
Conflict-Tolerant Specifications in Temporal

Logic

Sumesh Divakaran Deepak D’Souza

Raj Mohan M.

Department of Computer Science and Automation,

Indian Institute of Science,

Bangalore 560012, India.

Abstract

A framework based on the notion of conflict-tolerance was proposed
in [1] as a methodology for developing and reasoning about systems that
are composed of multiple independent features. In [1] the authors use
annotated transition systems to specify conflict-tolerant features. In this
paper we propose a way of specifying conflict-tolerant features in Tempo-
ral Logic, which is a specification language widely used in practice. We
call our logic Conflict-Tolerant LTL or CT-LTL. We provide an algorithm
for verifying whether a given feature implementation meets a specification
given in our logic. The paper concludes by providing a constructive pro-
cedure for synthesising a finite-state feature implementation from a given
CT-LTL specification.

1 Introduction

A framework based on the notion of “conflict-tolerance” was proposed in [1]
as a way of developing and reasoning about systems that are composed of a
base system along with multiple independent controllers that each implement a
certain feature for the system. Such systems appear commonly in software in-
tensive domains, examples of which include an automobile with several features
like cruise control and stability control; or a telecom switch which provides dif-
ferent features to subscribers, like call forwarding and call screening. Typically
the controller for each feature is developed independently, and the controllers
are all integrated together using a supervisory controller or feature manager.
Unfortunately in certain configurations of the system – as the reader may well
imagine for the example features mentioned above – the individual controllers
may prefer conflicting advises on how the system should proceed next. These
conflicts are typically resolved by suspending the lower-priority controller(s) and
then waiting for a “reset” state of the system before restarting the controller.
As a result the suspended feature’s utility is lost out on during this period.

1

The framework in [1] proposes a way of designing each controller so that,
given a priority ordering among the features, it is easy to compose them in a
way in which each controller is utilised “maximally.” Thus each controller’s
advice is taken at all times except when each of its advised actions is in conflict
with a higher priority controller.

(a) (b)

w

Figure 1: (a): A classical safety specification and (b) a conflict-tolerant specifi-
cation.

The key idea in this framework is to specify a “conflict-tolerant” behaviour
for each feature, and to build controllers for each feature that meet its conflict-
tolerant specification. Unlike a classical safety specification, which can be viewed
as a prefix-closed language of behaviours, a conflict-tolerant specification is an
advice function which specifies a safety language for each possible finite be-
haviour of the system. This is depicted in Fig. 1: If one considers the set of
all possible behaviours of the system as a tree growing downwards, then part
(a) shows the shaded “cone” denoting a classical safety language, and part (b)
depicts what a tolerant specification may look like, with safety cones prescribed
for each possible behaviour of the system. A controller for such a specification
must itself be “tolerant” in that it not only advises the system on what actions
to take next (like a classical controller), but also keeps track of possible devi-
ations from its advice, and goes on to advise next events so as to control the
subsequent behaviour of the system. A conflict-tolerant controller satisfies a tol-
erant specification given as an advice function f if after every system behaviour
w, the subsequent controlled behaviour of the system stays within the safety
language f(w).

In this paper our aim is to propose a way of specifying conflict-tolerant
specifications in Linear-Time Temporal Logic (LTL) [2]. LTL is a popular spec-
ification language in both academia and industry, and is considered to be a
language that is easy to use by the specifier. Hence we believe that a mech-
anism for specifying conflict-tolerant specifications in LTL would be a useful
addition to the conflict-tolerant framework.

The logic we propose, called CT-LTL for “Conflict-Tolerant LTL,” is a syn-
tactic fragment of LTL. A CT-LTL specification is a conjunction of formulas of
the form (ϕ =⇒ ψ), where ϕ is a past LTL formula, and ψ is a disjunction
of formulas of the form a (“next a”), where a is system action. A CT-LTL
formula defines an advice function in a natural way: for any behaviour w, we
check whether the past formula ϕ is true, and if so, advise a set of next actions
that satisfy ψ.

