
Scalable Working Set Estimation Method For

Chip Multicores Using Tagged Bloom Filter

And Its Application

Aparna Mandke Bharadwaj Amrutur Y. N. Srikant

IISc-CSA-TR-2011-3

http://archive.csa.iisc.ernet.in/TR/2011/3/

Computer Science and Automation

Indian Institute of Science, India

September 2011

Abstract

In chip multicore platforms (CMPs), leakage power consumption
of large on-chip caches has already become a major power consuming
component of the memory subsystem. Leakage power can be saved by
switching off over-allocated ways in associative cache. However, the
state-of-the-art heuristics such as average memory latency or cache
miss rate fail to achieve near-optimal energy savings. This is either
due to dispersed nature of large caches or they are not fast enough
to respond to changes in working set size (WSS), especially in case
of over-provisioning of cache. Hence, we first propose a new kind of
bloom filter, which we call it as a “tagged bloom filter (TBF)”. We
implement TBF implicitly in last level cache on a scalable tiled chip
multicore platform. TBF is then used to estimate WSS of an applica-
tion and switch-off over-allocated cache ways in Static and Dynamic
Nonuniform Cache Architecture (SNUCA, DNUCA) accordingly. In
our implementation of adaptable way SNUCA and DNUCA caches,
associativity decision is taken locally by each L2 controller, making it
scalable with the number of tiles present on CMP. It gives average of
22% and 23% more EDP savings than average memory latency and
cache miss rate heuristics on SNUCA, respectively.

1 Introduction

Due to advances in technology, the number of cores and on-chip cache size on
CMPs has increased. As a result, leakage power consumption of on-chip cache
has already become a major contributing component of the memory subsys-
tem. Leakage power consumption of cache can be reduced by switching-
off cache ways of an associative cache. Power gains obtained by switching
off over-allocated cache depends on the accuracy of WSS estimation, how
fast heuristic can respond to changes in WSS and overhead incurred by the
method. Power gains will be sub-optimal if WSS is estimated conservatively.
On the contrary, application will incur more cache misses if WSS is under-
estimated, and execution time of an application may degrade significantly if
heuristic fails to respond to changes in WSS quickly. Hence, in this paper, we
attempt to solve WSS estimation problem in the context of applications run-
ning on a scalable tiled CMPs with large distributed NUCA caches. Previous
attempts either estimate WSS for applications running on uniprocessor [8] or
use some other heuristic as an indirect estimation of WSS [21, 4]. In this pa-
per, we present a novel accurate WSS estimation method which has negligible
hardware. It can be applied to partition cache on virtualized systems[13] or

1

to save cache power by switching-off cache ways [4, 3]. Here, we demonstrate
application of WSS estimation method to switch-off cache ways of NUCA.

For power and performance reasons, a large cache is partitioned into
multiple banks which are connected using a switched-network[12]. The pre-
determined bits from a memory address determine the location of “home L2
bank”, where data is cached. Such cache offers non-uniform access latency
to various cores on CMP. Hence, the architecture is referred to as Static
Non-Uniform Cache Architecture (SNUCA). Kim et al. [12] proposed dy-
namic NUCA (DNUCA) access policy to reduce access latency incurred due
to distributed cache. In DNUCA, the whole address space is mapped onto a
column. The predetermined bits from a memory address, determine the row
in which data is cached. All L2 banks in a row form a bankset and data can
be cached in any of these L2 slices. On L1 miss, data is first searched in the
nearest L2 bank and then in rest of L2 banks in that row before reading it
into the nearest L2 bank from memory. Data is gradually migrated towards
a nearer bank on consecutive accesses.

1.1 Motivation

Since cores incur variable latencies due to dispersed nature of NUCA, typi-
cally used heuristic such as average memory latency[10] is inappropriate to
predict cache requirement. Hence, Bardine et al.[4] used ratio of number
of hits to the farthest cache way to the nearest cache way in DNUCA to
predict cache requirement. As explained earlier, in DNUCA, less frequently
used cache lines subsequently migrate to farther cache ways. They primarily
studied DNUCA cache with one or two cores in which case, both the cores
are on the same side of the shared bus and cache is on its other side. This
heuristic works well for smaller CMPs where cache and cores are on either
side of interconnect. It fails to scale for CMPs with many cores. Similarly,
other typically used heuristic, such as, cache miss rate[21] is not fast enough
to respond to changes in WSS. These heuristics require interconnect access
to take cache associativity decision, which may cause additional delay and
traffic on the interconnect. The main drawback of these heuristics is that
their values are compared against values evaluated in the previous time slot,
and not against their corresponding values if the whole cache is allocated.
Hence, we propose a method to estimate WSS of an application(s) executing
on a large scalable CMP.

