that four integers a}, aj, a}, a) sum to b. Considering the equation
modulo r and using the fact 1 4+ 2 + 4 + 8 is the only possible way of obtaining 15 as a sum
of four elements (possibly with repetition) from the set {1,2,4,8} and therefore we conclude

the integers must correspond one element each from XY, Z,T. This means we can write

/ 3

(f0,J0,k0)"
io,j = jo, and k = k/’o. ]

ay, @y, Az, ay as Tj, Y, 2, t Now, considering the equation modulo 72, 73, r* gives us i =

To obtain a vector bin packing instance for each integer a’ constructed above construct the

1+a’ 3 a
a= |-+ — —_—_ .
5 56710 5b

We also construct additional |T| + 3¢ — 45(Ips) dummy vectors as follows,

following vector,

where 3(-) is an arbitrary function which will be fixed later. We now note a few properties of
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Figure 3.1: non-dummy vectors

the vectors. First of these pertains to how many vectors can fit in a bin (cf. Observation 4,
Lemma 2.5 from [43] and [4]).

Lemma 3.2. A bin can contain at most 4 vectors. If a bin contains a dummy vector it can
contain at most one more vector. Furthermore, two dummy vectors will not fit in a bin while

any other set of two vectors fit in a bin.

Proof. The first part follows from the fact that the first component of any vector is strictly
greater than % The second part of the claim follows from the fact any vector in the instance
has first component greater than % and the dummy vector has first component equal to % For
the third part, observe if there are two dummy vectors then both the components would add up
to 2- g > 1. However, if one of them is a non-dummy vector, then notice that both components

2 3

of a non-dummy vector are less than £, and both components of any vector are less than £.

Hence, both components of the sum are less than 1. O

The following lemma shows that a configuration corresponding to a tuple is an optimal

configuration (cf. Observation 3 from [43]).
Lemma 3.3. A set of four vectors fits in a bin if and only if it corresponds to a tuple.

Proof. (If) For a tuple t(;;x) = (i, y;, z), we have &, ;4 x; + y; + 2, = b by Lemma 3.1. So,

we have

4, Mg T2ty +2 6 t/(i’j’k)+x;+y}+22> = (1,1)

i ; ‘ _ | =
() XY 2 <5+ 5 5 5
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Figure 3.2: The only if direction of Lemma 3.3

(Only if) Suppose there are four vectors a;, ag, a3, a4 which fit in a bin. By Lemma 3.2 all the

vectors are non-dummy vectors. Hence, each vector can be written as:

1+a§ 3 a
a; = < — —— .
50" 10  5b

As they fit in a bin we get the following two conditions,

4+“:1 <1

5 5 —
1 !

6 ;a

- <1,

5 50 —

which simplify to Z a; < b and Z a; > b. Combining the inequalities we get Z a, =
=1 =1 =1
Therefore, by Lemma 3.1 the vectors correspond to a tuple. [

Now, we show that the above construction is a gap reduction from MAX-3-DM to 2-

dimensional vector packing (cf. Theorem 2.1 from [4]),
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Lemma 3.4. If a MAX-3-DM instance Iy; has a solution with S(Iy) tuples the constructed
vector bin packing instance has a solution with |T| + 3q — 38(Iar) bins. Otherwise, if all the
solutions of the MAX-3-DM instance have at most a(Iyr) tuples then the constructed instance

needs at least |T| 4 3q — Oé(éM)

— %IM) bins where «(-) is an arbitrary function.
Proof. First, we show that if a MAX-3-DM instance has a matching consisting of (I,;) tuples,
then the vector bin packing instance has a solution of |T'|4+3¢—35(I;) bins. Using Lemma 3.3,
the 45(Iys) vectors corresponding to the G(Iy) tuples and their elements can be packed into
B(In) bins. Each of the |T'| 4+ 3¢ — 46(I)) non-dummy vectors can be packed along with a
dummy vector into |T'| + 3q — 48(Iys) bins by Lemma 3.2.

Now, suppose that for a given instance, all the solutions have at most a(l,;) tuples. Let n,
be the number of bins with 4 vectors, ng be the number of bins with dummy vectors, and n,
be the rest of the bins. Now, since any solution to the bin packing instance must cover all the

non-dummy vectors,

(a) any bin containing four vectors consists of only non-dummy vectors by Lemma 3.3,

(b) any bin containing a dummy vector contains at most one non-dummy vector, by Lemma 3.2,

and

(c) any other bin can contain at most 3 vectors by Lemma 3.2.