2

The associated verification problem for CT-LTL is to check, given a base
system B and a conflict-tolerant controller C (both modelled as a finite-state
transition systems), and a conflict-tolerant specification in the form of a CT-LTL
formula θ, whether C satisfies the advice function induced by θ, with respect to
the given base system B (as described above). We note that an advice function
is in general a richer object than a classical safety specification, and thus the
verification problem for CT-LTL is more general different than the classical
verification problem for LTL. Thus, a controller C may satisfy θ as a classical
LTL specification, but not as a conflict-tolerant specification.

Nonetheless, we show that the verification problem, as well as the associated
feasibility and synthesis problems, for CT-LTL can be solved algorithmically,
using essentially the same technique as for classical LTL. The main step is to
build for a given past LTL formula ϕ a deterministic transition system that
“monitors” the truth of ϕ along every word it reads. This is similar to the
“formula automaton” for classical LTL [3, 4].

The rest of the paper is organized as follows. In Sections 2 and 3 we introduce
conflict-tolerant systems and associated notions along with some examples. In
Section 4 we introduce LTL and our logic CT-LTL for specifying conflict-tolerant
specifications. In Section 5 we give a procedure for generating the monitoring
automaton for a past-LTL formula. Sections 6 and 7 address the verification
and synthesis problems respectively.

2 Preliminaries

Let Σ be a finite alphabet of events and let Σ∗ be the set of all finite words over
Σ. A language over Σ is a subset of Σ∗. We denote the empty word by ǫ and
the concatenation of the words u and v by u · v (or simply uv). We say u is a
prefix of v, and write u � v, if there exists w in Σ∗ such that uw = v. We say
a language L is prefix-closed if whenever v ∈ L and u � v, we have u ∈ L.

For any language L and a word u over Σ the set of all extensions of u in L,
denoted extu(L), is {v ∈ Σ∗ | uv ∈ L} and the set of all immediate extensions
of u in L, denoted iextu(L), is {a ∈ Σ | av ∈ extu(L)}.

A transition system T over Σ is a tuple (Q, s,→) where Q is a finite set of
states, s ∈ Q is the start state and →⊆ Q × Σ × Q is a Σ-labelled transition
relation. A run of the transition system T on a word w = a1 . . . an starting
from a state q0 is a sequence q0, . . . , qn of states in Q such that for all i ∈
{1, . . . , n}, (qi−1, ai, qi) ∈→. Let Lq(T) denote the set of all words on which T
has a run starting from the state q. Then we define the language generated by T ,
denoted L(T), to be Ls(T). We say the transition system T is deterministic if
for every p ∈ Q and a ∈ Σ there exists at most one q ∈ Q such that (p, a, q) ∈→.
For a deterministic transition system T and a word w on which T has a run let
q be the unique state reached by T on w. Then we define Lw(T) = Lq(T).

Next we define the standard “synchronized product” of two transition sys-
tems.

3

Definition 1. Let T1 = (Q1, s1,→1) and T2 = (Q2, s2,→2) be two transition
systems over Σ. Then the synchronized product of T1 and T2, denoted by T1 ‖
T2, is defined to be the transition system (Q1 × Q2, (s1, s2),→) over Σ, where
((p1, p2), a, (q1, q2)) ∈→ iff (p1, a, q1) ∈→1 and (p2, a, q2) ∈→2.

3 Conflict-Tolerant Controllers

In this section we recall some of the key notions in the conflict-tolerant frame-
work from [1]. To begin with, following a line of work suggested earlier in the
literature [5, 6], feature implementations are viewed as controllers of a base
system.

A base system is modelled as a finite-state transition system in which “sys-
tem” events are performed in response to “environment” events. In this regard
we define a partitioned alphabet to be one of the form (Σs,Σe) where Σs is a
finite set of controllable or system events, and Σe is a finite set of uncontrollable
or environment events. We will use the convention that Σs ∪ Σe = Σ.

