TCP: Thread Contention Predictor for Parallel
Programs

Aparna Mandke Bharadwaj Amrutur Y. N. Srikant
Chiranjib Bhattachryya

I[1Sc-CSA-TR-2011-4
http://archive.csa.iisc.ernet.in/TR/2011/4/

Computer Science and Automation
Indian Institute of Science, India

November 2011

TCP: Thread Contention Predictor for
Parallel Programs

Aparna Mandke, Bharadwaj Amrutur,
Y. N. Srikant, Chiranjib Bhattachryya

Abstract

With proliferation of chip multicores (CMPs) on desktops and em-
bedded platforms, multi-threaded programs have become ubiquitous.
Existence of multiple threads may cause resource contention, such as,
in on-chip shared cache and interconnects, depending upon how they
access resources. Hence, we propose a tool - Thread Contention Pre-
dictor (TCP) to help quantify the number of threads sharing data and
their sharing pattern. We demonstrate its use to predict a more prof-
itable shared, last level on-chip cache (LLC) access policy on CMPs.
Our cache configuration predictor is 2.2 times faster compared to the
cycle-accurate simulations. We also demonstrate its use for identifying
hot data structures in a program which may cause performance degra-
dation due to false data sharing. We fix layout of such data structures
and show up-to 10% and 18% improvement in evecution time and
energy-delay product (EDP), respectively.

1 Introduction

Ever increasing demand for performance has caused proliferation of CMPs on
desktop and embedded platforms. As a result, multi-threaded programs have
become ubiquitous. Writing a multi-threaded program is a very complicated
task due to use of synchronization variables. A lot of tools are available to
debug data race conditions in multi-threaded programs [1]. But not many
tools are available to identify hot data structures in a program. Such tool
will help programmers identify bottlenecks in their programs. Profiling tools
such as “gprof” [2] are limited to instruction profiling, but TCP profiles data
accesses for a program. TCP also quantifies the number of threads sharing
an object and pattern in which data is shared amongst these threads. We
believe, our abstraction of data sharing properties of a program has wide

applications such as determining hot data structures and predicting false
sharing in a data structure. It can assist in reducing aborts in a transac-
tional memory. This can be achieved by serializing transactions which access
data that is highly popular among threads. It can also assist in data mapping
decisions for CMPs with large distributed shared caches. In this work, we
implement a model to predict more profitable cache access policy between
Static and Dynamic NonUniform Cache Architectures (SNUCA, DNUCA)
[3], as the last level shared distributed cache on CMPs. Researchers have
proposed various trace-based[4], analytical[5] or statistical[6, 7] models to
predict cache miss rate in a program. However, according to our knowledge,
this is the first attempt to predict a suitable cache access policy between
SNUCA and DNUCA for CMPs. Apart from this, we also show its use to
predict false data sharing in a multi-threaded application. Following are our
major contributions:

1. Introducing a metric to measure the number of threads sharing an
object. We call it as a “sharing index (SI)”. We also introduce a metric,
called “contention index (CI)” to measure contention caused by threads
accessing that object.

2. Use of TCP to predict a more profitable cache access policy between
SNUCA and DNUCA 3], as the last level shared cache (LLC). Our
cache policy predictor is 2.2 times faster compared to cycle-accurate
simulations for SNUCA and DNUCA put together.

3. Identifying frequently accessed addresses in a program that might cause
false data sharing in cache, using SI and CI. On changing layout of such
data structures showed up-to 10% and 18% improvement in execution
time and EDP, respectively.

The paper is organized as follows: Section 2 describes prior studies done
in the related area. Section 3 explains TCP model. The use of TCP to
predict a suitable on-chip NUCA cache on CMP is described in Section 4.
Section 5 and Section 6 give details of the experimental setup and results of
our cache policy predictor. Section 6.2 demonstrates application of TCP in
identifying false data sharing in a program. Finally, Section 7 concludes the

paper.

2 Related Work

Harish et al.[1] proposed a tool to debug parallel programs using PIN based
dynamic instruction translator. Eggers et al.[8] introduced the notion of
writelen to predict suitability between write-invalidate and write-broadcast
cache coherence protocol on multiprocessor systems. We extend it to define
contention index. Along with a proposed sharing index, we use it to quantify
parallelization characteristics of an application. David et al.[6] determine
cache contention caused in shared multicore cache when two applications
are co-scheduled, using their cache reuse distance determined individually.
Chandra et al.[7] proposed three performance models to predict cache misses
incurred in a shared L2 cache on scheduling two applications on a dual core
CMP. They use stack distance or circular sequence profile to estimate addi-
tional cache misses incurred due to cache contention. Both these studies [7, 6]
consider two single threaded applications on a dual core CMP. Whereas, in
this study we consider multithreaded applications and quantify the sharing
characteristics at the level cache line address. We show its use to determine
a more profitable cache access policy between SNUCA and DNUCA.

3 TCP

TCP can evaluate SI and CI at the granularity of cache line or individual
data addresses. By obtaining additional information from the binary file for
an application and trapping malloc/free calls, it can be used at the data
structure granularity as well. Hence, we use the term object to denote this.