Therefore, we have
4ng +3n, +ng > 3¢+ |T|.
Now, by Lemma 3.2 we have ng = |T| 4+ 3q —45(Iy). Hence, the above inequality simplifies to,

dng, + 3n, > 48(1y)

1 n
8 :
=ng+n,+nq>|T|+3q— % - gﬁ(IM) [Since, ng = |T'| + 3¢ — 468 (1n)].

Since there are at most «([y) triples in the MAX-3-DM instance, by Lemma 3.3 we have
ng < alpr). Therefore, the number of bins is at least
a(lu)  868(Im)

T| +3q — .
IT| + 3¢ 3 3
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At this point the reader may want to step back and look at the justification for the seeming
arbitrary choice for the number of dummy vectors, i.e., |T|+3g—48(Iy). In fact, if they carefully
examine the proof of Lemma 3.4 they may find that it is precisely the number of dummy vectors
which increases the “soundness” value of the gap without increasing the “completeness”. Also,
note that without the use of dummy vectors the gap obtained would be trivial. The following

inaproximability for vector bin packing directly follows from Lemma 3.4.

Theorem 3.2. There is no APTAS for the d-dimensional vector bin packing with d > 2 un-

less P=NP. Furthermore, for the 2-dimensional case there is no algorithm with asymptotic

approximation ratio better than %.
Proof. Suppose that there is an algorithm with approximation ratio 1 + @:9%%. Then we can

distinguish between MAX-3-DM-E2 instances (i) having a solution of [fyq]| triples and (ii)
having no solutions with more than |agq| tuples using Lemma 3.4 with «(Ip) = |apgq| and
B(Inrr) = [Bogq]. By Theorem 3.1, we know it is NP-hard to distinguish between these two types
of MAX-3-DM-E2 instances with 5, = 0.979338843, and ay = 0.9690082645. Hence, we obtain

the bound of 1+ 1@__9%%. Simple calculations will show this is at least 1 + ﬁ. O

Note that the above proof does not show that the vector bin packing problem is APX-hard.

3.3 Woeginger’s Proof

In this section we look at the original proof of non-existence of APTAS for vector bin packing
by Woeginger while showing that it has a minor error. We show that using a counterexample.

Woeginger’s proof uses essentially the same reduction as ours, i.e., there we had r = 32¢,
b =r*+ 15 and then for each z; € X,y; € Y, 2 € Z we had,

r,=ir+1,
Y, =irt +2,
Z = ir® 4 4,

and for t; € T was t; defined by,
ty =1t —kr® —jr® —ir 4+ 8.

And finally, to obtain a vector bin packing instance for each integer a’ constructed above
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construct the following vector,

1 N a 3 d
a=[-4+————|.
5 5b 10 5b
The above set of vectors forms a 2-dimensional vector bin packing instance U. A noticeable

difference from our reduction being the absence of dummy vectors.! In [43], Woeginger claimed
that,

Claim 3.1 (Observation 4 in [43]). Any set of 3 vectors in U can be packed in a unit-bin. No

set of 5 vectors in U can be packed into a unit-bin.

We show that this claim does not hold in general. In particular, all sets of 3 vectors can not
be packed into a unit-bin. The idea is that the integers corresponding to tuples are quite large
and consequently the first component of these vectors are quite large. Hence, a set of 3 vectors
can not fit in a bin.

Consider the tuple vectors for the tuples t, = (z1,y1, 21),ta = (2, Y1, 21), and t3 = (x3,y1, 21),
i.e., t1,ts, and ts3, respectively. According to the claim, the vectors tq, ts, t3 corresponding to
the above tuples can be packed in a bin. Suppose tq, ts, t3 can indeed be packed in a bin. This
implies that the first components of the vectors do not exceed 1, i.e.,

3t Hthtty

S Sk B A |
5T s

which simplifies to,
th +th +ty < 2b.

Finally, using
th=rt =1 =1 —r +8,

th=r* =9 =12 —2r +8,

th=rt—r® —1? - 3r +8,

and
b=r"+15,

along with further simplification we get,

7°4§3r3—|—3?°2+67“—|—6.