Definition 2. A base system or plant over a partitioned alphabet (Σs,Σe) is
a deterministic finite state transition system B over Σ satisfying the following
conditions:

• L(B) is alternating, i.e. L(B) ⊆ (Σe · Σs)
∗ ∪ ((Σe · Σs)

∗ · Σe)

• B is non-blocking, i.e. w ∈ L(B) =⇒ ∃a ∈ Σ s.t. wa ∈ L(B).

As a running example we consider the base system shown in Fig. 2(a). The
base system models a system that can perform the system events noRel, rel

and relDouble for releasing zero, one, or two units of oxygen respectively, in
response to the environment event timer.

In the classical framework, a (safety) specification for a feature is given by a
prefix-closed language. A controller implementing the feature meets this spec-
ification with respect to a given base system if all behaviours of the controlled
base system lie within the specified language. For example, the transition sys-
tem shown in Fig. 2(b) is a classical controller for the given base system that
ensures that every timer event is followed by a rel event.

P Q

timer

rel, relDouble, noRel

Q’P’

rel

timer

(b)(a)

Figure 2: (a) Example base system and (b) a classical controller.

A conflict-tolerant specification on the other hand is a collection of safety lan-
guages, one for each possible behaviour of the base system. This is formalised as

4

an “advice function” below, which advises a safety language of future extensions
for each possible behaviour.

Definition 3. An advice function over an alphabet Σ is a map f : Σ∗ → 2Σ∗

which satisfies the following conditions:

• for every word w ∈ Σ∗, f(w) is a prefix-closed language.

• f is consistent in the sense that for all u ∈ Σ∗ if v ∈ f(u) then f(uv) =
extv(f(u)).

Another way of describing an advice function is as an immediate advice
function:

Definition 4. An immediate advice function over an alphabet Σ is a map
g : Σ∗ → 2Σ.

An immediate advice function g over Σ induces an advice function fg over
Σ in the following way. We say a word w in Σ∗ is according to the immediate
advice function g at a non-empty prefix ua of w, if a ∈ g(u). We say w is always
according to g if w is according to g at all non-empty prefixes of w. The advice
function fg induced by g can now be defined for each u ∈ Σ∗ as

fg(u) = {v ∈ Σ∗ | ∀wa � v, uv is according to g at uwa}.

One can verify that the two conditions for an advice function in Def. 3 are
satisfied by fg and hence that it is a valid advice function.

A conflict-tolerant controller (or feature implementation) is similar to a clas-
sical controller which synchronizes with the base system and controls the choice
of possible next system events available to the base system. The key difference
is that a conflict-tolerant controller also keeps track of the system events that
are against its advice, and goes on to control the subsequent behaviour of the
system. A conflict-tolerant controller is modelled as an annotated transition
system described below.

A conflict-tolerant transition system (CTTS for short) over an alphabet Σ
is a tuple T ′ = (T , N) where T is a deterministic transition system over Σ and
N ⊆→ is a subset of transitions designated as not-advised.

A CTTS T ′ (as above) generates two type of languages: an “unconstrained”
language, and a “constrained” language. Let T ′′ be the transition system ob-
tained from T ′ by deleting all the not-advised transitions (i.e. transitions in N)
from T ′. Then starting from a configuration q in T ′ the unconstrained language
generated by T ′, denoted Lq(T

′), is defined to be Lq(T) and the constrained
language generated by T ′, denoted Lcq(T

′), is defined to be Lq(T
′′). For any

word w ∈ L(T) we use Lcw(T ′) to denote the language Lcq(T
′) where q is the

unique configuration reached by T on w. The CTTS T ′ is said to be complete
with respect to a language L if L ⊆ L(T).

We can now define a “conflict-tolerant” controller.

5

Definition 5. A conflict-tolerant controller C for a base system B over a par-
titioned alphabet (Σs,Σe) is a conflict-tolerant transition system over Σ that is
complete with respect to L(B).

