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Network Communities in Various Domains

Social Networks

Social ties: e.g. friendships, co-authorships

Biological Networks

Functional relationships:
e.g. gene regulation, neural activity.

Recommendation Systems

Recommendations: e.g. yelp reviews.

Community Detection: Infer hidden communities from observed network.
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Community Formation Models

Basic Intuition: Nodes connect due to their community memberships

Classical: Stochastic Block Model

Edges conditionally independent given
node community memberships

Single membership model: Nodes in at
most one community

Modeling Overlapping Communities

People belong to multiple communities

Community formation models?

Detection algorithms?
Computational/sample complexities?
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Mixed Membership Community Models

Node Membership Model

Mixed memberships: Nodes can belong to multiple communities

Fractional memberships: Node memberships normalized to one.
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Mixed Membership Community Models

Node Membership Model

Mixed memberships: Nodes can belong to multiple communities

Fractional memberships: Node memberships normalized to one.

Edge Formation Model

Edges conditionally independent given node community memberships

Linearity: Edge probability averaged over community memberships



Mixed Membership Dirichlet Model (Airoldi et. al.)

Independent draws for community membership vectors {πu}u∈V from
Dirichlet distribution

P[πu] ∝
∏k

j=1 πu(j)
αj−1,

∑k
j=1 πu(j) = 1

Dirichlet distribution supported over simplex Dir(α)
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Mixed Membership Dirichlet Model (Airoldi et. al.)

Independent draws for community membership vectors {πu}u∈V from
Dirichlet distribution

P[πu] ∝
∏k

j=1 πu(j)
αj−1,

∑k
j=1 πu(j) = 1

Dirichlet distribution supported over simplex

Dirichlet concentration parameter

α0 :=
∑

j αj

Sparsity level in πu is O(α0).

Regime of interest: small α0

Dir(α)



Pure vs. Mixed Membership Community Models

Stochastic Block Model
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Mixed Membership Model

 

 

α0 = 1

Challenges in Learning Mixed Membership Models

Identifiability: when can parameters be estimated?

Guaranteed learning? What input required?

Potentially large sample and computational complexities
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Stochastic Block Model
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Challenges in Learning Mixed Membership Models

Identifiability: when can parameters be estimated?

Guaranteed learning? What input required?

Potentially large sample and computational complexities
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First guaranteed learning method for overlapping (probabilistic)
community models.

Correctness under exact moments: edges and 3-star counts.

Efficient sample and computational complexity.
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Summary of Results

Contributions

First guaranteed learning method for overlapping (probabilistic)
community models.

Correctness under exact moments: edges and 3-star counts.

Efficient sample and computational complexity.

Scaling Requirements

k communities, n nodes. Uniform communities. Dirichlet parameter:
α0 :=

∑
i αi. p, q: intra/inter-community connectivity

n = Ω̃(k2(α0 + 1)2),
p− q√

p
= Ω̃

(
(α0 + 1)k√

n

)
.

For stochastic block model (α0 = 0), tight results

Performance degradation as α0 increases

Efficient method for sparse community overlaps
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Main Results: Recovery Guarantees

k communities, n nodes. Uniform communities.

Community membership matrix Π, Π(i): ith community

Connectivity matrix P : P (i, i) = p and P (i, j) = q for i 6= j.

Scaling Requirements

n = Ω̃(k2(α0 + 1)2),
p− q√

p
= Ω̃

(
(α0 + 1)k√

n

)
.

Recovery Bounds (Anandkumar, Ge, Hsu, Kakade ‘13)

επ
n

:=
1

n
max

i
‖Π̂i −Πi‖1 = Õ

(
(α0 + 1)3/2

√
p

(p− q)
√
n

)

εP := max
i,j∈[n]

|P̂i,j − Pi,j| = Õ

(
(α0 + 1)3/2k

√
p

(p− q)
√
n

)



Support Recovery Guarantees (Homophilic Models)

εP : Error in recovering P

Π: true community membership matrix.