1 Also notice that » = 32¢ and tuples are denoted by t;.
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But this inequality does not even hold for » > 32 whereas 32 is the smallest value for r = 32q¢.

Thus the claim is incorrect. This implies his main lemma (Lemma 5 in [43]) fails to hold.

Claim 3.2 (Lemma 5 in [43]). Let o > 0 be an integer such that |T'| — « is divisible by 3.
Then there exists a feasible solution for the instance Iy for MAX-3-DM that contains at least
a triples if and only if there exists a feasible packing for the instance U of the 2-dimensional

vector packing problem that uses at most |T'| + %(q — ) unit bins.

We now consider, and rule out, a few natural attempts at fixing the proof. As a first attempt,
we modify the claim of Observation 4 from [43] to exclude the case of 3 tuples. In this case,
we see that it is not possible prove the original claim of Lemma 5 from [43]. Another attempt
inspired by the failures of the above attempt is to consider modifying the claim of Observation
4 to apply to any set of 2 vectors. In this case, it is clear that the original claim of Lemma
5 can not be proven and even the natural modification to the claim of Lemma 5 to consider
at most 3(3¢ + |T'|) — « bins instead of ¢ + 3(¢ — a) bins can not be proven. It seems that it
may not be possible to show that the construction given in [43] is an approximation preserving
reduction. Finally, the analysis in [13] also uses the relation in Lemma 5 of Woeginger’s proof

391

to obtain their 55 inapproximability which unfortunately means that their analysis also suffers

from the same oversight. Hence, the need for the revision.

3.4 Vector Bin Covering has no APTAS

In this section, we prove that vector bin covering has no APTAS unless P=NP by adapting
the proof presented in Section 3.2. The analysis is slightly more complicated and bears some
resemblance to the analysis of the reduction to geometric bin covering problem presented in
[12]. To show this we obtain a gap preserving reduction from MAX-3-DM to 2-dimensional
vector bin covering. We start with the same set of integers U’ we had in Section 3.2. To obtain

a vector bin covering instance for each integer a’ in U’ construct the following vector,

a 1+a/ 3 a
~\5 510 5b)°

We also construct additional |T'| + 3q — 45(1y) dummy vectors as follows,

d=(z,2).
5 D
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where 3(+) is an arbitrary function which will be fixed later.! If a unit cover (or bin) has at least
one dummy vector then we call it a D-bin. Otherwise, if a unit cover has no dummy vectors

the we call it a non-D-bin.

Observation 3.1. Any set of 5 vectors can cover a bin. Any vector along with a dummy vector

can cover a bin. At least 2 vectors are needed to form a unit cover.

Though, as we observe, any bin can be covered using a dummy vector along with another

vector. We now show that for a non-D-bin the optimal cover has cardinality 4.
Lemma 3.5. A set of four vectors covers a non-D-bin if and only if it corresponds to a tuple.

Proof. (If) For a tuple t(; ; xy = (24, y;, 21), we have t/(” pt i + Y + 2, = b by Lemma 3.1. So,
we have

= (1,1).

. + fagiy T+ 45+ 5 6_ Gk T4 Y+ 2
’ o 5 5b

Cage) + X Ty + 2k = <—

(Only if) Suppose there are four vectors aj, ag, as, a4 which cover a non-D-bin. By our assump-

tion all the vectors are non-dummy vectors. Hence each vector can be written as,

o — 1+a; 3 q
o \5 510 5b)°

As they cover a bin we get the following two conditions,

— > 1
5+ 5 —
1 !

6 XU
B > 1,
5 50 —

which simplify to Za > b and Za < b. Combining the inequalities, we get Za =

Therefore, by Lemma 3.1 the Vectors correspond to a tuple. [

Now, we are ready to prove our main lemma showing our reduction is indeed a gap preserving

reduction.

!Note the difference in size of dummy vectors from Section 3.2.
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Lemma 3.6. If a MAX-3-DM instance Iy has a solution with 5(Iy) tuples then there is a
solution to the vector bin covering instance with |T'| + 3q — 38(Iy) tuples. Otherwise, if all
the solutions of Iy have at most a(Iyr) tuples then the constructed instance can cover at most

IT| +3q — 23(Iy) + @ bins, where a(-) is an arbitrary function.