The controller C is said to be valid with respect to B if the following condi-
tions hold:

• C is non-restricting: If w · e ∈ L(B) for some environment event e ∈ Σe,
then e ∈ Lcw(C). Thus the controller must not restrict any environment
event e enabled in the base system after any system behaviour w.

• C is non-blocking: If w ∈ L(B), then Lcw(C) ∩ Lw(B) 6= {ǫ}. Thus the
controller must not block the system after any system behaviour w.

Let C be a conflict-tolerant controller for a base system B as above. Then
we can view the product transition system B ‖ C as a CTTS over Σ where
the non-advised transitions are inherited from C. Thus, a joint transition
((p, q), a, (p′, q′)) is not-advised iff the transition (q, a, q′) is not-advised in C.

Let f be an advice function over Σ. A conflict-tolerant controller C for B
satisfies the conflict-tolerant specification f if for each w ∈ L(B), Lcw(B ‖ C)
⊆ f(w). In other words, after any system behaviour w, if the base system
follows the advice of C, the resulting behaviours must all conform to the safety
language f(w).

Figure 3 shows two valid conflict-tolerant controllers for the example base
system of Fig 2(a). The not-advised transitions are shown with dotted arrows.
The first controller’s advice is always to wait for a timer event and advise a rel

event in response, no matter what behaviour has ensued in the past. The second
controller on the other hand tries to maintain a “unit average” with respect to
the last system action. We note that while both these controllers have rather
different behaviours as conflict tolerant controllers, as classical controllers they
are the same as the controller of Fig. 2(b).

We will return to these examples after seeing how to specify advice functions
in temporal logic.

4 Conflict-Tolerant Specifications in CT-LTL

Linear-time Temporal Logic (LTL) [2] is a formalism for specifying systems
whose behaviours are viewed as a linear sequence of events.

The syntax of an LTL formula over an alphabet Σ is given by:

ϕ ::= ⊤ | ⊥ | a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | ϕUϕ | ϕ | ϕSϕ

where a ∈ Σ.
Let w be a word over Σ and let |w| denote the length of w. Let i ∈

{0, . . . , |w|} be a position in w corresponding to a prefix of w. Then the se-
mantics of LTL is defined inductively via the relation w, i |= ϕ (“w satisfies ϕ
at position i”) as follows.

6

For all i ∈ {0, . . . , |w|}, (w, i) |= ⊤ and (w, i) 6|= ⊥.
(w, i) |= a ⇐⇒ i > 0 and w(i) = a.

(w, i) |= ¬ϕ ⇐⇒ (w, i) 6|= ϕ.
(w, i) |= ϕ ∨ ψ ⇐⇒ (w, i) |= ϕ or (w, i) |= ψ.
(w, i) |= ϕ ∧ ψ ⇐⇒ (w, i) |= ϕ and (w, i) |= ψ.

(w, i) |= ϕ ⇐⇒ i < |w| and (w, i+ 1) |= ϕ.
(w, i) |= ϕ ⇐⇒ i > 0 and (w, i− 1) |= ϕ.

(w, i) |= ϕUψ ⇐⇒ ∃j : i ≤ j < |w|, (w, j) |= ψ and
∀k : i ≤ k < j =⇒ (w, k) |= ϕ.

(w, i) |= ϕSψ ⇐⇒ ∃j, 0 ≤ j ≤ i, (w, j) |= ψ and
∀k : j < k ≤ i =⇒ (w, k) |= ϕ.

We will make use of the derived operators ϕ = ⊤Uϕ, ϕ = ⊤Sϕ, ϕ =
¬¬ϕ, and ϕ = ¬¬ϕ. We also make use of the “weaker” version of
defined as ⊙ϕ = ϕ ∨ ¬⊤. Thus ⊙ϕ says that either we are at the end of
the word or there is a next position in the word and ϕ is satisfied there. Finally,
we will make use of the abbreviation init which is defined to be ¬⊤, which is
true precisely at position 0 in any given word.