Homophilic Models: p > q

Ŝ: Estimated supports.



Support Recovery Guarantees (Homophilic Models)

εP : Error in recovering P

Π: true community membership matrix.

Homophilic Models: p > q

Ŝ: Estimated supports.

Support Recovery Guarantee (AGHK ‘13)

For a threshold ξ = Ω(εP ) , for all nodes j ∈ [n] and all communities

i ∈ [k], the estimated support Ŝ satisfies (w.h.p)

Π(i, j) ≥ ξ ⇒ Ŝ(i, j) = 1 and Π(i, j) ≤ ξ

2
⇒ Ŝ(i, j) = 0.

Zero-error Support Recovery of Significant Memberships of All Nodes

Efficient Recovery of Mixed Memberships
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Inverse moment method: fit parameters to observed moments

Tensor spectral approach: Compute “spectrum” of tensor computed
from moments

Non-convex but computationally tractable approaches



Overview of the Approach

Inverse moment method: fit parameters to observed moments

Tensor spectral approach: Compute “spectrum” of tensor computed
from moments

Non-convex but computationally tractable approaches

Inverse moment method: subgraph counts

Tensor spectral approach: Low rank tensor form and efficient
decomposition via power method

Efficient Implementation: Linear algebraic operations and online
tensor decomposition
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Subgraph Counts as Graph Moments

3-star counts sufficient for identifiability and learning of MMSB

3-Star Count Tensor

M3(a, b, c) =
1

|X|# of 3-stars with leaves a,b,c

=
1

|X|
∑

x∈X

G(x, a)G(x, b)G(x, c).

M3 =
1

|X|
∑

x∈X

[G⊤
x,A ⊗G⊤

x,B ⊗G⊤
x,C ]

x

a b c
A B C

X



Topic Model or Multi-view Representation

Topic model

Documents

Word 1 Word 2 Word 3

xX

A B C

Graphical model

πx

G⊤
x,A G⊤

x,B
G⊤

x,C

Conditional independence of the three words or views

Exploit to find expected M3

M3 =
1

|X|
∑

x∈X

[G⊤
x,A ⊗G⊤

x,B ⊗G⊤
x,C ]

“Tensor Decompositions for Learning Latent Variable Models” by A. Anandkumar, R. Ge, D.

Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.



Moments under Stochastic Block Model

One-hot encoding: πu = ei if node u is in community i.

λi = P[π = ei]: probability of community i.

P[Gu,v = 1|πu, πv] = π⊤
u Pπv] . E.g. πu = ei, πv = ej, prob. is Pi,j .
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P[Gu,v = 1|πu, πv] = π⊤
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Moments under Stochastic Block Model

One-hot encoding: πu = ei if node u is in community i.

λi = P[π = ei]: probability of community i.

P[Gu,v = 1|πu, πv] = π⊤
u Pπv] . E.g. πu = ei, πv = ej, prob. is Pi,j .

Expected Edge Counts

Community matrix: ΠA := [πa]a∈A

E[G⊤
x,A|Π] = π⊤

x PΠA = Π⊤
AP

⊤πx = FAπx

x

A B C

X

Expected 3-Star Tensor

E[M3|ΠA,B,C ] =?

x

A B C

X

3-star Tensor Form through Multi-view Model



3-Star Tensor Form

M3 =
1

|X|
∑

x∈X

[G⊤
x,A ⊗G⊤

x,B ⊗G⊤
x,C ]

πx

G⊤
x,A G⊤

x,B
G⊤

x,C

FA FB FC

Linear Multiview Model: E[G⊤
x,A|Π] = FAπx, Independent views

E[M3|ΠA,B,C,X ] =
∑
x∈X

1
|X| [(FAπx)⊗ (FBπx)⊗ (FCπx)]

E[M3|ΠA,B,C ] =
∑
i∈[k]

λi[(FA)i ⊗ (FB)i ⊗ (FC)i]

Goal: Recover FA, FB , FC , ~λ through CP tensor decomposition
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Low-rank Tensor Decomposition

= + ....