Proof. Suppose that OPT(Iy;) > S(Ip). Then we can cover S(Ir) bins using 45(Iy;) vectors
corresponding to the () tuples from the solution of I, using Lemma 3.5. Now, we have
|T'|+3q —45(Ip) non-dummy vectors left along with exactly ||+ 3¢ —48(1);) dummy vectors.
These vectors, by Observation 3.1, can cover |T'| + 3¢ — 45(15s) bins.

Now, suppose that every solution of the MAX-3-DM instance has value at most a(Iy).
Consider an optimal solution to the constructed vector bin covering instance. We can normalize

such a solution without any loss in the number of bins covered as follows,

(a) Each bin has at most one dummy element. Clearly, more than |T'| + 3¢ — 45(I;) bins are
covered in an optimal solution. So, if there are n bins with two dummy vectors then there
must be at least n non-D-bins. Therefore, we can pick one non-D-bin for each bin with
2 dummy vectors, which must contain 2 non-dummy vectors by Observation 3.1. Again
by Observation 3.1, we can obtain two unit cover each with one dummy vector and one
non-dummy vector. Similar arguments can be used for bins having k£ dummy vectors, i.e.,
there are at least (k—1)n non-D-bins and then similar rearangements can be done to obtain

kn unit covers with one dummy vector.

(b) No subset of a unit cover is an unit cover. To that end, some vectors can left out, i.e., they
may be designated as not part of any unit cover. Now, using arguments similar to (a) we
see that every dummy vector must be part of a unit cover. Also, note that number of such

vectors can be at most four as five vectors always form a unit cover.

Let ng be the number of D-bins, ny be the number of non-D-bins covered by 4 vectors and n,
be the number of non-D-bin covered by 5 vectors. By our normalization every dummy vector
is part of unit cover with exactly one dummy vector, i.e., ng = |T'| + 3¢ — 45(Ips). Since there

are 3q + |T'| non-dummy vectors,

ng + 4ng + 5n, < 3¢+ |T)|
= 4ng + 5n, < 45(1y) [Since, ng = |T'| + 3q — 48(1n)]

4
= ng +n, < gﬁ(IM) + %.
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By Lemma 3.5, we have n, < a(I). Therefore,

4 I
ng+ne < B(In) + “<5M)
16 I
=ng+ng,+n, <|T|+3q— Eﬁ(IM) + a(5M).

In other words, the number of bins covered is at most

o}

16
7]+ 30 — 2 B(In) +

]

Theorem 3.3. There is no APTAS for d-dimensional vector covering with d > 2 unless P=NP.
Furthermore, for the 2-dimensional vector bin covering there is no algorithm with asymptotic
998

approzimation ratio better than g52.

Bo—co
25—168p+ag *

distinguish between MAX-3-DM-E2 instances (i) having a solution of [/yq]| tuples and (ii) with
all solution less than |apq]| using Lemma 3.6 with a(ly) = [aq] and B(Iy) = [Bogq]. By
Theorem 3.1, we know it is NP-hard to distinguish between these two types of MAX-3-DM-E2
instances with 5, = 0.979339943, and «ay = 0.9690082645. Hence, we obtain the bound of

1+ %f{’gﬁ. Simple calculations will show this is at least 1 + Tér [

Proof. Suppose there is an algorithm with approximation ratio 1 + Then we can
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Chapter 4
Min-Knapsack

In this chapter we study the multidimensional variants of the min-knapsack problem. The min-
knapsack problem is the covering analogue of the knapsack problem. In min-knapsack problem
given a set of items [ with sizes s; € (0, 1] and cost ¢; for each item i € I, the aim is to find the
minimum cost cover for the knapsack, i.e., find a subset 1" C I which minimizes ) ,_, ¢; under
the constraint >, , s, > 1.