3.1 Sharing Index (SI)

TCP keeps track of the number of times each thread accesses an object. For
example, P, Ps....Pr are probabilities of T' threads accessing a single object
such that Zszl P, = 1. We define the sharing index, SI, of an object by Eq.
(2). This definition is inspired from entropy as used in information theory
[9].

H(P)=— Y Pi.log(P) (1)
ST — 2H(P) (2)

As per this definition, 1 < SI < T'. The case SI = 1 arises when only one of
the P; = 1 and rest of all probabilities are 0. This happens when objects such

3

as local variables declared on the stack, for whom P; = 1 and log(P;) = 0, for
the accessing thread. For rest of the threads, P; = 0. Hence, ST = 1 tallies
with the fact that only one thread accesses that object. On the contrary, for
an object where all threads make equal number of accesses, P, = 1/T for all
threads, where T is the total number of threads present in an application. In
this case, ST = T. Hence, Eq. (2) captures the notion of number of threads
accessing an object.

3.2 Contention Index (CI)

Objects with higher SI, may not cause performance bottleneck if accesses
made by all threads are serialized and not interleaved. Hence, there is a need
to quantify interleaving of accesses done by different threads. This is done by
CI. We define a runlength as the number of consecutive accesses made by the
same thread to an object. Runlength statistics are collected for each object.
The weighted average of runlength and its dispersion is defined as contention
index. The average runlength is smaller if accesses done by different threads
are more interleaved. Fig. 1 shows serialized and interleaved accesses done
by two threads, executing on separate cores. In Fig. 1(a), both the threads
make four consecutive accesses. So there are two runlengths of size four.
Whereas, in Fig. 1(b) due to interleaved accesses, there is one runlength of
size 1 and 3 each and two runlengths of size 2. Access to objects with smaller
value of CI (average runlength) can cause higher traffic in shared components
like cache or interconnect.

While evaluating CI, we do not consider the number of clock cycles be-
tween the accesses. This is because, typically programs have good temporal
locality. Hence, if average runlength is smaller, then accesses made by dif-
ferent threads occur within a short span of time and mostly would cause
contention by increasing cache coherence messages. We also treat reads
and writes equally in our use-cases. The contention index definition can
be adapted appropriately with respect to the number of clock cycles between
the accesses and read/write distinction, depending on the use-case.

3.3 Popularity Index (PI)

As explained above, SI gives the number of threads sharing an object, whereas,
CI indicates the sharing pattern. On improving CI, program execution may
improve. However, improvement depends on the actual number of times an
object is accessed. Hence, we define another term, called Popularity Index

—_—

Accesses —— —_—
made by T1—— R

(a) (b)

Figure 1: Threads ¢; and ¢ make four accesses each. However, in (a), four accesses
made by these threads are not interleaved. Whereas, in (b), accesses made by these
threads are interleaved.

(PI) as follows: 5
N« S1
PI=—— (3)
where, N is the total number of accesses made by all threads, SI and CI
are sharing and contention indices of that object. An object is popular in
a program execution if it is accessed significant number of times, popular
among many threads and has more contention causing potential.

For every object, TCP also tracks instruction address when an object is
accessed. Objects can be mapped back to data structures using information
found in the application binary, instruction addresses and by intercepting
malloc/free calls. Depending on PI, hot data structures can be determined.
This can help programmers to re-organize data structures so that their SI
and mainly CI improves. Next section describes the application of TCP to
predict a preferable cache access policy for CMPs.

4 Cache Policy Predictor(CPP)

Due to advances in technology, the number of cores and on-chip cache present
on CMPs has increased. Hence, we study a scalable tiled architecture (Fig.
2). In a tiled architecture, tiles are replicated and connected through an on-
chip switched-network (NoC). Each tile has a core, a private split L1 cache,
a portion of L2 cache (L2 slice) and a router. The L2 cache is distributed
across all tiles and shared by all cores. To maintain cache coherence between
private L1 caches, directory information is present in each tile. These tiles
are interconnected via 2D-mesh NoC and per-tile router.

For power and performance reasons, large caches are implemented using
smaller banks. However, such cache offers variable latency to cores present

Chip MultiCore (CMP)

DRAM Off-chip
Controller DRAM
'2' “Bankset tag row set offset

DNUCA Access Policy

tag tile set offset

SNUCA Access Policy

Figure 2: Tiled CMP used for experimentation.

on CMP [3]. Kim et al. [3] proposed two major access policies for dispersed
caches, viz. static nonuniform cache architecture (SNUCA) and dynamic
nonuniform cache architecture (DNUCA). In SNUCA, predetermined bits
of memory address determine the bank in which data is cached (Fig. 2).
Whereas, in DNUCA, the whole address space is mapped onto a single col-
umn and predetermined bits decide the row in which data is cached (Fig. 2).
Data can be cached in any of the banks in a row, which form a “bankset”. On
an L1 miss, L1 first checks data in the nearest L2 bank and then rest of L2
banks in that bankset are searched. The data is read in the nearest L2 bank
from memory if it is not present in any of these banks. In DNUCA, private
data is cached in the nearest bank, offering lesser latency. On the contrary,
in SNUCA, private data could be in a farther bank, incurring higher latency
than that in DNUCA. In DNUCA, consecutive accesses cause data to mi-
grate in nearer bank at run-time. However, data shared by many threads,
might migrate in conflicting directions, incurring higher latency. Since the
cache set spans across multiple banks in a row, traditional replacement logic
cannot be applied in DNUCA. We assume data is sent offchip on replacement
in an L2 slice.