Considering trend of increasing number of cores, we study a tiled CMP
such as in Tilera processors (Fig. 1). In this architecture, tiles are replicated
and connected through an on-chip switched-network (NoC). Each tile has
a core, a private L1 instruction and data cache, a slice of L2 cache and a

2

Core

L1

L2
R

Router

DRAM

Controller

Off-chip

DRAM

Chip MultiCore (CMP)

offsetsettiletag

SNUCA Access Policy

offsetsetrowtag

DNUCA Access Policy

Bankset

Figure 1: Tiled CMP used for experimentation

router. In our implementation, L2 cache is distributed across all tiles and
it is shared by all cores. To maintain cache coherence between private L1
caches, a directory is present in each tile. These tiles are inter-connected
via 2D-mesh NoC and per-tile router. Fig. 1 also shows that, tile bits from
memory address determine L2 slice where data is cached in SNUCA and row
bits determine the row in which data is cached in DNUCA.

1.2 Our Contributions

A new type of bloom filter called as “tagged bloom filter” implemented im-
plicitly in cache and its use to accurately estimate WSS of an application(s),
executing on large CMP. It has negligible hardware overhead of 0.1%.

A scalable implementation of SNUCA and DNUCA with adaptive cache
associativity. Each L2 cache controller estimates cache usage of its L2 slice
independently without accessing NoC and adjusts cache associativity accord-
ingly. This makes it scalable with increasing number of tiles. We refer these
implementations as SNUCA.TBF and DNUCA.TBF in rest of the paper.

DNUCA.TBF achieves 40% higher EDP1 savings compared to DNUCA.
Similarly, SNUCA.TBF obtains 45% higher EDP savings compared to SNUCA.
We review related work in section 2 and describe TBF WSS estimation
method in section 3. The scalable algorithm to evaluate associativity of L2
cache is explained in section 4. Experimental setup and results are presented
in Section 5 and section 6, respectively. Section 7 concludes the paper.

1Energy-Delay product (EDP) represents a trade-off between energy consumed by an
application and its execution time.

3

2 Related Work

WSS Estimation Methods: Dhodapkar et al. [8] proposed to estimate
WSS signature of an application, executing on uniprocessor, by setting a
bit obtained by hashing a cache line address into a bit vector of 1024 bits
maintained in the core. Their approach estimates WSS accurately up-to
size of few tens to hundreds of kilobytes which is not sufficient for appli-
cations executing on CMP. Their approach under-estimates large WSS due
to aliasing problem. Moreover, its efficiency depends on the hash function
and the empirical proportionality constant which estimates WSS from the
number of ones set in the bit vector. TBF WSS estimation method over-
comes drawback by maintaining unique indentifier (tag) for an address. R.
Koller et al.[13] proposed a cacheGrabber which increases cache utilization
using non-intrusive cache prefetch instructions till a performance drop in the
simultaneously executing application and cacheGrabber is observed. This
method is used to estimate cache miss rate (CMR) curves. CMR works very
well to partition cache among applications executing on a cache constrained
platform. However, our experiments show that CMR is poorly correlated to
WSS on platforms, where cache is not a constraint. Yang et al. [21] use CMR
to selectively use cache associativity or the number of cache sets at run-time.
D. Albonesi [3] use offline profiled information to adjust cache associativity,
which cannot respond to run-time changes in cache requirement. [10] uses
average memory latency to adjust the number of cores sharing L2 cache.