4.1 Covering Integer Program

Recall that for the case where the dimension m is fixed considered the case where m is fixed,
i.e., not part of the input Frieze and Clarke [21] obtained a PTAS using a simple LP rounding
scheme. The covering variant of the above problem is the vector min-knapsack also known as

the covering integer program which is,

min Z ;i (4.1a)

jelml

Subject to,
alrz>1 i € [m] (4.1b)
z; € {0,1} J € [n] (4.1¢)

where ¢; > 0, a; > 0. In the above problems, the variables x; can be thought of as denoting

exclusion or inclusion of the item j in a m-dimensional knapsack.
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4.2 Non-existence of EPTAS for CIP

Kulik and Sachnai [35] showed that PIP does not have an EPTAS by reducing a parameterized
version of the subset sum problem, known as the sized subset sum. In the sized subset sum
problem, given a set of positive integers L = {x1,...,x,}, and the positive integers S, k, the
aim is to decide if there is a subset L' C L of size k, such that Zie 1 @i = 5. The sized subset
problem described by (L, S, k) is known to be W[l]-hard (see [20]).

We now give an almost identical proof of non-existence of EPTAS for CIP. First we construct

a new instance (L, S, k) where L = {Zy,...,x,} with

k

jﬁ'i:

Note that 0 < 7; < % if x; < 5, which we can assume without loss of generality. Simple

calculations will show that the following lemma holds.
Lemma 4.1 ([35]). The instance (L, S, k) is satisfiable if and only if (L, S, k) is satisfiable.

From (L, S, k) define an instance R(L, S, k) of 2-dimensional CIP. For each item xz; we obtain

. . . _ _ ‘ij _ 2
an item j with ¢; =1, a1, =4, and ay; = £ —

w)&

Lemma 4.2. OPT(R(L, S, k)) > k.

Proof. Assume there is a feasible subset of items A C [n] whose cost is smaller than & for

R(L,S,k), then [A] < k —1. Since A is feasible, we have »_;_,a1; = ZjeA% > 1, which

means

2z 2 Z;
1§Za2,j: E_gj:’A"E_Z§j<1v

jeA JjEA JjEA

a contradiction. O
Lemma 4.3. (L, S, k) is satisfied if and only if OPT(L, S, k) = k.

Proof. Suppose the instance (L,S,k) is satisfied then there is a subset L' C L such that
Y zeiy @ =S. In this case A = {j\i"j € i’} is a feasible solution for R(L, S, k) as ZjeA a; =

Ziea®i _ 1 gpd Djen oy = 24l Ziea®i _ 9y Therefore by Lemma 4.2, OPT(R(L, S, k)) = k.

S k 5
Suppose OPT(R(L,S,k)) = k then there is a A C [n] such that >, ,a1; = 1 and
aaz; = 1. a1 = Zieas _ implies that > ._,z; = S, which in turn means
JjEA ~ »J jeA LI S JjeEA I

that (L, S, k) is satisfied by {z,|7 € A}. O

Corollary 4.1. (L, S, k) is satisfiable if and only if OPT(R(L, S, k)) = k.
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Now we prove the main lemma needed for showing non-existence of EPTAS.

Lemma 4.4. Let A be an approximation scheme for 2-dimensional Covering Integer Program
which on input I and an error parameter € runs in f(1/€)|1|91/9). Then there is an algorithm
for sized subset sum with a running time of f(2k)|(L, S, k)|°WC*)) £ p(|(L, S, k)|) where f,g are

arbitrary functions and p is a polynomial.

Proof. Consider the algorithm for sized subset sum which on input (L, S,k) generates I =
R(L,S,k) and runs A with error e = 1/2k. If A(I) = k output satisfiable, otherwise output
not satisfiable.

Note that if OPT(/) > k then A(I) > k while if OPT(I) < k then A(I) < k as k(1+1/2k) =
k + % Therefore, by Corollary 4.1 the algorithm under consideration decides sized subset sum
correctly.

Now, the construction needs p(|(L, S, k)|) time where p is a polynomial, and running A on
I needs f(2k)|R(L, S, k)[930) ie., f(2k)|(L,S,k)|9ZF), O

Hence we have,

Theorem 4.1. There is no EPTAS for the covering integer program for m > 2 unless W[1] =

FPT. Furthermore, the standard parameterization of covering integer program is W[1]-hard.

Proof. Take g to be the constant function in Lemma 4.4. ]

Here the standard parameterization of covering integer program refers to problem of deciding
given an CIP instance I and a value k whether OPT(]) < k.