In summary, though DNUCA offers lower access latency, it suffers from a
drawback of complex lookup and replacement logic. On the contrary, SNUCA
has simple lookup logic but may suffer from higher cache access latency.
Hence, at design time, architects have to make a careful choice between
SNUCA and DNUCA policies. Performing cycle-accurate simulation of many
workloads is time consuming. Therefore, we solve this problem by using
data collected by TCP with a one-time cycle-accurate simulation on SNUCA
platform. Here, SI, CI are evaluated per cache line address (CLA). We call
this approach cache policy predictor (CPP).

Table 1: Table gives the meaning of various terms used in CPP model

‘ Parameter H Description

t; thread executing on core i

T total # of threads present in an application

Ajj total # of accesses made by thread i to cache line address (CLA) j

N total # of CLAs
runlengths of size 0,1,..K tracked during one-time simulation on

K SNUCA. Runlengths of size equal to and greater than K are
counted by (K — 1) array entry.

Tijk # of times thread i exhibits runlength of size k for an address j

Dy distance between L1 in tile ¢ and L2 slice in tile p where data can

be cached in DNUCA

P total # of peer L2 slices in a bankset in DNUCA

D. distance between L1 in tile 7 and its nearest L2 slice where address
i-Nearest can be cached in DNUCA

D. average distance between L1 in tile 7 and all L2 slices in a bankset
i-Average where address can be cached in DNUCA

D, distance between L1 in tile ¢ and “home” L2 slice, where data is
i-Home cached in SNUCA

SNUC Acost || Time spent in transit for SNUCA

DNUCAcost || Time spent in transit for DNUCA

4.1 Estimation of Overhead in DNUCA and SNUCA

While determining penalties incurred by DNUCA and SNUCA, we assume
that the data is already present in on-chip cache. This assumption is valid
since the number of DRAM accesses for an application depends on its working
set size and is independent of cache access policy. The meaning of various
terms used in CPP model is explained in Table 1.

In DNUCA, data might migrate in conflicting directions if it is shared
by many threads at the same time. Hence, interleaving of accesses made by
different threads determines cache access latency. Consecutive accesses made
by the same thread, as in Fig. 1(a), cause data to migrate gradually in nearer
L2 slice, offering lower access latency. However, in SNUCA all threads make
a single access to the “home location” of that address, though it is farther
than their nearest L2 slice. To determine penalties incurred by an application
with these two policies, for every CLA, we track the total number of accesses
made by each thread and maintain runlength statistics per thread, using a
cycle-accurate simulation with SNUCA. As an example, in Fig. 1(a), threads
t; and ty execute on cores 0 and 1, respectively. There are four L2 slices in
a bankset (see Fig. 2). Suppose, distance between t; and four L2 slices is 1,

2, 3 and 4. We make similar assumption for t,. Suppose, distance of home
L2 slice from t; and t9 is 3 (D1_gome = 3) and 4 (Do_gome = 4), respectively.
Assume that data is already present in home L2 location. As each thread
makes four accesses to home L2 slice in Fig. 1(a), SNUCA cost is 28 (4*3 +
4*4).

Let us assume a worst case scenario in DNUCA. At the beginning of every
runlength, the data is not present in the nearest L2 slice for all threads. This
is because, as previous access is made by some other thread, data might be
present in the nearest tile of that thread. Hence, due to our assumption,
all threads search data in all peer L2 slices in a bankset at the first access
of every runlength. If DNUC A, calculated using this assumption is less
than SNUC Ay, then DNUCA will definitely give better performance for
that application.

As per our earlier assumption, distance from peer L2 slices in a bankset
where data can be cached is 1, 2, 3 and 4. In Fig. 1(a), for both the
threads, cost incurred to search for the first access in the runlength, is 10
((14+24344)*1) each. To determine distance between core and L2 slice where
data will be found for rest of the accesses in a runlength, we evaluate SI and
CI of a CLA. From Eq. (2), SI is 2 in this case as both threads make equal
number of accesses to the CLA. CI (weighted average runlength) is four. For
rest of the accesses in a runlength, we assume that data is present in the
nearest L2 slice, if either SI'is 1 or CI is greater than 2 (as there are 4 L2
slices in a row). In this case, distance between thread and its nearest L2 slice
is 1. Hence, the cost for remaining three accesses of each thread is (3*1=3)
and total DNUC Aeps:=2%10+2%3=26, which is less than that of SNUCA
(28). Hence, in case of Fig. 1(a) we conclude that DNUCA is preferable over
SNUCA.