Power Optmized Cache Architectures: Decay cache[11] estimates
dead time of a cache line and switches it off after its estimated last use. It
operates at granularity of a cache line and has very high hardware overhead.
Flautner et al.[9] proposed drowsy cache in which less frequently used cache
lines are put into drowsy mode. In drowsy mode, supply voltage of a cache
line is reduced to dissipate lesser leakage power without losing data. The
drowsy cache technique achieves large energy gains with negligible perfor-
mance degradation. However, decreasing the supply voltage makes cache
lines susceptible to soft-error faults[7]. D. Albonesi[3] proposed to disable
over-allocated ways of a set-associative cache to reduce its dynamic power
consumption. Bardine et. al [4] vary associativity of DNUCA cache to reduce
its static power consumption on a one or dual core platform.

3 TBF Working Set Size Estimation

We define working set of an application as the unique L1/primary cache lines
accessed in a monitoring period. Cardinality of this set is working set size

4

Figure 2: Tagged bloom filter working set estimation method

(WSS) or to be more precise, cache working set size. Formally, if l1, l2, l3....ln
are unique cache line addresses (CLAs) accessed by an application, then the
working set S is,

S = {l1, l2, l3....ln} WSS = |S| = n (1)

In bloom filters[6], element to be inserted in a set, is hashed and corresp-
nding bit is set in a bit-vector. The number of bits set indicates the number
of elements inserted in the set. However, aliasing causes under-estimation of
the number of elements in the set. To overcome aliasing problem to some
extent, we propose to maintain unique tags to correctly identify an element
already inserted in the set. We refer this type of bloom filter as tagged bloom
filter. It can be implemented implicitly in caches by maintaining an active
bit per cache line and a replacement counter per L2 slice. Tag bits of a cache
line form tags in the TBF. When an address is accessed in cache, tag bits are
compared. If it is a cache hit, then its active bit is set. However, if it a miss
and active bit is set, then cache replaces the existing address and loads a
new address in its place. Tag bits of that address are updated automatically
by the cache controller. However, in this case, to track the previous accessed
address, we increment a replacement counter, called as activeLineReplaced
counter. This counter counts the number cache lines replaced with active bit
set. With TBF method, WSS is calculated as:

WSS = A + R (2)

where, A is the number of cache lines with active bit set and R is the num-
ber of cache lines replaced with active bit set, i.e. value of the activeLineRe-
placed counter. TBF overcomes Dhodapkar’s method’s[8] drawback of under-
estimating WSS in following ways:

• Tags maintained along with cache line avoid aliasing problem by iden-
tifying cache line addresses uniquely.

5

• The replacement counter counts lines replaced with active bit set.

TBF over-estimates WSS if the same cache line is accessed and replaced
multiple times in the same monitoring period. However, this scenario is
rare considering large cache sizes and large cache associativity (16-32) of last
level caches (LLCs). Aggregate WSS of all threads executing on CMP can be
obtained by implementing TBF in the shared LLC. And WSS of an individual
thread can be obtained by implementing TBF in the primary cache.

For cache of 512KB in size and 64B cache line, 8K active bits are required
which is just 0.1% overhead. Our experimental analysis shows that a 32 bit
saturating counter is sufficient for our monitoring period, as we reset active
bits and activeLineReplaced counter at the beginning of every monitoring
period. TBF adds minimal overhead in terms of hardware area and power
consumption.

3.1 Determination of monitoring period

If the monitoring period is too small, fewer active bits would be set. This
would be misinterpreted as lesser WSS. On the contrary, if the monitoring
period is too high, it would estimate higher WSS, failing to switch-off ex-
cess L2 slices. Hence, determination of accurate monitoring period is very
important. To estimate it, we measured the number of clock cycles between
two consecutive accesses made to the same address by any thread in an ap-
plication. We call it as reuse time. For all applications that we consider,
an average of 96% accesses have reuse time less than 2M cycles. If a cache
line is not accessed in the last 2M clock cycles then most likely, it will not
be accessed in next 2M clock cycles as well and hence it is not considered in
working set. Conservatively, we use monitoring period of 4M clock cycles.

4 Variable Way SNUCA and DNUCA

NoCs on CMP have become more complex and add significant latency. Hence
algorithm used to vary associativity of cache should use locally available
information so as to avoid additional delays and traffic on NoC. The L2
cache controller in each tile executes Algorithm 1 to evaluate associativity
of its L2 slice independently without accessing NoC. Because of this our
algorithm scales with the number of tiles present on CMP. Unlike average
memory access latency (AAL) and CMR heuristics, cache associativity of
each L2 slice is determined according to its usage. This enables to achieve
higher energy savings with minimal performance degradation.

