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Latent Variable Modeling

Goal: Discover hidden effects from unlabeled data

Example: document modeling

Observations: words. Hidden: topics.

Nursing Home Is Faulted Over Care After 

Storm

By MICHAEL POWELL and SHERI FINK

Amid the worst hurricane to hit New York City 

in nearly 80 years, officials have claimed that 

the Promenade Rehabilitation and Health 

Care Center failed to provide the most basic 

care to its patients.

In One Day, 11,000 Flee Syria as War and 

Hardship Worsen

By RICK GLADSTONE and NEIL 

MacFARQUHAR

The United Nations reported that 11,000 

Syrians fled on Friday, the vast majority of 

them clambering for safety over the Turkish 

border.

Obama to Insist on Tax Increase for the 

Wealthy

By HELENE COOPER and JONATHAN 

WEISMAN

Amid talk of compromise, President Obama 

and Speaker John A. Boehner both indicated 

unchanged stances on this issue, long a point 

of contention.

Hurricane Exposed Flaws in Protection of 

Tunnels

By ELISABETH ROSENTHAL

Nearly two weeks after Hurricane Sandy 

struck, the vital arteries that bring cars, trucks 

and subways into New York City’s 

transportation network have recovered, with 

one major exception: the Brooklyn-Battery 

Tunnel remains closed.

Behind New York Gas Lines, Warnings and 

Crossed Fingers

By DAVID W. CHEN, WINNIE HU and 

CLIFFORD KRAUSS

The return of 1970s-era gas lines to the five 

boroughs of New York City was not the result 

of a single miscalculation, but a combination 

of ignored warnings and indecisiveness.

Unsupervised learning of latent variable models: methods and guarantees



Other Applications of Latent Variable Modeling

Social Network Modeling

Observed: social interactions.

Hidden: communities, relationships

Bio-Informatics

Observed: gene expressions or neural activity.

Hidden: gene regulators, functional mapping.

Recommendation Systems

Observed: recommendations: e.g. yelp reviews.

Hidden: User and business attributes

Learning latent variable models: efficient methods and guarantees



Challenges in Learning Latent Variable Models

Challenges in Identifiability

When can latent variables be identified?

Conditions on the model parameter, e.g. on topic-word matrix and
on topic proportions distributions?

Does identifiability also lead to tractable algorithms?
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Challenges in Identifiability

When can latent variables be identified?

Conditions on the model parameter, e.g. on topic-word matrix and
on topic proportions distributions?

Does identifiability also lead to tractable algorithms?

Challenges in Design of Learning Algorithms

Maximum likelihood learning of topic models NP-hard (Arora et. al.)

In practice, methods such as Gibbs sampling, variational Bayes etc.
but no guarantees

Guaranteed learning with minimal assumptions? Efficient methods?
Low sample and computational complexities?

Moment-based approach: learning using low order observed moments



Inverse Moment Method

Two step approach:

1 Under modeling assumptions, what moment forms arise?
topic models, HMMs, LDA, mixture of Gaussians models, parsing
(e.g. PCFGs), Bayesian networks

2 Can we “invert”/reverse engineer the model from these moments?



This Tutorial

How to utilize observed moments?

part 1: the moment structure and its inversion
◮ When are low order moments sufficient for learning?
◮ generalizations of simple (linear algebra) approach
◮ aren’t these problems hard/non-convex?

part 2: Use tensor decomposition techniques for finding overlapping
communities

◮ Introduce mixed membership community model
◮ Derive graph moment tensor forms
◮ Contrast with state-of-art community detection methods

part 3: overcomplete models
◮ Latent dimensionality ≫ observed dimensionality
◮ Exploit sparsity conditions
◮ ℓ1 optimization



Two Extremes

Single hidden state active
◮ mixture of Gaussians, single topic per document

Independent Component Analysis
◮ Blind source separation

audio signal has different speakers talking
◮ independent factors

What about the middle ground?