Tensor E[M3|ΠA,B,C ] λ1(FA)1 ⊗ (FB)1 ⊗ (FC)1 λ2(FA)2 ⊗ (FB)2 ⊗ (FC)2

E[M3|ΠA,B,C ] =
∑
i∈[k]

λi[(FA)i ⊗ (FB)i ⊗ (FC)i]

Rank-k tensor decomposition and typically k ≪ n

u⊗ v ⊗ w is a rank-1 tensor whose i, j, kth entry is uivjwk.



Low-rank Tensor Decomposition

= + ....

Tensor E[M3|ΠA,B,C ] λ1(FA)1 ⊗ (FB)1 ⊗ (FC)1 λ2(FA)2 ⊗ (FB)2 ⊗ (FC)2

E[M3|ΠA,B,C ] =
∑
i∈[k]

λi[(FA)i ⊗ (FB)i ⊗ (FC)i]

Rank-k tensor decomposition and typically k ≪ n

u⊗ v ⊗ w is a rank-1 tensor whose i, j, kth entry is uivjwk.

Challenges

Guaranteed algorithm for tensor decomposition?

Efficient and scalable implementation?

Noisy tensor decomposition: exact moments not available

Sample complexity? How large n compared to k?



Dimensionality Reduction for Tensor Decomposition

E[M3|ΠA,B,C ] =
∑

i∈[k] λi[(FA)i ⊗ (FB)i ⊗ (FC)i]

Rank-k tensor decomposition and typically k ≪ n

M3 has size O(n3) but number of free parameters: nk + k

First Step: Dimensionality Reduction

Convert M3 of size |A| × |B| × |C|
to a tensor T of size k × k × k

Carry out decomposition of T

Advantages

Reduced computation

Robustness to noise

Tensor M3 Tensor T

Dimensionality reduction through multi-linear transforms



Dimensionality Reduction through Whitening

E[M3|ΠA,B,C ] =
∑

i λi[(FA)i ⊗ (FB)i ⊗ (FC)i]

Whitening: Conversion of (expected) M3 to Orthogonal Symmetric Tensor T
r1

r2

r3

FA

FB

FC

WA W̃B W̃C

Multi-linear Transformation of 3-star Tensor

T := E[M3|ΠA,B,C ](WA, W̃B, W̃C) =
∑

i ρir
⊗3
i

T is symmetric orthogonal tensor: {ri} are orthonormal.



Tensor Decomposition Through Eigen Analysis

Orthogonal symmetric tensor: T =
∑

i ρir
⊗3
i

T (I, ri, ri) =
∑

j ρj〈ri, rj〉2rj = ρiri
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Tensor Decomposition Through Eigen Analysis

Orthogonal symmetric tensor: T =
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j ρj〈ri, rj〉2rj = ρiri
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Obtaining eigenvectors through power iterations

u 7→ T (I, u, u)

‖T (I, u, u)‖

Basic Algorithm

Pick random initialization vectors

Run power iterations

Go with the winner, deflate and repeat



Algorithmic Improvements to Basic Tensor Method

u 7→ T (I, u, u)

‖T (I, u, u)‖

Initialization Vectors

Impacts convergence: different from matrix eigen-analysis.

Random vectors: weak correlation with eigenvectors, noise sensitive.

Whitened neighborhood vectors: Strong correlation with eigenvectors.
More robust ⇒ Better sample complexity.

Adaptive Deflation

Better perturbation bounds for spectral estimation of tensors.



Algorithmic Improvements

Approaches(Anandkumar et al, COLT ’13)

Inverse moment method

Preprocessing to whiten and symmetrize data

Spectral approach: decompose tensor via batch power method

Postprocessing: Recover Π from the spectrum by linear operations
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Algorithmic Improvements

Approaches(Anandkumar et al, COLT ’13)

Inverse moment method

Preprocessing to whiten and symmetrize data

Spectral approach: decompose tensor via batch power method

Postprocessing: Recover Π from the spectrum by linear operations

Parallelizable? Speed? Scalability?