For an LTL formula ϕ and a word w ∈ Σ∗, we say w |= ϕ iff w, 0 |= ϕ. We
set L(ϕ) = {w ∈ Σ∗ | w |= ϕ}. As an example, the LTL formula (a =⇒ b),
specifies all words over {a, b} in which every a is immediately followed by a b.

We will make use of the past fragment of LTL, obtained by disallowing the
operators U and , and denote it by LTLp. Thus the syntax of LTLp formulas
over the alphabet Σ is given by:

ϕ ::= ⊤ | ⊥ | a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | ϕSϕ

where a ∈ Σ. For an LTLp formula ϕ and a word w in Σ∗, we write w |= ϕ
to denote the fact that (w, |w|) |= ϕ. Correspondingly, we denote the language
associated with ϕ by L(ϕ) = {w ∈ Σ∗ | w |= ϕ}.

Let us now discuss our way of specifying conflict-tolerant specifications in
LTL. Our logic, denoted CT-LTL, is syntactically a fragment of LTL, as de-
scribed below. Each formula in this logic will describe an immediate advice
function.

Definition 6. A formula of CT-LTL over an alphabet Σ is an LTL formula
over Σ of the form

(
∧

i∈{1,...,k}

(ϕi =⇒ ψi))

where k ≥ 0, ϕi is an LTLp formula, and each ψi is of the form
∨
a∈Xi

⊙ a,
where Xi ⊆ Σ.

The formula θ = (
∧
i∈{1,...,k}(ϕi =⇒ ψi)) above defines an immediate

advice function gθ given by

gθ(w) =
⋂

i∈{1,...,k}, w|=ϕi

Xi.

7

We adopt the convention that the intersection of an empty set is the full set of
events Σ. We denote by fθ the advice function fgθ

induced by θ.
Let us now illustrate our logic with a couple of examples, with respect to

the example base system B of Fig. 2(a).

Example 1. The CT-LTL formula

(timer =⇒ ⊙ rel)

specifies the immediate advice function which advises a rel event whenever the
last event is a timer event and Σ otherwise.

The conflict-tolerant controller of Fig. 3(a) can be seen to satisfy the conflict-
tolerant spec given by the CT-LTL formula above, with respect to the example
base system.

Example 2. The CT-LTL formula below specifies an immediate advice that
tries to maintain a unit average with respect to the last system event.

(((timer ∧ (init ∨rel)) =⇒ ⊙ rel) ∧
((timer ∧noRel) =⇒ ⊙ relDouble) ∧
((timer ∧relDouble) =⇒ ⊙noRel)).

timer timer timer
relDouble noRel

Double
rel

rel
no
Rel

noRel

relDoublerel

rel

S T

timer

rel
relDouble, noRel

(a) (b)

T2T1 T3 T4
T5 T6

Figure 3: Two conflict-tolerant controllers for the example base system of
Fig. 2(a).

The conflict-tolerant controller of Fig. 3(b) can be seen to satisfy the conflict-
tolerant spec given by the CT-LTL formula above, with respect to the example
base system.

We now consider the verification and synthesis problems induced by the logic
CT-LTL.

Definition 7. (Verification Problem for CT-LTL) Given a base system B over
Σ, a conflict-tolerant controller C for B, and a CT-LTL formula θ, check whether
C is a valid conflict-tolerant controller for B which satisfies the advice function
fθ with respect to B.

8

Definition 8. (Synthesis Problem for CT-LTL) Given a base system B over
Σ, and a CT-LTL formula θ, check whether there exists a valid conflict-tolerant
controller for B which satisfies the advice function fθ with respect to B; and if
so, construct one.

We would like to emphasize that these problems for the logic CT-LTL are
different from the corresponding problems for classical LTL. Consider the veri-
fication problem for a CT-LTL formula θ. Viewed as an LTL formula, θ defines
a safety language L(θ). However as a CT-LTL formula, θ defines an advice
function, which is in general a richer object than a safety language. In fact, it is
easy to see that the safety language L(θ) corresponds to the initial safety cone
of the advice function fθ induced by θ: in other words, L(θ) = fθ(ǫ). Thus it
is not sufficient to simply check whether B ‖ C satisfies θ as an LTL formula
to be able to conclude that C satisfies fθ with respect to B. Nevertheless, in
the subsequent sections we show that we solve these more general problems for
CT-LTL using essentially the same techniques as for classical LTL.