2. Define the models



Mixture Models

(spherical) Mixture of Gaussian:

k means: µ1, . . . µk

sample cluster H = i with prob.
wi

observe x, with spherical noise,

x = µi + η, η ∼ N (0, σ2
i I)

(single) Topic Models

k topics: µ1, . . . µk

sample topic H = i with prob.
wi

observe m (exchangeable) words

x1, x2, . . . xm sampled i.i.d. from

dataset: multiple points / m-word documents

how to learn the params? µ1, . . . µk, w1, . . . wk (and σi’s)



vector notation!

k clusters, d dimensions/words, d ≥ k

for MOGs:

◮ the conditional expectations are:

E[x|cluster i] = µi

topic models:
◮ binary word encoding: x1 = [0, 1, 0, . . .]⊤

◮ the µi’s are probability vectors

◮ for each word, the conditional probabilities are:

Pr[x1|topic i] = E[x1|topic i] = µi



ICA

k mixing directions: µ1, . . . µk

each hidden (scalar) factor, H1,H2, . . . Hk, is independently
distributed

observe mixture x, with Gaussian noise,

x =
∑

i

µiHi + η, η ∼ N (0, σ2)

in MOG’s, only one Hi = 1

how to learn the params? µ1, . . . µk



Geometric Picture for Topic Models
Topic proportions vector (H)

Document
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Geometric Picture for Topic Models
Topic proportions vector (H)

µµµ

x1

x2

x3
Word generation (x1, x2, . . .)

Moment-based estimation: co-occurrences of words in documents



3. Approach: the method of moments



The Method of Moments

(Pearson, 1894): find params consistent with observed moments

MOGs moments:

E[x], E[xx⊤], E[x⊗ x⊗ x], . . .

Topic model moments:

Pr[x1],Pr[x1, x2], Pr[x1, x2, x3], . . .

Identifiability: with exact moments, what order moment suffices?
◮ how many words per document suffice?
◮ efficient algorithms?



(some) Related Work

Kruskal’s Theorem
Kruskal (1977), Bhaskara, Charikar, & Vijayaraghavan (2013), ...

Algebraic Work

◮ ICA literature: Cardoso&Common, ’96, ...
◮ for phylogeny trees: J. T. Chang (1996), E. Mossel & S. Roch (2006),

Tensor Decomposition Algorithms
Lathauwer, Moor, & Vandewalle (2000), Zhang & Golub (2001), Anandkumar et.

al. (2012), ...

Structural assumptions/Dictionary learning
Spielman, Wang & Right (2012), Arora, Ge, & Moitra (2012)



4. Tensor decompositions



With the first moment?

MOGs:

have:

E[x] =
k∑

i=1

wiµi

Single Topics:

with 1 word per
document:

Pr[x1] =

k∑

i=1

wiµi

ICA:

define
E[Hi] := wi

E[x] =

k∑

i=1

wiµi

Not identifiable: only d nums.



With the second moment?

MOGs/ICA:

additive noise

E[x⊗ x]

= E[(µi + η)⊗ (µi + η)]

=
k∑

i=1

wi µi ⊗ µi + σ2I

have a full rank matrix

Single Topics:

by exchangeability:

Pr[x1, x2]

= E[ E[x1|topic]⊗ E[x2|topic

=
k∑

i=1

wi µi ⊗ µi

have a low rank matrix!

Still not identifiable!



With three words per document?

for topics: d× d matrix, a d× d× d tensor:

M2 := Pr[x1, x2] =

k∑

i=1

wi µi ⊗ µi

M3 := Pr[x1, x2, x3] =

k∑

i=1

wi µi ⊗ µi ⊗ µi



Mixtures of spherical Gaussians

Theorem

The variance σ2 is is the smallest eigenvalue of the observed covariance

matrix E[x⊗ x]− E[x]⊗ E[x]. Furthermore, if

M2 := E[x⊗ x] − σ2I

M3 := E[x⊗ x⊗ x]

− σ2
d∑

i=1

(
E[x]⊗ ei ⊗ ei + ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]

)
,

then
M2 =

∑
wi µi ⊗ µi

M3 =
∑

wi µi ⊗ µi ⊗ µi.