In Fig. 1(b), there is one runlength of size 1 and 3 each, and 2 run-
lengths of size 2. In this case, SNUC A.,s remains same as the total number
of accesses made by both the threads is same as in Fig. 1(a). However,
for DNUCA, total cost required to search data for the first access of every
runlength in peer L2s is 40 ((14+2+3+4)*4). As CI is 2 in this case, we
consider average distance for rest of the accesses in all runlengths. This is
because consecutive accesses gradually migrate data towards the nearest L2
slice. As the average distance is 2.5 ((14+2+3+4)/4), cost required for rest
of the accesses in runlengths is 10 (2.5%(2+1+1)). Hence, DNUC A, is 50
(404-10). Therefore, for Fig. 1(b) we conclude that SNUCA will perform bet-
ter that DNUCA. It should be noted that when average runlength is small,
cost incurred for first accesses in runlengths is major part of the DNUCA
cost.

In this application of TCP, we evaluate SI and CI by aggregating statistics

8

Algorithm 1 Cache Policy Predictor

1: Evaluate runlength and total number of accesses made by each thread to
all CLAs using a cycle accurate simulator with SNUCA
Evaluate SNUCA cost using Eq. (4)
for first access of all runlengths of thread-CLA pair do

evaluate peer search cost using Eq. (5)
end for
for rest of accesses in runlengths of thread-CLA pair do

Evaluate SI and CI per column for each CLA

if (S] ==)H(C[2 C[Threshold) then
Estimate cost using Eq. (6)

else
Estimate cost using Eq. (7)

end if

: end for

: Obtain total DNUC A,,s using Eq. (8)

: CostRatio = DNUC Acost /SNUC Acost

. if CostRatio < 1 then

DNUCA is winner

. else

SNUCA is winner

. end if

N N = = = = = e s e e
B2 9 N9 gk w2

for all threads executing on the cores which belong to the same column.
Hence, SI and CI are evaluated on a per column per object basis. This is
because, even if two threads are executing on different cores, but belong to
the same column (see Fig. 2), they have same nearest L2 slice, which is the
L2 slice present in that column. CPP procedure explained above is described
in Algorithm 1.

We use cycle-accurate simulator to obtain runlength and total accesses
made by each thread. We consider data addresses missed in L1 alone to
evaluate SNUCA and DNUCA costs. This is because, instruction addresses
show very good spatial and temporal locality. So a very few instruction
misses are served by unified LLC. Same holds true for data addresses having
good locality.

Total time spent in transit in SNUCA by thread 7 while accessing an
address j is estimated using Eq. 4.

SNUCAcost: Z Z Aij-Di_Home (4)

0<i<T 0<j<N

9

For DNUCA, as explained above, we evaluate costs separately for the first
access and remaining accesses in every runlength. Eq. (5) estimates cost
for a thread in tile 7, accessing address 7, when all peer L2 slices have to be
searched, which is done for the first access of every runlength of all threads.

PeerSearchCt;; = Z Z Tijk * Dip (5)

0<p<P 0<k<K

For rest of the references made by each thread, we determine SI and CI by
aggregating statistics of all threads belonging to the same column. Depending
on values of SI and CI, there are two cases as listed in if-else conditions on
lines 9-12 in Algorithm 1. If ST is 1 (which is true when all threads accessing
that CLA belong to the same column), then we use distance between the
thread and its nearest L2 slice (D;_nearest). We also use D; yearest, if CI is
greater than or equal to 3 (C'lrpreshoia = 3 in Algorithm 1). This is because,
in our experimental setup (Fig. 2), there are 4 1.2 slices in a bankset. If
the core makes on an average 3 or more consecutive accesses to CLA then it
will find data in its nearest L2 slice. In summary, if accesses are private or
done through a single column, then runlengths are longer in size and threads
in that column will find data in their nearest L2 slice. Eq. (6) estimates
cost for the remaining accesses made by thread i to an address j, with lesser
contention causing potential.

NearSearcthij = (AZJ — Z Tijk) * Di_Nearest (6)
0<k<K

However, if SI is greater than 1 or CI is less than 3, then most of the
threads will have to search data in all L2 slices for the remaining accesses
in a runlength. Hence, we use average distance of all L2 slices in a bankset
(Di_average)- 1f average runlength is less than 3, then (A;; — > ., Tijk) in
Eq. (7) is negligible and PeerSearchCt;; in Eq. (6) contributes majority of
DNUCA cost (Please refer to Table 4 for validation). Eq. (7) evaluates time
spent in transit for rest of the accesses in a runlength, for addresses causing

more contention.

AvgDistanceSearchCt;; = (A;; — Z Tijk) * Di_average (7)

0<k<K

Total time spent in accessing data with DNUCA is given by Eq. (8).