6

Algorithm 1 Evaluate associativity of each L2 slice
1: Get the number of active Lines(A) of an L2 slice

2: Get the number of activeLineReplaced(R) of an L2 slice

3: EWSS = A + R
4: bank size = total cache size/max associativity
5: assoc1 = ceil(EWSS/bank size) + 1
6: r = ceil(R/total number of sets in a tile)
7: if r > T1 && assoc1 < (current associativity + 2) then

8: assoc1 = current associativity + 2
9: end if

10: assoc = max(max associativity, assoc1)

The number of active bits set (A) and the number of active lines re-
placed (R) in the previous monitoring period are used to estimate WSS
(EWSS)(lines 1-3). Line 5 evaluates associativity of the L2 slice. Minimum
associativity of 2 is assigned to avoid frequent conflict misses. The number
of active cache line replacements per set is calculated as R divided by the
total number of sets in the L2 slice (line 6). Here, we assume that the active
line replacements are distributed uniformly over all the sets. If the number
of replacements per set is greater than the threshold T1, then associativity
is increased by 2. Higher value of T1, will reduce associativity aggressively,
causing more cache misses and DRAM accesses. We conservatively set T1 = 0
in all our experiments i.e we increase associativity even if there is one active
line replacement per set.

When associativity is decreased (increased), extra associativity of all sets
in the L2 slice is switched off (on). The number of ways to be switched off
(on) is equal to the difference between the new associativity and associativity
in the current time slot. Modified cache lines in the banks to be switched
off, are written back and clean lines are invalidated. Apart from determining
WSS, active bit serve another purpose. Cache lines with active bit set, are
migrated in cache banks that would remain powered on and some other cache
line from that bank is replaced instead.

5 Experimental Configuration

5.1 Applications used in Experiments

We evaluate multi-threaded workloads with one-to-one mapping between
threads and cores (Table 1)2. This assumption is in line with other work

2Rest of the PARSEC benchmarks either use OpenMP APIs or libraries which are not
supported by SESC compiler. Hence remaining benchmarks cannot be compiled using
SESC compiler.

7

Name Description, WSS(L/M/S)
Alpbench Benchmark [14]

MPGEnc Encodes 15 Frames of size 640x336, M
MPGDec Decodes 15 Frames of size 640x336, M

Splash2 Benchmark[20]
Cholesky blocked sparse matrix factorization on tk29, L

FFT FFT on 1M points, M
LU (noncontinuous) 1024x1024 LU matrix factorization, S

Radix Radix sort on 1M keys, M
FMM simulate interaction of 16K bodies system, M

Water spatial simulation of 512 water molecules, M
Water nsquared simulation of 512 water molecules, M

Barnes Barnes-Hut method on 16K bodies, M
Ocean (continuous) 512x512 grid points, L

PARSEC Benchmark[5]
Blackscholes SimLarge i/p, Financial Domain, S
Swaptions SimLarge i/p, Financial Domain, M

Fluidanimate SimMedium i/p, Animation, L
H.264 Encoder SimLarge i/p, Media Domain, M

Table 1: Table shows applications used for study and their WSS informa-
tion(L:Large, M:Medium, S:Small).

done for CMP platforms. We have skipped initial serial portion and simulate
only parallel section in all the test cases. We execute 1B instructions, unless
otherwise mentioned. We test all workloads with 16 threads.

5.2 Experimental Setup And Methodology

We model all the system components with reasonable accuracy in our frame-
work. We use SESC[18] to simulate a core, Ruby component from GEMS[15]
to simulate the cache hierarchy and interconnects. DRAMSim is used to
model the offchip DRAM. DRAMSim[19] uses MICRON [2] power model to
estimate power consumed in DRAM accesses. Intacte [17] is used to estimate
low level parameters of the interconnect such as the number of repeaters, wire
width, wire length, degree of pipelining and power consumed by the intercon-
nect. Power consumed by the cache components is estimated using CACTI
6.0.