4.3 PTAS for CIP

We show that a LP rounding scheme similar to one given by Frieze and Clarke also produces a
PTAS hence verifying their remark in [21]. To that end we first consider the LP relaxation of
(4.1), i.e.,

min Z cjx (4.2a)
Jj€lm]

Subject to,
alr>1 i € [m] (4.2b)
0<uz; <1 J € [n] (4.2¢)
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For a set S C N = [n], define T'(S) = {j € N\ S|¢; > minges ¢ }. Define IP(S) and LP(S) to
be (4.1) and (4.2), respectively, with the following additional constraints,

0 j€S8
=4 "7 (4.3)
1 jeT(95)

Finally, let 7(S) denote the basic optimal solution to LP(SS).

Given € > 0 we set k = min(n, [m(1 +€)/e]). To find our solution to CIP we consider
the sets S C with |S| < k, obtain 2P(S) and then it round up to [25(S)] = ([=zF(9)]).
The required solution is & = {xB(S’)—‘ with the value 2 = ming)gj<x Y7 ¢; [27(S)] where

S = argming sj<x >y ¢ [7(S)].
Formally,

Algorithm 1 PTAS for Covering Integer Program
Z 4= 00
k < min(n, [m(1 +€)/€])
for S C N with |S| <k do
if D iens @ij + 2 jer(s) wij = 1 for all i € [m] then
obtain a basic optimal solution zZ(S) to LP(9)
21(S) < [zB(S)] for j e N
21(S) « ZJEN cja:]I-
if 2> 2/(S) then
2« 21(S), &+ 21(9)
end if
end if
end for
output Z as the value and z as the certificate.

Theorem 4.2. The above algorithm is a 1+ € approximation for CIP.

Proof. Let z* be an optimal solution to (4.1) with the value z*. Let S* = {j|z; = 0}.
If |S*| <k then 2 < z* which by optimality of z* implies 2 = z*.

Otherwise, let S* = {iy,4s,...,4.} such that ¢; < o < ...¢.. Let S = {i1,...,9} and
0= jcs, Cj- Observe that if j € N\ (Sy UT(Sy)) then ¢; < o/k.
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Now

2> Z 7 (Sy) [since z* is also a solution of IP(S})]
j=1
2D [«7(5p)] -

j=1

where,
§=> ¢ with D={jeN|0<al(S;) <1}
jeD

|D| < m, since j € D implies z; is a basic variable in 27(S). Also, as DN (S;UT(S;)) =0, so
j € D implies ¢; < o/k. Therefore, § < mo/k and

2*>2—mo/k>Z%2—mz/k.

]

Notice we need to solve O(n*) LPs in the above algorithm. Since each LP can be solved in

polynomial time w.r.t. n the above algorithm qualifies as a PTAS but not an EPTAS.

4.4 Geometric Min-Knapsack

In the 2-dimensional geometric min-knapsack, 2DGMK, given a set of items I with each item
i having a height h; € (0, 1], width w; € (0,1], and cost ¢; > 0, the aim is to obtain subset
I’ C I and map each item in ¢ € I’ to a rectangular region R; = [l;,l; + w;] x [b;,b; + h;] (or

R; = [l;,l; + hy] x [b;, b; + w;] if rotations are allowed) such that ), , ¢; is minimized while
satisfying the constraint
Jri200.17 (4.4)
il

We get the cardinality 2DGMK if ¢; = 1 for all items. If subset I’ along with the mapping R;
satisfy (4.4) then I” along with R; is called a covering. In this section we show a reduction from
the partition problem to feasibility of 2DGMK without rotation.

Given an instance I = {ay, ..., a,} of partition construct an instance J = { <%, = 2‘[”] a_) i € [n]}
JjE€[n] %I

Observation 4.1. The total area of rectangles in J is 1.

Lemma 4.5. If there is a solution for I then there is a mapping R; such thatJ,.; R; = [0,1]%.
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Figure 4.1: 2-dimensional geometric min-knapsack feasibility solves partition

Proof. Suppose there is a partition of I into two sets Iy = {a;,,...,a;, }, Lo = {aj,...,a,_.}
such that

YOETRD SRR S

ke[m] ke[n—m) zehz
Let

R, =[0,1/2] x Z iy Y i,

€lk—1] k' €[k]

for k € [m] and

Rj, = [1/2,1] x Z Qs Z Qg

| k'€lk—1] k' e[k]

for k € [n —m)].
Clearly, we have Uy, Ri, = [0,1/2] x [0,1] and Uy, B = [1/2,1] x [0,1]. Hence,
Uie[n] R; = [0, 1]2~ ]

Now we show if there is covering then the rectangles form two columns of width %

Lemma 4.6. If J has a covering consisting of items J' along with the mapping R; then for any
i € [n] either R; =10,1/2] x [a,b] or R; = [1/2,1] X [a,]].