DNUCA.pst = Z Z (PeerSearchCt;;j+
0<i<T 0<j<N (8)
NearSearchCt;; + AvgDistanceSearchCt;;)

10

| Name | Description, WSS(L/M/S)
Alpbench Benchmark [10]

MPGEnc Encodes 15 Frames of size 640x336, M
MPGDec Decodes 15 Frames of size 640x336, M
Splash2 Benchmark[11]
Cholesky blocked sparse matrix factorization on tk29, L
FFET FFT on 1M points, M
LU (noncontinuous) | 1024x1024 LU matrix factorization, S
Radix Radix sort on 1M keys, M
FMM simulate interaction of 16K bodies system, M
Water_spatial simulation of 512 water molecules, M
Water_nsquared simulation of 512 water molecules, M
Barnes Barnes-Hut method on 16K bodies, M
Ocean (continuous) | 512x512 grid points, L
PARSEC Benchmark[12]
Blackscholes SimLarge i/p, Financial Domain, S
Swaptions SimLarge i/p, Financial Domain, M
Fluidanimate SimMedium i/p, Animation, L
H.264 Encoder SimLarge i/p, Media Domain, M

Table 2: Table shows applications used for study and their WSS informa-
tion(L:Large, M:Medium, S:Small).

If DNUCA.,s is lesser than SNUC A for an application then DNUCA is
more profitable policy for that application and vice verse.

5 Experimental Configuration

5.1 Applications used in Experiments

We evaluate multi-threaded workloads with one-to-one mapping between
threads and cores (Table 2)!. This assumption is in line with other work
done for CMP platforms. We have skipped initial serial portion and simulate
only parallel section in all the test cases. We execute 1B instructions, unless
otherwise mentioned. We test all workloads with 16 threads.

'Rest of the PARSEC benchmarks either use OpenMP APIs or libraries which are not
supported by SESC compiler. Hence remaining benchmarks cannot be compiled using
SESC compiler.

11

5.2 Experimental Setup And Methodology

We model all the system components with reasonable accuracy in our frame-
work. We use SESC[13] to simulate a core, Ruby component from GEMS[14]
to simulate the cache hierarchy and interconnects. DRAMSim is used to
model the offchip DRAM. DRAMSim[15] uses MICRON [16] power model
to estimate power consumed in DRAM accesses. Intacte [17] is used to
estimate low level parameters of the interconnect such as the number of re-
peaters, wire width, wire length, degree of pipelining and power consumed
by the interconnect. Power consumed by the cache components is estimated
using CACTI 6.0.

In order to estimate the latency (in cycles) of a certain wire, we estimate
area of all components in a tile and then create the floorplan which is shown
in Fig. 3. We make following assumptions to determine area of various
components at 32nm technology and 3GHz frequency:

e core : This is estimated based on the area of Intel Nehalem core[18]

e cache : The L1 cache is of size 32KB whose area is very small and is
included in the processor area. The area occupied by the L2 cache is
obtained using CACTT 6.0. We assume directory information is stored
along with each L2 slice. We conservatively assume area of per-tile
directory to be negligible. If directory area is considered then inter-
connect lengths will increase which is more beneficial for the remap
policy.

e router : The area of the router is assumed to be quite negligible at
32nm.

Fig. 3 also shows wire lengths and their power consumption. The latency of
a link in clock cycles is equal to the number of its pipeline stages. To obtain
power consumption of NoC, we compute the link activity and coupling factors
of all links, caused due to the messages sent over NoC.

5.3 Simulation Procedure

Table 3 gives the system configuration used in our experiments. The flow
chart in Fig. 4 shows the experimental procedure. It includes computing the
area of tile components, computing link lengths and low level link parame-
ters using Intacte and then performing simulation. Our simulator estimates
the activity and coupling factors of all the links. Intacte determines power

12

A Link Type Length PipeLineStgs Pwr
L1-R 1.3 2 0.562
Processor, L2-R 3.75 7 1.59
L1 Cache R-RH 5 9 2.125
Smm 4x4 R-RV 5 9 2.125
M-R 0.2 1 0.127

512KB L2 E|
0.59x3.01 R: Router, L1: L1 cache L2: L2 slice in a tile,
R-R H: Router-Router Horizontal Link,
4 4——p R-RV:Router-Router Vertical Link

smm Power is in mW and all lengths are in mm
Link lengths & Power estimated using Intacte

Figure 3: Floorplan of a tile with 512KB L2 slice.

Processor, Cache,
Router area

Arrange components to obtain optimum
tile dimensions. Estimate link lengths.

¥

| Use Intacte to obtain link config. |

P

Processor Network Cache, Interconnect DRAM Config
Config. (SESC) Config. config. (Ruby) (DRAMSIM)

| Simulate the application |

Obtain activity and coupling
factors of all links

/\

Calculate NoC power Calculate cache
using Intacte power using Cacti

Calculate DRAM
power using
DRMSIM

Figure 4: Experimental Procedure

13

out-of-order execution, 3GHz frequency,

Core issue/fetch /retire width of 4

32KB, 2 way, 64 bytes cache line size, access latency
L1 Cache | of 2 cycles (estimated using CACTI[19]), private,
cache coherence using MOESI protocol

512KB/tile, 16 way, 64B line size, 4 subbanks per slice, 3 cy.
L2 Cache | latency (estimated using CACTI), noninclusive, shared and
distributed across all tiles

Tag bits of L2 cache line include full bitmap for L1 sharers.
Directory | A separate table of 3000 entries maintains dir info. for cache
lines not cached in L2 but only in Lls.