In order to estimate the latency (in cycles) of a certain wire, we estimate

8

Processor,

L1 Cache

4 x 4

512KB L2

0.59x3.01

R

5mm

5mm

Link Type Length PipeLineStgs Pwr

L1-R 1.3 2 0.562

L2-R 3.75 7 1.59

R-R H 5 9 2.125

R-R V 5 9 2.125

M-R 0.2 1 0.127

R: Router, L1: L1 cache L2: L2 slice in a tile,

R-R H: Router-Router Horizontal Link,

R-R V: Router-Router Vertical Link

Power is in mW and all lengths are in mm

Link lengths & Power estimated using Intacte

Figure 3: Floorplan of a tile with 512KB L2 slice.

area of all components in a tile and then create the floorplan which is shown
in Fig. 3. We make following assumptions to determine area of various
components at 32nm technology and 3GHz frequency:

• core : This is estimated based on the area of Intel Nehalem core[1]

• cache : The L1 cache is of size 32KB whose area is very small and is
included in the processor area. The area occupied by the L2 cache is
obtained using CACTI 6.0. We assume directory information is stored
along with each L2 slice. We conservatively assume area of per-tile
directory to be negligible. If directory area is considered then inter-
connect lengths will increase which is more beneficial for the remap
policy.

• router : The area of the router is assumed to be quite negligible at
32nm.

Fig. 3 also shows wire lengths and their power consumption. The latency of
a link in clock cycles is equal to the number of its pipeline stages. To obtain
power consumption of NoC, we compute the link activity and coupling factors
of all links, caused due to the messages sent over NoC.

5.3 Simulation Procedure

Table 2 gives the system configuration used in our experiments. The flow
chart in Fig. 4 shows the experimental procedure. It includes computing the
area of tile components, computing link lengths and low level link parame-
ters using Intacte and then performing simulation. Our simulator estimates
the activity and coupling factors of all the links. Intacte determines power
dissipated in NoC using these activity factors. Power consumed by the off-
chip DRAM and on-chip cache is estimated using DRAMSim (MICRON)
and CACTI power models, respectively.

9

Processor, Cache,

Router area

Arrange components to obtain optimum

 tile dimensions. Estimate link lengths.

Use Intacte to obtain link config.

Processor

Config. (SESC)

Network

Config.

Cache, Interconnect

config. (Ruby)

DRAM Config

(DRAMSIM)

Simulate the application

Obtain activity and coupling

factors of all links

Calculate NoC power

using Intacte

Calculate cache

power using Cacti

Calculate DRAM

power using

DRAMSIM

Figure 4: Experimental Procedure

Core
out-of-order execution, 3GHz frequency,
issue/fetch/retire width of 4

L1 Cache
32KB, 2 way, 64 bytes cache line size, access latency
of 2 cycles (estimated using CACTI[16]), private,
cache coherence using MOESI protocol

L2 Cache
512KB/tile, 16 way, 64B line size, 4 subbanks per slice, 3 cy.
latency (estimated using CACTI), noninclusive, shared and
distributed across all tiles

Directory
Tag bits of L2 cache line include full bitmap for L1 sharers.
A separate table of 3000 entries maintains dir info. for cache
lines not cached in L2 but only in L1s.

Interconnect
16 bits flit size, 4x4 2D MESH, deterministic routing,
4 virtual channels/port, credit based flow control,
router queues with length of 10 buffers

Off-chip 4GB, DDR2, 667MHz freq, 2 channels of 8B in width, 8 banks
DRAM 16K rows, 1K columns, close page row management policy

Table 2: System configuration used in experiments

6 Results

6.1 Accuracy of TBF

To determine accuracy of TBF, we determine actual WSS (AWSS) by count-
ing unique number of CLAs accessed by all cores. First column shows cor-10

App.
Correlation to AWSS EWSS/

TBF
Avg. Mem.