5 From an LTLp formula to a DFA

The main step in solving the verification and synthesis problems for a CT-LTL
specification is the construction of the “formula automaton” for the LTLp sub
formulas of the specification. A formula automaton Aθ of θ is a transition system
whose state space is the set of all “consistent” set over θ. And the transition
relation of Aθ is defined in a “consistent way” the details of which are given in
Def. 11.

Let us now define some notions which we require subsequently. Let ϕ be
an LTLp formula over the alphabet Σ and let psf (ϕ) be the set of positive sub
formulas of ϕ, i.e. sub formulas of ϕ which are not of the form ¬ψ. Without
loss of generality we assume that ψ does not contain any double negation sub-
formulas, i.e formulas of the form ¬¬ψ. Then the closure of the formula ϕ is
defined as follows:

Definition 9. The closure of an LTLp formula ϕ, denoted cl(ϕ), is defined as

cl(ϕ) = X ∪ {¬β | β ∈ X}

where X = psf (ϕ) ∪ {(ψSµ), ψSµ ∈ psf (ϕ)} ∪ Σ ∪ {⊤}.

Now given the set cl(ϕ) we define an atom of the formula ϕ as follows:

Definition 10. An atom of an LTLp formula ϕ is a subset A of cl(ϕ) satisfying

9

the following conditions.

0. ⊤ ∈ A

1. ∀¬ψ ∈ cl(ϕ), ψ ∈ A⇐⇒ ¬ψ /∈ A

2. ∀(ψ ∨ µ) ∈ cl(ϕ), (ψ ∨ µ) ∈ A⇐⇒ ψ ∈ A or µ ∈ A

3. ∀(ψ ∧ µ) ∈ cl(ϕ), (ψ ∨ µ) ∈ A⇐⇒ ψ ∈ A and µ ∈ A

4. ∀(ψ Sµ) ∈ cl(ϕ), (ψ Sµ) ∈ A⇐⇒ µ ∈ A, or, ψ ∈ A

and (ψ Sµ) ∈ A

5. |Σ ∩A| ≤ 1

We denote the set of all atoms over ϕ by atoms(ϕ).
As simple exercises we construct the sets cl(ϕ) and atoms(ϕ) of the LTLp

formula ϕ = bSa over Σ = {a, b} in Example 3 and Example 4.

Example 3. (Closure) The closure of the formula ϕ is as given below.

psf (ϕ) ={a, b, bSa}

X ={⊤, a, b, bSa,(bSa)}

cl(ϕ) ={⊤,⊥, a, b, bSa,(bSa),¬a,¬b,¬(bSa),¬(bSa)}

Example 4. (atom) The atoms of over ϕ are as given below.

A ={⊤,¬b,¬a,¬(bSa),¬(bSa)}

B ={⊤, b,¬a, bSa,(bSa)}

C ={⊤, b,¬a,¬(bSa),¬(bSa)}

D ={⊤,¬b, a, bSa,(bSa)}

E ={⊤,¬b, a, bSa,¬(bSa)}

F ={⊤,¬b,¬a, (¬b)Sa,(bSa)}

atoms(ϕ) ={A,B,C,D,E, F}

For any LTLp formula ϕ once we have cl(ϕ) and atoms(ϕ) in place we define
the formula automaton for ϕ as follows:

Definition 11. The formula automaton Aϕ = 〈Q,Σ, s, F,→〉 for a given LTLp
formula ϕ is given by:

Q =atoms(ϕ)

s ={ψ ∈ cl(ϕ) | ǫ |= ψ}

F ={A ∈ atoms(ϕ) | ϕ ∈ A}

→⊆ Q× Σ ×Q given by :

(A, a,A′) ∈→ iff a ∈ A′ and ∀ψ ∈ cl(ϕ), ψ ∈ A⇔ ψ ∈ A′

10

As a transition system the finite state automaton Aθ differs slightly from
the definition of transition system given in section 2 as we designate a subset of
the set of all states of Aθ as the set of final states. The language generated by
Aθ, denoted by L(Aθ), is the set of all words w on which Aθ has a run starting
at the initial state and ending in a final state.