16 bits flit size, 4x4 2D MESH, deterministic routing,
Interconnect | 4 virtual channels/port, credit based flow control,
router queues with length of 10 buffers

Off-chip 4GB, DDR2, 667TMHz freq, 2 channels of 8B in width, 8 banks
DRAM 16K rows, 1K columns, close page row management policy

Table 3: System configuration used in experiments

dissipated in NoC using these activity factors. Power consumed by the off-
chip DRAM and on-chip cache is estimated using DRAMSim (MICRON)
and CACTI power models, respectively.

6 Results

6.1 CPP Model Validation

Table 4 shows the contribution of the individual components? towards the to-
tal DNUCA cost. This is obtained by normalizing these components against
the total DNUCA cost (Eq. (8)). We compare costs obtained by the CPP
against those obtained using simulator, which is also shown in Table 4. Cost
distribution determined by CPP closely matches that obtained using simu-
lator. For applications like, ocean and blackscholes most of the accesses are
private (ST = 1) or are done from cores belonging to the same column, hence,
C1I > 2 for them. As a result, NearSearchCt is a major component. X.264
has very poor thread scalability with uneven load balance. It creates only
3 concurrent threads even if executed with 16 threads as a command line

2PeerSearchCt in Eq. (5), NearSearchCt in Eq. (6), AvgDistanceSearchCt in Eq.
(7)

14

parameter. Hence, DNUCA allocates data near to these threads. For these
applications, CPP estimates DNUC A..s; to be lesser than SNUC A,os:.

For the rest of the applications, more data is shared by more than one
threads and hence our model predicts a higher cost for DNUCA than SNUCA.
For such applications, PeerSearchC't contributes a majority of DNUC A os:.
Interestingly, in case of LU, even though 99% accesses are done by a single
thread, CPP predicts SNUCA as profitable over DNUCA. In case of LU, all
data addresses have CI less than 3. This is due to low L1 miss rate. Hence,
once data is read into L1, it is rarely accessed from L2.

Name CLA Distribution CPP Costs simulator Costs
SI=1]SI>1] CI<3] CI>3 | PeerSCt | NearSCt | AvgSCt || PeerSCt [NearSCt
mpegenc 0.47 0.53 0.63 0.39 0.92 0.06 0.02 0.85 0.15
mpegdec 0.56 0.44 0.32 0.68 0.96 0.02 0.02 0.93 0.07
cholesky 0.71 0.29 0.47 0.53 0.66 0.31 0.03 0.76 0.25
fft 0.5 0.49 0.66 0.34 0.9 0.09 0 0.81 0.19
lu (noncontinuous) 0.99 0.01 1 0 1 0 0 0.87 0.13
radix 0.24 0.76 0.27 0.73 0.6 0.38 0.02 0.7 0.29
fmm 0.65 0.35 0.69 0.31 0.78 0.19 0.03 0.83 0.17
water_spatial 0.75 0.25 0.34 0.66 0.94 0.04 0.02 0.92 0.08
water_nsquared 0.84 0.16 0.18 0.82 0.95 0.05 0 0.91 0.09
barnes 0.09 0.91 0.36 0.64 0.93 0.05 0.02 0.93 0.07
ocean (continuous) || 0.95 0.05 0.19 0.81 0.39 0.6 0.01 0.47 0.53
raytrace 0.64 0.36 0.89 0.1 0.88 0.07 0.05 0.89 0.11
blackscholes 0.95 0.05 0.07 0.93 0.11 0.89 0 0.01 0.99
swaptions 0.68 0.32 0.42 0.58 0.89 0.09 0.02 0.84 0.16
fluidanimate 0.97 0.03 0.87 0.13 0.92 0.08 0 0.78 0.22
x.264 Encoder 0.97 0.03 0.75 0.25 0.32 0.68 0 0.27 0.73

Table 4: shows PeerSearchCt, NearSearchCt and AvgDistanceSearchCt cost com-
ponents, normalized with respect to (w.r.t.) DNUCA cost. It also shows distribu-
tion of normalized CLAs with ST =1, SI > 1, CI <3 and CI > 3.

Fig. 5 shows ratio of DNUCA to SNUCA costs predicted by CPP and
that obtained using a cycle accurate simulator. The ratio of execution time
with DNUCA to that with SNUCA, both obtained using cycle accurate sim-
ulator is also shown in Fig. 5. Our model evaluates higher DNUCA cost
for applications like mpegenc, mpegdec and raytrace. These applications
show 6%, 8% and 25% degradation in their execution time respectively, with
DNUCA. For applications like ocean, blackscholes and X.264, CPP predicts
lesser DNUC A.pst than SNUC' A5, which also tallies with our experimental
results. These applications show 8%, 4% and 2% improvement in execution
time with DNUCA over SNUCA. Most of the accesses in these applications
are private. Fig. 5 also shows L2 access latency obtained using DNUCA and
normalized with that obtained with SNUCA for these applications. Normal-
ized L2 latency seen in DNUCA does not show large degradation as seen
in cost ratios. This is because, while calculating average L2 latency in sim-
ulator, offchip DRAM access latency is also considered. DRAM latency is