Proof. Suppose J has a covering consisting of items J' along with the mapping R;. By Obser-

vation 4.1 J = J', U;¢; 7\ [0, 1]* has 0 area, and R; N R; has area 0 for any 4, j € J. Fix an item
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io € J and let R; = [a,a+ 1/2] x [¢,d]. a > 1/2 is not possible as that would mean R;, \ [0, 1]?
has area (d — c)(a—0.5) which is non-zero which means J,.; 7; \ [0, 1]* has a non-zero area. Say
a € (0,1/2) then since every item has length 1/2 any item j covering the region [0, a| X [c, d]

must either have an overlap of non-zero area with iy or R; \ [0, 1]* has non-zero area. O
Finally, we show how to obtain a partition from a covering.
Lemma 4.7. If there is covering for J then there is a partition for I.

Proof. Suppose J has a covering consisting of items J’ along with the mapping R;. Again by
Observation 4.1 J = J', |J,c;7: \ [0,1]* has 0 area, and R; N R; has area 0. By Lemma 4.6 we
can partition J into | = {i|Ja,b, R; = [0,1/2] X [a,b]} and r = {i|3a,b, R; = [1/2,1] X [a, ]}
Area under items in [ must be at least 1/2 as for any item i, R; N[0,1/2] x [0, 1] has 0 area.
Similarly area under items in r must be at least 1/2. But, total area of J is 1. Therefore,
area(l) = area(r) = 1/2, which implies .., a; = > ., a; = %Zie[n] a;. O

The following theorem follows from Lemma 4.5 and Lemma 4.7.
Theorem 4.3. Feasibility of 2-dimensional geometric min-knapsack is NP-hard.

This implies that there does not even exist a polynomial-time approximation algorithm for

2-dimensional geometric min-knapsack.
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Chapter 5
Conclusions

In the original proof of the non-existence of an APTAS for vector bin packing, it was claimed
that the reduction used was an approximation preserving reduction, and hence, the APX-
hardness of the vector bin packing problem was a simple corollary. This is no longer the case
now as we could only show that our reduction is a gap preserving reduction, and hence, it is
not known if 2-dimensional vector bin packing is indeed APX-hard. More importantly, there
is still a considerable gap between the best-known approximation ratio for d = 2 case (1.406)
and our lower bound (1.00167). We also make similar observation in case of the vector bin
covering problem, i.e., we have not showed that it is APX-hard, and the gap between the best-
known algorithm for the two-dimensional case (2) and our lower bound (1.001). As Sandeep
observed, his reduction (in [40]) does not give the exact lower bounds on the approximation
ratio. Instead, it shows that the approximation ratio can not be o(Ind). Hence, the problem of
finding the optimal lower bound on the approximation ratio in the exact sense is still open for
vector bin packing with fixed dimension. Also, note that in case of vector bin covering there
is a gap of factor cloglogd between the lower bound and upper bound on the approximation
ratio. We observe that Lemma 3.1 implies that the intermediate reduction to 4-Partition is still
approximation preserving, and hence, 4-Partition is indeed APX-hard. This also leads us to
believe that it will be insightful to look at the problem of improving the bound for 4-Partition
(currently the same as MAX-3-DM) with the ultimate aim of improving the lower bound for
2-dimensional vector bin packing and 2-dimensional vector bin covering. For geometric bin
packing we do not know any hardness result which grows with d but the best algorithm has an
approximation ratio which is exponential in d. As we noted in the Section 1.2, the literature
on geometric bin covering is extremely sparse and no algorithms are known for the same.

Our results on covering integer problem are optimal as we show a PTAS along with the non-

existence of EPTAS. Since, we were able to show that feasibility of geometric min-knapsack
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without rotation is NP-hard, therefore only hope of solving the problem is to either use resource

augmentation or look at a more restricted version.
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