Example 5. (construction) Consider the LTLp formula ϕ = bSa over Σ =
{a, b}. Then cl(ϕ) is as given in Example 3 and atoms(ϕ) is as given in Example
4. The formula automaton Aϕ is shown in Figure 4.

b b

a

b a b

ba a

a

A

C

D

E

B

Figure 4: Formula automaton for bSa. The state F is unreachable and is not
shown.

Lemma 1. Let w be a word in Σ∗. Then there exists a run for w in Aϕ.

Proof. Let w = a1 · · ·an. For each i ∈ {0, . . . , n} let Ai be the set {ψ ∈
cl(ϕ) | (w, i) |= ψ}. It is clear from the definition of atoms that each Ai is an
atom. Also we can easily verify that each 1 ≤ i ≤ n, (Ai−1, a, Ai) ∈→. Further
A0 = s. Therefore A0, A1, . . . , An is a run of w in Aϕ.

Lemma 2. Let w = a1 · · · an be a word in Σ∗ and A0, . . . , An be a run on w in
Aϕ. Then for all ψ ∈ cl(ϕ) and for all i ∈ {0, . . . , n}, (w, i) |= ψ ⇐⇒ ψ ∈ Ai.

Proof. Proof is by induction on the structure of ψ.
0. ψ = ⊤

For all i ∈ {0, . . . , n}, (w, i) |= ⊤ by semantics of LTLp formula and ⊤ ∈ Ai
by definition of an atom.
1. ψ = a, a ∈ Σ
(w, i) |= ψ ⇐⇒ i > 0 and w(i) = a

⇐⇒ a ∈ Ai (since (Ai−1, ai, Ai) ∈→)

2. ψ = ¬µ
(w, i) |= ψ ⇐⇒ (w, i) 6|= µ

⇐⇒ µ /∈ Ai (induction hypothesis)
⇐⇒ ¬µ ∈ Ai (definition of atom)

11

3. ψ = µ ∨ ν
(w, i) |= ψ ⇐⇒ (w, i) |= µ or (w, i) |= ν

⇐⇒ µ ∈ Ai or ν ∈ Ai (induction hypothesis)
⇐⇒ µ ∨ ν ∈ Ai (definition of atom)

4. ψ = µ
(w, i) |= ψ ⇐⇒ i > 0 and (w, i− 1) |= µ

⇐⇒ µ ∈ Ai−1 (induction hypothesis)
⇐⇒ µ ∈ Ai (since (Ai−1, ai, Ai) ∈→)

5. ψ = µSν
Suppose (w, i) |= ψ. We need to show that ψ ∈ Ai. As (w, i) |= ψ there

exists a k : 0 ≤ k ≤ i such that (w, k) |= ν and for all j, k < j ≤ i, (w, j) |= µ.
By a second induction on (i− k), we prove that ψ ∈ Ai.
Base case: i− k = 0. Then k = i and (w, i) |= ν. Then by the main induction
hypothesis ν ∈ Ai and therefore ψ ∈ Ai by the definition of atom.
Induction step: i − k = l > 0. Without loss of generality we assume that
(w, i) 6|= ν. Then we have:

⇒ (w, i− 1) |= µSν and (w, i) |= µ (1)

⇒ µSν ∈ Ai−1(by second. IH) and µ ∈ Ai (by main IH) (2)

⇒ (µSν) ∈ Ai (as (Ai−1, ai, Ai) ∈→) (3)

⇒ µSν ∈ Ai (from the (2),(3) and the definition of atom)