Independent Component Analysis

Theorem

Different higher order moments from MOGs. Use cumulants:

M4 := E[x⊗ x⊗ x⊗ x]

−
(
E[x⊗ x]⊗ E[x⊗ x] + more stuff...

)
,

then
M4 =

∑
wi µi ⊗ µi ⊗ µi ⊗ µi.



Latent Dirichlet Allocation
prior for topic mixture π:

pα(π) =
1

Z

k∏

i=1

παi−1

i , α0 := α1 + α2 + · · ·+ αk

Theorem

Again, three words per doc suffice. Define

M2 := E[x1 ⊗ x2] −
α0

α0 + 1
E[x1]⊗ E[x1]

M3 := E[x1 ⊗ x2 ⊗ x3] −
α0

α0 + 2
E[x1 ⊗ x2 ⊗ E[x1]]−more stuff...

Then
M2 =

∑
w̃i µi ⊗ µi

M3 =
∑

w̃i µi ⊗ µi ⊗ µi.

Learning without inference!



5. The basic decomposition problem



Low-rank Tensor Decomposition

= + ....

Tensor M3 w1µ
⊗3
1 w2µ

⊗3
2

M3 =
∑

i∈[k]wiµ
⊗3
i

Rank-k tensor decomposition and typically k ≪ d

u⊗ v ⊗ w is a rank-1 tensor whose i, j, kth entry is uivjwk.



Low-rank Tensor Decomposition

= + ....

Tensor M3 w1µ
⊗3
1 w2µ

⊗3
2

M3 =
∑

i∈[k]wiµ
⊗3
i

Rank-k tensor decomposition and typically k ≪ d

u⊗ v ⊗ w is a rank-1 tensor whose i, j, kth entry is uivjwk.

Challenges

Guaranteed algorithm for tensor decomposition?

Efficient and scalable implementation?

Noisy tensor decomposition: exact moments not available

Sample complexity? How large d compared to k?



Dimensionality Reduction for Tensor Decomposition

M3 =
∑

i∈[k]wiµ
⊗3
i

Rank-k tensor decomposition and typically k ≪ d

M3 has size O(d3) but number of free parameters: dk + k

First Step: Dimensionality Reduction

Convert M3 of size d× d× d to a
tensor T of size k × k × k

Carry out decomposition of T

Advantages

Reduced computation

Robustness to noise

Tensor M3 Tensor T

Dimensionality reduction through multi-linear transforms



Dimensionality Reduction through Whitening

M3 =
∑

i∈[k]wiµ
⊗3
i

Whitening: Conversion of (expected) M3 to Orthogonal Symmetric Tensor T

Whitening: W s.t. W⊤µDiag(w)1/2 = R,
R⊤R = I ∈ R

k×k.

SVD of M2 gives Col(µ):

M2 = µDiag(w)µ⊤ = USU⊤ and
W := US1/2

Multi-linear Transformation of Third

Moment Tensor

T := M3(W,W,W ) =
∑

i λiv
⊗3
i

T is symmetric orthogonal tensor: {vi}
are orthonormal.

v1

v2
v3

µ1

µ2
µ3

W



The basic decomposition problem



The basic decomposition problem

Problem: Given T ∈ R
k×k×k with the promise that

T =
k∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt

for some orthonormal basis {~vt} of R
k and positive scalars {λt > 0},

approximately find {(~vt, λt)}
(up to some desired precision).



Basic questions
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Basic questions

1 Is {(~vt, λt)} uniquely determined?

2 If so, is there an efficient algorithm for finding the decomposition?

3 What if T is perturbed by some small amount?

Perturbed problem: Same as the original problem, except
instead of T , we are given T +E for some “error tensor” E.