Contribution Summary

Randomized Low Rank Approximation for n× n matrix SVD

Online tensor decomposition

GPU Device to minimize data transfer overhead, thus fast updates

Sparse Implementation scalable to millions of nodes

Validation Metric: p-value test based “soft-pairing”



Stochastic (Implicit) Tensor Gradient Descent

argmin
v

{∥∥θ
∑

i∈[k]

⊗3vi −
∑

t∈X

T t
∥∥2
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}
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where vi are the unknown tensor eigenvectors, T t = gtA ⊗ gtB ⊗ gtC such
that gtA = W⊤G{x,A}, . . .
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Stochastic (Implicit) Tensor Gradient Descent

argmin
v

{∥∥θ
∑

i∈[k]

⊗3vi −
∑

t∈X

T t
∥∥2
F

}
,

where vi are the unknown tensor eigenvectors, T t = gtA ⊗ gtB ⊗ gtC such
that gtA = W⊤G{x,A}, . . .

Expand the objective: θ
∥∥∑

i∈[k]⊗3vi
∥∥2
F
−
〈∑

i∈[k]⊗3vi, T
t
〉

Orthogonality cost vs Correlation Reward

vt+1

i ← vti−3θβt

k∑

j=1

[〈
vtj , v

t
i

〉2
vtj

]
+βt

〈
vti , g

t
A

〉〈
vti , g

t
B

〉
gtC+. . .

Orthogonality cost vs Correlation Reward
Never form the tensor explicitly; multilinear operation on implicit tensor.



Computational Complexity (k ≪ n)

n = # of nodes

N = # of iterations

k = # of communities

m = # of sampled node pairs (variational)

Module Pre STGD Post Var

Space O(nk) O(k2) O(nk) O(nk)
Time O(n+ k3) O(Nk) O(n) O(mkN)

Variational method: O(m× k) for each iteration

O(n× k) < O(m× k) < O(n2 × k)

Our approach: O(n+ k3)



Computational Complexity (k ≪ n)

n = # of nodes

N = # of iterations

k = # of communities

m = # of sampled node pairs (variational)

Module Pre STGD Post Var

Space O(nk) O(k2) O(nk) O(nk)
Time O(n+ k3) O(Nk) O(n) O(mkN)

Variational method: O(m× k) for each iteration

O(n× k) < O(m× k) < O(n2 × k)

Our approach: O(n+ k3)

In practice STGD is extremely fast and is not the bottleneck
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Summary of Results

Friend
Users

Facebook

n ∼ 20k

Business
User
Reviews

Yelp

n ∼ 40k

Author
Coauthor

DBLP

n ∼ 1 million

Error (E) and Recovery ratio (R)

Dataset k̂ Method Running Time E R
Facebook(k=360) 500 ours 468 0.0175 100%
Facebook(k=360) 500 variational 86,808 0.0308 100%
.
Yelp(k=159) 100 ours 287 0.046 86%
Yelp(k=159) 100 variational N.A.
.
DBLP(k=6000) 100 ours 5407 0.105 95%



Summary of Results - Yelp Dataset

Lowest error business categories & largest weight businesses

Rank Category Business Stars Review Counts
1 Latin American Salvadoreno Restaurant 4.0 36
2 Gluten Free P.F. Chang’s China Bistro 3.5 55
3 Hobby Shops Make Meaning 4.5 14
4 Mass Media KJZZ 91.5FM 4.0 13
5 Yoga Sutra Midtown 4.5 31