15

=CostModel ®=mCostSim =l2latencyRatio ===ExecutionTime

45 195 14

4 66108 109 /\ F1.2
B.g =T —— Npe——t— - 1
5 0OR [l 098] psg
- 06
04
F02 |

Normalized Costs & Latency
(=] —]
D= hawn
v
v
[
o
™
o
Normalized Execution Time

@ ¥ & & & &
e& bc} \oo\e ¢ F & ‘OQS\ s & & & '35\\@ +
6@ ®Q [¢; e & < RS ‘533 s
q\‘b @‘@\ ’ ‘Q\Ib \\\)
K3

Figure 5: Accuracy of CPP Model: CostModel-Ratio of DNUC A¢pst/ SNUC Acost
estimated by CPP. CostSim - Ratio of time spent in transit in DNUCA to that in
SNUCA, both obtained with simulation

much larger than time spent in NoC. Our cost model considers time spent
in accessing data in L2 banks alone. It assumes data is already present in
L2 cache. The number of DRAM accesses depends on working set size of an
application, and does not depend heavily on DNUCA /SNUCA cache access
policy. Costs determined by the model do not reflect exact costs obtained
using simulation. Their relative ratio indicates whether DNUCA would be a
better choice over SNUCA or vice verse.

We also took readings for L2 slice of size 256KB. Our predictions match
with the simulation results. Graph in Fig. 6(a) compares ratio of costs
determined by CPP to percentage execution time difference. The percentage
execution time difference is the difference between execution time obtained
with DNUCA to that obtained with SNUCA (obtained using simulator) and
normalized w.r.t execution time of SNUCA. Similarly, Fig. 6(b) compares
cost ratio to percentage L2 latency difference obtained using simulator. When
L2 slice of 256KB is used, all applications give a better performance with
SNUCA, except ocean, blackscholes and x.264. This behaviour is same as
with L2 slice of 512KB size. This shows that the CPP model is independent
of size of L2 slice.

CPP predicts costs for DNUCA and SNUCA policies with one-time sim-
ulation using SNUCA. Hence, by saving one simulation with DNUCA, it
achieves an average simulation speed-up of 2.18 times compared to SNUCA /DNUCA
cycle accurate simulations put together(Fig. 7). Fig. 7 also shows overhead
over SNUCA simulations. It can be seen that overhead to track CLA access
pattern is very negligible. This is because we only track cache accesses which

16

OcostRatio & %exeSim
5 w 15 o
4 10 £
%3 =g B - 5 '
o = = [] S
@ 2 - 0 E
S AHHHHHHAH b 2, &
O T T T T T T T T T T T T T T —10 3‘
-]
PR SIS Q@b EF S RS
VL 5® ¢ P L FE
RO (T OB B
RN O &t
& & q\i@\@“/ ~0\@ K\\)
(a) Execution Time
OcostRatio m%L2Latency
5 40
4 —= 30 3
Q
2 5 [l [] - 20 E
x M 10 8
227 " 0 o
|
o NN 1] 10
O T T T T T T T T T T T T T T T —20
N R N R S R N R R - o
o7 @7 oF WSS @ @ 07 @ o
&0 &b c}gﬂ {.}6 & %,"Ql'biQ \\'_‘?;‘ f}g‘\‘ 002- \sgb ep0\ Q;QO (_‘\((\"b‘ +‘}
FL&E IAC IR N it
&€ R ~o\® >
&

(b) L2 Latency

Figure 6: CPP model predicts accurately for L2 slice of size 256K

O SimulaitionSpeedup B SNUCA Overhead Ratio

s 1.3

S 12 5
a F112
® - S
c >
2 L gpg ©
[}

= 08

E

7]

Figure 7: Graph shows simulation speed-up obtained by CPP over cycle-accurate
simulations of DNUCA and SNUCA

17

miss in L1s which are much lesser than the total number of accesses done
to the cache subsystem. Due slight variation in the number of instructions
executed by each core, in some cases simulation time of CPP is slightly lesser
than SNUCA simulation. Moreover, this can be done by another thread
without affecting SNUCA simulation time. Hence, CPP can be used by sys-
tem architects to make a choice between DNUCA and SNUCA cache policies
while designing a system.

6.2 TCP to determine false data sharing

typedef struct gmem {
INT nprocs;
typedef struct gmem { INT pid;
INT nprocs; lock_t pidlock;
INT pid; char PAD1[40];
INT rid; INT rid;
| lock_t ridlock;
barrier_t start; char PAD2[48];
lock_t pidlock; |
lock._t ridlock; barrier_t start;
lock_t memlock; char PAD4[60];
lock-t (wplock) [MAX_PROCS]; lock_t memlock;
| char PAD5[60];
} GMEM; lock_t (wplock)[MAX_PROCS];
(a) Original structure definition |
} GMEM;

(b) Changed structure definition

[Application | Execution Time | L2 Latency [EDP |

Raytrace 10.7 23.7 18.9
Barnes 2 4.2 3.77

(c) Table gives % improvement achieved in var-
ious metrics with our source level changes in an
application