How “large” can E be if we want ε precision?



Analogous matrix problem

Matrix problem: Given M ∈ R
k×k with the promise that

M =
k∑

t=1

λt ~vt ~vt
⊤

for some orthonormal basis {~vt} of R
k (w.r.t. standard inner product) and

positive scalars {λt > 0}, approximately find {(~vt, λt)}
(up to some desired precision).



Analogous matrix problem

We’re promised that M is symmetric and positive definite, so
requested decomposition is an eigendecomposition.
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Analogous matrix problem

We’re promised that M is symmetric and positive definite, so
requested decomposition is an eigendecomposition.

In this case, an eigendecomposition always exists, and can be found
efficiently.

It is unique if and only if the {λi} are distinct.

What if M is perturbed by some small amount?

Perturbed matrix problem: Same as the original problem, ex-
cept instead of M , we are given M + E for some “error
matrix” E

Answer provided by matrix perturbation theory (e.g., Davis-Kahan),
which requires ‖E‖2 < mini 6=j |λi − λj|.
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Back to the original problem

Problem: Given T ∈ R
k×k×k with the promise that

T =

k∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt

for some orthonormal basis {~vt} of R
k (w.r.t. standard inner product) and

positive scalars {λt > 0}, approximately find {(~vt, λt)}
(up to some desired precision).

Such decompositions do not necessarily exist, even for symmetric
tensors.

Where the decompositions do exist, the Perturbed problem asks if they are
“robust”.



Main ideas
Easy claim: Repeated application of a certain quadratic operator (based on

T ) recovers a single (~vt, λt) up to any desired precision.

Orthogonal symmetric tensor: T =
∑

i λiv
⊗3
i

T (I, vi, vi) =
∑

j λj〈vi, vj〉
2vj = λivi

Obtaining eigenvectors through power iterations

u 7→
T (I, u, u)

‖T (I, u, u)‖
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Main ideas
Easy claim: Repeated application of a certain quadratic operator (based on

T ) recovers a single (~vt, λt) up to any desired precision.

Orthogonal symmetric tensor: T =
∑

i λiv
⊗3
i

T (I, vi, vi) =
∑

j λj〈vi, vj〉
2vj = λivi

Obtaining eigenvectors through power iterations

u 7→
T (I, u, u)

‖T (I, u, u)‖

Self-reduction: Replace T with T − λt ~vt ⊗ ~vt ⊗ ~vt.

Why?: T − λt ~vt ⊗ ~vt ⊗ ~vt =
∑

τ 6=t λτ ~vτ ⊗ ~vτ ⊗ ~vτ .

Catch: We don’t recover (~vt, λt) exactly, so we actually can only
replace T with

T − λt ~vt ⊗ ~vt ⊗ ~vt +Et

for some “error tensor” Et.



Rest of this talk

1 Identifiability of decomposition {(~vt, λt)} from T .

2 A power iteration algorithm for finding the decomposition.

3 Perturbation analysis.



Identifiability of the decomposition

Orthonormal basis {~vt} of Rk, positive scalars {λt > 0}:

T =

k∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt

In what sense is {(~vt, λt)} uniquely determined?



Identifiability of the decomposition

Orthonormal basis {~vt} of Rk, positive scalars {λt > 0}:

T =

k∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt

In what sense is {(~vt, λt)} uniquely determined?

Claim: {~vt} are isolated local maximizers of certain cubic form
fT : Sk−1 → R

k, and fT (~vt) = λt.



Review: Rayleigh quotient

Recall Rayleigh quotient for matrix M :=
∑k

t=1 λt ~vt~vt
⊤

(assuming

~x ∈ S
k−1):

RM (~x) := ~x⊤M~x =

k∑

t=1

λt (~vt
⊤~x)2.