Summary of Results - Yelp Dataset

Lowest error business categories & largest weight businesses

Rank Category Business Stars Review Counts
1 Latin American Salvadoreno Restaurant 4.0 36
2 Gluten Free P.F. Chang’s China Bistro 3.5 55
3 Hobby Shops Make Meaning 4.5 14
4 Mass Media KJZZ 91.5FM 4.0 13
5 Yoga Sutra Midtown 4.5 31

Bridgeness: Distance from vector [1/k̂, . . . , 1/k̂]⊤

Top-5 bridging nodes (businesses)

Business Categories
Four Peaks Brewing Co Restaurants, Bars, American, Nightlife, Food, Pubs, Tempe
Pizzeria Bianco Restaurants, Pizza, Phoenix
FEZ Restaurants, Bars, American, Nightlife, Mediterranean, Lounges, Phoenix
Matt’s Big Breakfast Restaurants, Phoenix, Breakfast& Brunch
Cornish Pasty Company Restaurants, Bars, Nightlife, Pubs, Tempe
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Conclusion

Mixed Membership Models

Can model overlapping communities

Efficient to learn from low order moments:
edge counts and 3-star counts.

Tensor Spectral Method

Whitened 3-star count tensor is an
orthogonal symmetric tensor

Efficient decomposition through power
method

Perturbation analysis: tight for stochastic
block model

Zero-error support recovery guarantees

MIT

M
ic

ro
so

ft

UC Irvine

Cornell



Learning Overcomplete Representations

Tensor Approach to Learning Latent Variable Models

Exploit conditional independence relations to obtain tensor form

Low rank tensor when latent dim. ≪ observed dim.

Applicable in community and document modeling



Learning Overcomplete Representations

Tensor Approach to Learning Latent Variable Models

Exploit conditional independence relations to obtain tensor form

Low rank tensor when latent dim. ≪ observed dim.

Applicable in community and document modeling

Overcomplete Latent Representations

Latent dimensionality ≫ observed dimensionality

Flexible modeling, robust to noise

Applicable in speech and image modeling

Novel Approaches for Learning Overcomplete Models

Orthogonal tensor decomposition no longer applicable.

Learning ill-posed for general models

Solution: constraints through sparsity and/or incoherence



Two Approaches for Learning Overcomplete Models

Sparse bipartite graph Y .

k

n

h1h2 hk

x1 x2 xn

Sparse Coding

h1, . . . , hk: Dictionary atoms

X = [x1, . . . , xn]:
Observations

Bipartite graph Y : Sparse
mixing X = HY .

Incoherent dictionary

Clustering and alt. min.

[1] A. Agarwal, A., P. Netrapalli. “Exact Recovery of Sparsely Used Overcomplete Dictionaries,” Preprint, Sept. 2013.

[2] A., D. Hsu, M. Janzamin, and S. M. Kakade. When are Overcomplete Representations Identifiable? Uniqueness of Tensor

Decompositions Under Expansion Constraints, NIPS, Dec. 2013.



Two Approaches for Learning Overcomplete Models

Sparse bipartite graph Y .

k

n

h1h2 hk

x1 x2 xn

Sparse Coding

h1, . . . , hk: Dictionary atoms

X = [x1, . . . , xn]:
Observations

Bipartite graph Y : Sparse
mixing X = HY .

Incoherent dictionary

Clustering and alt. min.

Sparse Topic Models

h1, . . . , hk: Topics

X = [x1, . . . , xn]: word. Three
words/view X1,X2,X3.

Y : Topic-word matrix.
E[X1 ⊗X2 ⊗X3] = E[H ⊗H ⊗H ](Y, Y, Y

Multi-view and Persistent topics

Tensor decomposition

[1] A. Agarwal, A., P. Netrapalli. “Exact Recovery of Sparsely Used Overcomplete Dictionaries,” Preprint, Sept. 2013.

[2] A., D. Hsu, M. Janzamin, and S. M. Kakade. When are Overcomplete Representations Identifiable? Uniqueness of Tensor

Decompositions Under Expansion Constraints, NIPS, Dec. 2013.
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