Figure 8: False data sharing detected by TCP

For large multi-threaded applications, it is difficult to determine false
data sharing between threads statically. Conservative static analysis might
pad too many dummy variables in a large data structure. We observed that
in many cases, conservative padding degrades execution time of an applica-
tion, due to increase in the number of offchip DRAM accesses. DRAM access
latency is much higher than time spent by an application in cache coherence
messages, induced by false data sharing. Hence, accurate estimation of effec-
tive false sharing is required to improve performance. We use SI, CI and PI
(Section 3.3) values evaluated by TCP to determine data addresses causing
excessive cache coherence messages. We consider addresses with SI greater

18

than 8, CI less than 2 and PI greater than ten thousand. We determined
these values empirically. Our tool also gives information about instruction
addresses accessing these CLAs. By using information obtained from the
application binary and trapping malloc calls, we determined the culprit data
structures.

Raytrace in Splash2[11] allocates a global gmem structure which has mul-
tiple locks and a barrier as its members (Fig. 8(a)). In this case, barrier and
locks are allocated in the same cache line of 64B in size. Hence, we changed
the gmem structure as shown in Fig. 8(b). We co-allocated pidlock and
ridlock with members which they protect from concurrent use. We also allo-
cated barrier in a separate cache line. With these changes, we could obtain
a significant improvement in performance of an application. We made sim-
ilar changes in barnes. Table 8(c) summarizes % energy-delay product and
execution time improvement. We could achieve execution time improvement
up-to 10.7% for this well studied benchmark applications with TCP.

7 Conclusions and Future Work

We present TCP, a tool to profile data accessed by a multi-threaded applica-
tion. TCP quantifies the number of threads sharing data and their sharing
pattern. We propose a sharing index (SI), inspired from entropy in informa-
tion theory. SI quantifies the number of threads sharing an object. Higher
SI does not necessarily imply higher contention for an object. Hence, we
define contention index (CI) expressed in terms of the average number of
consecutive accesses made by the same thread. Higher average runlength
size denotes lower contention for an object. We use SI and CI to accurately
predict a more profitable cache access policy between SNUCA and DNUCA
for an application. This model achieves an average simulation speed-up of
2.2 times compared to SNUCA /DNUCA cycle-accurate simulations put to-
gether.

We also demonstrate use of TCP to predict contention bottleneck in the
code by finding false data sharing. With our changes in the program, we
achieve up-to 10% and 18.9% improvement in execution time and energy-
delay product of the application. Currently, we manually detect and change
data structure layout. This can be partially automated which we plan to do
in future. One way to do this is to ask a programmer to specify boundaries
of different tasks in the application code. If a cache line popular with many
threads receives accesses from instructions belonging to different tasks then it
could be due to false data sharing and a hint could be given to the program-
mer to reorganize that data structure. TCP can also be used to solve other

19

problems such as changing lock granularity, and evaluating thread scalability.

References

1]

2]

[12]

H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “Pinplay: a
framework for deterministic replay and reproducible analysis of parallel
programs,” in CGO’2010.

“Gnu prof.” [Online]. Available: http://www.cs.utah.edu/dept/old/
texinfo/as/gprof.html

C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in ASPLOS, 2002.

M. D. H. Jan Edler, “Dinero trace-driven uniprocessor cache simulator,”
http://www.cs.wisc.edu/ markhill/DinerolV.

S. Ghosh, M. Martonosi, and S. Malik, “Cache miss equations: an ana-
lytical representation of cache misses,” ser. ICS ’97.

D. Eklov, D. Black-Schaffer, and E. Hagersten, “Fast modeling of shared
caches in multicore systems,” in ACM HiPEAC,2011.

D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread
cache contention on a chip multi-processor architecture,” in HPCA,
2005.

S. J. Eggers and R. H. Katz, “A characterization of sharing in parallel
programs and its application to coherency protocol evaluation,” in ISCA
88.

C. E. Shannon, “A mathematical theory of communication,” in Bell
Systems Technical Journal, 1948.

M. lap Li, R. Sasanka, S. V. Adve, Y. kuang Chen, and E. Debes, “The
ALPBench benchmark suite for complex multimedia applications,” in
IEEE ISWC, 2005.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in ISCA, 1995.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in PACT, 2008.

20

[13]

[14]

[18]

[19]

J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,”
2005, http://sesc.sourceforge.net.

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacets general execution-driven multiprocessor simulator (gems)
toolset,” 2005.

D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Ja-
cob, “DRAMsim: a memory system simulator,” 2005.

“Micron DRAM power data sheet.” [Online]. Available: http:
//www.micron.com/products/partdetail?part=MT47H128 M8HQ-3E

R. Nagpal, A. Madan, A. Bhardwaj, and Y. N. Srikant, “Intacte: an in-
terconnect area, delay, and energy estimation tool for microarchitectural
explorations,” in CASES, 2007.

“Intel Nehalem.” [Online|. Available: http://www.3dnow.net/phpBB2/
viewtopic.php?f=1\&t=1474\&p=6720

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI
6.0: A tool to model large caches,” 2009. [Online]. Available:
http://www.hpl.hp.com/techreports/2009 /HPL-2009-85.html

21