Review: Rayleigh quotient

Recall Rayleigh quotient for matrix M :=
∑k

t=1 λt ~vt~vt
⊤

(assuming

~x ∈ S
k−1):

RM (~x) := ~x⊤M~x =

k∑

t=1

λt (~vt
⊤~x)2.

Every ~vt such that |λt| = max! is a maximizer of RM .

(These are also the only local maximizers.)



The natural cubic form

Consider the function fT : S
k−1 → R

k given by

~x = (x1, x2, . . . , xk) 7→ fT (~x) =
∑

i1,i2,i3

T i1,i2,i3 xi1xi2xi3 .
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The natural cubic form

Consider the function fT : S
k−1 → R

k given by

~x = (x1, x2, . . . , xk) 7→ fT (~x) =
∑

i1,i2,i3

T i1,i2,i3 xi1xi2xi3 .

For our promised T =
∑k

t=1 λt ~vt ⊗ ~vt ⊗ ~vt, fT becomes

fT (~x) =

k∑

t=1

λt

∑

i1,i2,i3

(
~vt ⊗ ~vt ⊗ ~vt

)
i1,i2,i3

xi1xi2xi3

=

n∑

t=1

λt

∑

i1,i2,i3

(~vt)i1(~vt)i2(~vt)i3xi1xi2xi3

=

k∑

t=1

λt (~vt
⊤~x)3.

Observation: fT (~vt) = λt.



Variational characterization

Claim: Isolated local maximizers of fT on S
k−1 are {~vt}.



Variational characterization

Claim: Isolated local maximizers of fT on S
k−1 are {~vt}.

Objective function (with constraint):

~x 7→ inf
λ6=0

k∑

t=1

λt (~vt
⊤~x)3 − 1.5λ(‖~x‖22 − 1).



Variational characterization

Claim: Isolated local maximizers of fT on S
k−1 are {~vt}.

Objective function (with constraint):

~x 7→ inf
λ6=0

k∑

t=1

λt (~vt
⊤~x)3 − 1.5λ(‖~x‖22 − 1).

First-order condition for local maxima:

k∑

t=1

λt (~vt
⊤~x)2 ~vt = λ~x.



Variational characterization

Claim: Isolated local maximizers of fT on S
k−1 are {~vt}.

Objective function (with constraint):

~x 7→ inf
λ6=0

k∑

t=1

λt (~vt
⊤~x)3 − 1.5λ(‖~x‖22 − 1).

First-order condition for local maxima:

k∑

t=1

λt (~vt
⊤~x)2 ~vt = λ~x.

Second-order condition for isolated local maxima:

~w⊤

(
2

k∑

t=1

λt (~vt
⊤~x)~vt~vt

⊤ − λI

)
~w < 0, ~w ⊥ ~x.



Intuition behind variational characterization

May as well assume ~vt is t
th coordinate basis vector, so

max
~x∈Rk

fT (~x) =

k∑

t=1

λt x
3
t s.t.

k∑

t=1

x2t = 1.
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Intuition behind variational characterization

May as well assume ~vt is t
th coordinate basis vector, so

max
~x∈Rk

fT (~x) =

k∑

t=1

λt x
3
t s.t.

k∑

t=1

x2t = 1.

Intuition: Suppose supp(~x) = {1, 2}, and x1, x2 > 0.

fT (~x) = λ1x
3
1 + λ2x

3
2 < λ1x

2
1 + λ2x

2
2 ≤ max{λ1, λ2}.

Better to have |supp(~x)| = 1, i.e., picking ~x to be a coordinate basis
vector. �



Tensor power iteration

Obtaining eigenvectors through power iterations
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Tensor power iteration

Obtaining eigenvectors through power iterations

u 7→
T (I, u, u)

‖T (I, u, u)‖

Start with some ~x(0), and for j = 1, 2, . . . :

~x(j) := φT

(
~x(j−1)

)
=

k∑

t=1

λt

(
~vt

⊤~x(j−1)
)2

~vt.