MissRatio
AWSS

Latency
mpegenc 0.98 -0.16 0.03 1.15
mpegdec 0.96 -0.37 -0.55 1.12
cholesky 0.95 0.37 0.24 1.28
fft 0.99 0.64 0.73 1.85
lu (noncontinuous) 0.95 -0.65 0.96 1.23
radix 0.99 -0.92 0.68 1.69
fmm 0.98 0.33 0.72 1.08
water spatial 0.99 0.52 0.17 0.96
water nsquared 0.99 0.35 0.44 0.98
barnes 0.99 0.07 0.27 1.04
ocean (continuous) 0.99 -0.69 -0.47 1.7
raytrace 0.99 -0.81 -0.85 1.55
blackscholes 0.99 -0.47 0.04 0.96
swaptions 0.76 0.27 0.27 0.91
fluidanimate 0.96 0.64 0.77 1.41
x.264 Encoder 0.98 0.46 0.4 0.83
average 0.97 -0.03 0.24 1.23

Table 3: Table shows correlation of various hueristics to actual WSS (AWSS). It
also shows ratio of estimated WSS and actual WSS (AWSS).

relation between WSS estimated by TBF and AWSS determined after every
4M clock cycles. For all applications, two values show good correlation. Ta-
ble 3 also shows correlation between average memory access latency (AAL)
and AWSS determined after every 4M clock cycles. These two values are
very poorly correlated, which is quite intuitive. We determine NoC link la-
tencies using Intacte and use very realistic values of latencies. Hence, AAL
also depends on time spent in NoC traversal, which makes it not suitable
for larger NUCA caches. Cache miss ratio (CMR) also shows poor corre-
lation to WSS, which is not intuitive. We measure aggregate AWSS at L1
caches. Majority of the accesses are L1 hits. Hence, higher AWSS does not
imply more L2 cache misses due over-provisioning of L2. In this case, on
reducing L2 associativity aggressively will invalidate active cache lines from
L1 caches, degrading execution time of an application. Whereas, TBF sets
active bit in case of L1 replacements, changes in sharers’ list or change in
access permission, which enables it to estimate WSS accurately.

Table 3 also shows ratio of average WSS estimated by TBF to average
of AWSS. In majority of applications TBF is greater than AWSS. However,
over-estimation is not huge, as the ratio is close to 1. Over-estimation in
applications like fft is due to uneven use of sets. Some sets show more cache
line replacements than rest. Thus the same cache line gets accessed and
replaced multiple times in a monitoring period, causing re-counting by the
replacement counter. When an L2 cache line with L1 sharers is replaced,
replacement counter is incremented, even if its active bit is not set. This

11

(a) Smaller EDP value is better

(b) Smaller Execution Time is better

Figure 5: Quantitative comparison of our variable way DNUCA implementation
with Bardine’s hueristic

avoids unnecessary L1 cache invalidations. x.264 shows under-estimation of
WSS. This is because, in x264, most of accesses are L1 cache hits during
when L2 cache line is not accessed. On an average, the ratio of estimated
WSS to actual WSS is 1.23.

6.2 Comparison with Bardine’s hueristic

As explained earlier, Bardine et al. [4] use ratio of number of hits to the
farthest cache line to hits to nearest cache line as a heuristic to change cache
associativity in DNUCA. We refer to this ratio as hit ratio. This heuristic
works in case of DNUCA as frequently used cache lines gradually move to-
wards cores. However, in tiled architecture cache lines nearer to one core
are far for other cores. Hence, Bardine’s method can be applied only up to

12

four threads scheduled on cores in the first column in Fig. 1. We compare
DNUCA.TBF to Bardine’s implementation by executing workloads with four
threads scheduled in the first column. Fig. 5(a) compares EDP savings ob-
tained with TBF to that obtained with Bardine’s heuristic. DNUCA.TBF
gives average of 9.5% higher EDP savings than DNUCA.Bardine. This is be-
cause cache associativity is gradually adjusted in Bardine’s method, whereas,
TBF estimates WSS and adjust cache associativity to the correct value im-
mediately from the next monitoring period. Accurate estimation of WSS,
enables to achieve higher EDP savings with negligible performance degra-
dation, except in case of ocean. Ocean has smaller WSS initially and it
increases suddenly after some time. In Bardine’s method, associativity is re-
duced if hit ratio is smaller than that obtained in previous monitoring slot3.
As associativity reduces to very small value of four, hit ratio does not in-
crease on increase in WSS. Hence, Bardine’s method fails to allocate more
cache, degrading execution time by 37%. On the contrary, our method sets
active bit when cache line migrates to farther slice and replacement counter
counts the number of replaced active cache lines. This indicates sudden in-
crease in WSS and our method allocates more cache lines, giving maximum
execution time degradation of 9.7% in ocean. However, in all rest of appli-
cations is lesser than 5% 5(b). In this implementation, to apply Bardine’s
hueristic we migrate L2 cache lines to farther L2 slices on replacements. This
causes counting of active bits multiple times in a monitoring slot. This intro-
duces inaccuracies in TBF WSS estimation. However, in tiled architecture,
a cache line is sent to offchip DRAM on replacement. Hence, very negligi-
ble performance impact is seen in DNUCA.TBF and SNUCA.TBF on tiled
architecture. Apart from giving average of 9.5% higher EDP savings than
DNUCA.Bardine with negligible performance degradation, DNUCA.TBF is
scalable with the number of cores, unlike DNUCA.Bardine.