Claim: For almost all initial ~x(0), the sequence
(
~x(j)/‖~x(j)‖

)∞
j=1

converges

quadratically fast to some ~vt.



Review: matrix power iteration

Recall matrix power iteration for matrix M :=
∑k
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Recall matrix power iteration for matrix M :=
∑k

t=1 λt ~vt~vt
⊤:

Start with some ~x(0), and for j = 1, 2, . . . :

~x(i) := M~x(j−1) =

k∑

t=1

λt

(
~vt

⊤~x(j−1)
)
~vt.

i.e., component in ~vt direction is scaled by λt.

If λ1 > λ2 ≥ · · · , then

(
~v1

⊤~x(j)
)2

∑k
t=1

(
~vt

⊤~x(j)
)2 ≥ 1−

(
λ2

λ1

)2j

.

Converges linearly to ~v1 (assuming gap λ2/λ1 < 1).
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Tensor power iteration convergence analysis

Let ct := ~vt
⊤~x(0) (initial component in ~vt direction); assume WLOG

λ1|c1| > λ2|c2| ≥ λ3|c3| ≥ · · · .

Then

~x(1) =
k∑

t=1

λt

(
~vt

⊤~x(0)
)2
~vt =

k∑

t=1

λtc
2
t ~vt

i.e., component in ~vt direction is squared then scaled by λt.

By induction

~x(j) =

k∑

t=1

λt
2j−1c2

j

t ~vt,

so (
~v1

⊤~x(j)
)2

∑k
t=1

(
~vt

⊤~x(j)
)2 ≥ 1− k

(
λ1

maxt6=1 λt

)2∣∣∣∣
λ2c2
λ1c1

∣∣∣∣
2j+1

.
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Matrix vs. tensor power iteration

Matrix power iteration:

1 Requires gap between largest and second-largest λt.
(Property of the matrix only.)

2 Converges to top ~vt.

3 Linear convergence. (Need O(log(1/ǫ)) iterations.)

Tensor power iteration:

1 Requires gap between largest and second-largest λt|ct|.
(Property of the tensor and initialization ~x(0).)

2 Converges to ~vt for which λt|ct| = max! (could be any of them).

3 Quadratic convergence. (Need O(log log(1/ǫ)) iterations.)



Effect of errors in tensor power iterations

Suppose we are given T̂ := T + E, with

T =

k∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt, ε := sup
~x∈Sk−1

‖φE(~x)‖.

Quadratic operator φ
T̂
with T̂ :

φ
T̂
(~x) =

k∑

t=1

λt

(
~vt

⊤~x
)2
~vt + φE(~x).



Effect of errors in tensor power iterations

Suppose we are given T̂ := T + E, with

T =

k∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt, ε := sup
~x∈Sk−1

‖φE(~x)‖.

Quadratic operator φ
T̂
with T̂ :

φ
T̂
(~x) =

k∑

t=1

λt

(
~vt

⊤~x
)2
~vt + φE(~x).

Claim: If ε ≤ O(mint λt

k
) and N ≥ Ω(log(k) + log log maxt λt

ε
), then N

steps of tensor power iteration on T + E (with good initialization) gives

‖v̂i − ~vi‖ ≤ O(ε/λi), |λ̂i − λi| ≤ O(ε).
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Recap and remarks

Many latent variable models have low rank tensor forms

Orthogonally diagonalizable tensors have very nice identifiability,
computational, and robustness properties.

Many analogues to matrix SVD, but also many important differences
arising from non-linearity.

Greedy algorithm for finding the decomposition can be rigorously
analyzed and shown to be effective and efficient.

Many variants possible (e.g., initialization, deflation).

Non-orthogonal (e.g., overcomplete) CP decomposition is active area of
research.



Questions?


	Define the models
	Approach: the method of moments
	Tensor decompositions
	The basic decomposition problem
	Recap and remarks