6.3 Scalability of CWSS method

To demonstrate scalability of TBF, we execute applications with sixteen
threads on a sixteen tiled CMP with DNUCA. We compare DNUCA.TBF
quantitatively against EDP savings obtained with AAL and CMR as heuris-
tics.
DNUCA.Lat, DNUCA.CM: In these configurations, AAL and CMR are
used as a heuristic to vary cache associativity. We calculate these values by
aggregating accesses made by all threads. The cache associativity of all L2
slices is reduced if AAL/CMR is lesser than that of the previous time slot

3Threshold values are chosen as per [4]

13

(a) Smaller EDP value is better

(b) Smaller Execution Time is better

Figure 6: Graphs in 6(a) and 6(b) show normalized EDP and Execution time
obtained with various power efficient DNUCA configurations

Figure 7: Average L2 slice usage

14

by 10%. The associativity of all L2 slices is increased if values are greater
by 10% than that in the previous slot, else, associativity remains same. It
should be noted that NoC access is essential to evaluate AAL or CMR. In
these configurations, decision is taken by one L2 controller and then conveyed
to rest of the controllers which makes these heuristics unscalable. Apart from
this, all L2 slices use the same cache associativity, irrespective of their usage.
DNUCA.TBF: It executes TBF estimation method after every 4M clock
cycles and with threshold T1 (see Algorithm 1) set to zero.

Fig. 6(a) plots EDP normalized with respect to (w.r.t.) that obtained
with reference DNUCA. DNUCA.TBF estimates cache usage accurately of
each L2 slice and assigns associativity accordingly. As a result, on an av-
erage it achieves EDP savings of 35% over the reference. On the contrary,
DNUCA.Lat and DNUCA.CM achieve only average of 15% and 19% EDP
savings over DNUCA. As shown in section 6.1, AAL and CMR show very
poor correlation to WSS, especially when WSS of an application is much
smaller than cache size. EDP savings obtained depend on how quickly heuris-
tic can respond to changes in WSS. Unlike TBF, CMR and AAL estimate
WSS indirectly. Hence, in case of cholesky, CMR and AAL show 63% and
50% degradation in execution time (Fig. 6(b)). This degrades EDP by 210%
and 182%. Due to initial smaller WSS, cache associativity is decreased. On
increase in WSS, cache allocation is slowly increased in the following moni-
toring periods. CMR/AAL is compared against values obtained in previous
slots and not against corresponding values in the reference execution with
the whole cache allocated. Hence, these heuristics fail to quickly respond to
cache needs of an application. Whereas, TBF measures the number of cache
lines accessed in a monitoring period, due to which it responds quickly to
application’s cache needs. Hence, DNUCA.TBF shows execution time degra-
dation of only 3.3% in cholesky. On average, AAL and CMR show 8.8% and
9.6% degradation in execution time. On the contrary, TBF shows less than
1% degradation.

6.4 Applicability of CWSS to SNUCA

TBF can also be applied to SNUCA. Fig. 8(a) and Fig. 8(b) compare
EDP savings and execution time obtained with TBF against AAL and CMR
heuristics. SNUCA.TBF shows 21% and 16% higher EDP savings than that
obtained with CMR and AAL heuristics. Large EDP savings in TBF are due
to lesser number of L2 slices allocated by TBF. Fig. 7 shows average number
of L2 slices allocated by each of these hueristics. TBF allocates average
of 33% and 19% lesser number of L2 slices than that allocated by AAL
and CMR hueristics. Despite lower usage of L2 slices, TBF does not show

15

(a) Smaller EDP value is better

(b) Smaller Execution Time is better

Figure 8: Graphs in 8(a) and 8(b) show normalized EDP and Execution time
obtained with various implementations of power efficient SNUCA

performance degradation. In case of cholesky, AAL and CMR show 18% and
20% degradation in execution time. Thus showing 22% and 20% degradation
in EDP, whereas, TBF accurately estimates large cache requirement and
allocates the whole cache. The maximum execution time degradation shown
by TBF is of 5% in radix. This is becase of sudden increase in WSS. TBF
increases cache associativity in the next monitoring period. Even if execution
time degrades by 5%, TBF gives 54% EDP saving.

6.5 Sensitivity to Monitoring Period

Fig. 9 shows normalized EDP gains for monitoring period of 3.5, 4 and
4.5 million cycles. CWSS is not very sensitive to the monitoring period.
Therefore, SNUCA.Way and DNUCA.Way achieve approximately same EDP

16

Figure 9: Sensitivity to monitoring period

savings for all applications on varying monitoring period.

7 Conclusions

We propose a new kind of bloom filter called as a “tagged bloom filter”. We
implement it implicitly in cache with negligible hardware overhead of 0.1%
of cache size. Unlike previous approaches, it measures large or small WSS
accurately. We use estimated WSS to switch-off over-allocated associativity
of SNUCA and DNUCA cache, which is shared and distributed on a tiled
CMP. Each L2 cache controller determines cache associativity of its L2 slice,
with locally available information. Apart from avoiding additional delays
and traffic on NoC, this method gives finer and independent control over
associativity of each L2 slice. Unlike previous implementations of adaptive
way DNUCA[4], our implementation is scalable with the number of cores
present on CMP and achieves higher EDP savings. Due to accurate estima-
tion of WSS, SNUCA.TBF and DNUCA.TBF achieve 54% and 35% EDP
savings over their reference SNUCA and DNUCA platforms, respectively,
with negligible degradation in execution time.

Unlike average memory access latency and cache miss rate, our method
responds to WSS changes quickly and achieves 23% and 22% higher EDP
savings on SNUCA than that obtained with AAL and CMR as heuristics.

References

[1] Intel Nehalem.

[2] Micron DRAM power data sheet.

17

[3] D. H. Albonesi. Selective cache ways: On-demand cache resource allo-
cation. In MICRO, 1999.

[4] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli, and C. A. Prete.
Way adaptable DNUCA caches. Int. J. High Perform. Syst. Archit.,
2010.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In PACT, 2008.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 1970.

[7] B. Calhoun and A. Chandrakasan. Static noise margin variation for sub-
threshold sram 65-nm CMOS. In IEEE Journal on Solid State Circuits,
2006.

[8] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration hard-
ware via dynamic working set analysis. In ISCA, 2002.

[9] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy
caches: simple techniques for reducing leakage power. In ISCA, 2002.

[10] M. Hammoud, S. Cho, and R. Melhem. Dynamic cache clustering for
chip multiprocessors. In ICS, 2009.

[11] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting genera-
tional behavior to reduce cache leakage power. In ISCA, 2001.

[12] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches. In ASPLOS, 2002.

[13] R. Koller, A. Verma, and R. Rangaswami. Estimating application cache
requirement for provisioning caches in virtualized systems. In MAS-
COTS, 2011.

[14] M. lap Li, R. Sasanka, S. V. Adve, Y. kuang Chen, and E. Debes. The
ALPBench benchmark suite for complex multimedia applications. In
IEEE ISWC, 2005.

[15] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacets
general execution-driven multiprocessor simulator (gems) toolset. 2005.

18

[16] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0:
A tool to model large caches. 2009.

[17] R. Nagpal, A. Madan, A. Bhardwaj, and Y. N. Srikant. Intacte: an in-
terconnect area, delay, and energy estimation tool for microarchitectural
explorations. In CASES, 2007.

[18] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC simulator,
2005. http://sesc.sourceforge.net.

[19] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Ja-
cob. DRAMsim: a memory system simulator. 2005.

[20] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consider-
ations. In ISCA, 1995.

[21] S.-H. Yang, B. Falsafi, M. D. Powell, and T. N. Vijaykumar. Exploiting
choice in resizable cache design to optimize deep-submicron processor
energy-delay. HPCA ’02.

19