Conversely suppose ψ ∈ Ai. We need to show that (w, i) |= ψ. Since
A0, . . . , Ai is a run in Aψ starting from the initial state there must exist a k ≤ i
such that ν ∈ Ak. Choose the greatest such k. Now by a second induction on
(i− k) we prove that (w, i) |= ψ.
Base case: i − k = 0. Then k = i and hence ν ∈ Ai. Then by main induction
hypothesis (w, i) |= ν and therefore (w, i) |= µSν as well.
Induction step: i− k = l > 0. Once again without loss of generality we assume
that (w, i) 6|= ν. Then we have

(µSν) ∈ Ai and ν /∈ Ai (4)

⇒ i > 0, µ ∈ Ai and (µSν) ∈ Ai (by def. of atom) (5)

⇒ (w, i) |= µ (by main IH) (6)

⇒ µSν ∈ Ai−1 (by (5) and (Ai−1, ai, Ai) ∈→) (7)

⇒ (w, i− 1) |= µSν (by second IH) (8)

⇒ (w, i) |= µSν (from (6),(8) and def. of modality S)

The following theorem proves the language equivalence between the one
generated by the formula ψ and the one accepted by Aψ .

12

Theorem 1. Let ψ be an LTLp formula and let Aψ be the its formula automa-
ton. Then L(Aψ) = L(ψ).

Proof. (⇒) Let w ∈ Aψ . Then there exists a accepting run of Aψ on w. So let
A0, . . . , A|w| be the accepting run of Aψ on w. As A|w| is a final state ψ ∈ A|w|

and therefore by lemma 2 we have that w |= ψ.
(⇐) Suppose w |= ψ. Now we need to show that w ∈ L(Aψ). From lemma

1 it follows that there exists a run A0, . . . , A|w| of Aψ on w. Now by lemma 2
we have that ψ ∈ A|w|. Thus the run A0, . . . , A|w| of the formula automaton
Aψ on w is accepting and therefore ψ ∈ L(Aψ).

Theorem 2. Let ψ be an LTLp formula and let Aψ be the its formula automa-
ton. Then Aψ is both deterministic and complete with respect to Σ.

Proof. Proof of Aψ is complete with respect to Σ follows from lemma 1. Now
suppose that Aψ is not deterministic. Then there exists two different runs
A0, . . . ,An and A′

0, . . . , A
′
n on some word w ∈ Σ∗. Now by lemma 2, Ai = A′

i

for every 0 ≤ i ≤ n, which is a contradiction.

6 Verification

In this section we address verification problem for CT-LTL.

Theorem 3. Given a base system B over Σ, a conflict-tolerant specification θ
in CT-LTL and a conflict-tolerant controller C over Σ for B, one can check if
C is a valid controller for B satisfying θ.

Proof. Let θ the specification given by (
∧

(ϕi ⇒ ψi)). We construct the au-
tomaton A(

V

ϕi) for the LTLp formula
∧
ϕi and show that C is a valid controller

for B satisfying θ iff there does not exist a state (p, q, r) reachable from the ini-
tial state in the synchronized product A′ = B ‖ C ‖ A(

V

ϕi) satisfying one of the
following conditions.

• C is restricting: There exists an event e ∈ Σe enabled at p in B, but is
not advised at q in C.

• C is blocking: There is no event c ∈ Σ which is both enabled at p in B
and advised at q in C.

• C does not satisfy θ: There exists an event c ∈ Σ enabled at p in B and
advised at q in C, but c 6|=

∧
ϕi∈r

ψi.

If no state (p, q, r) exists in A′ such that the conditions 1 or 2 hold, then
clearly C is a valid CT-controller for B. Conversely if C is a valid CT-controller
for B, then it is easy to see there does not exist a state in A′ where the conditions
1 or 2 hold. If no state (p, q, r) exists in A′ such that the condition 3 holds,
then all advises in C are according to the specification θ and hence C satisfies
θ. Conversely if C satisfies θ, then no such state exists in A′ where condition 3
holds. Now checking for such a state in A′ which is reachable from start state
can easily be done by doing a reachability analysis on A′.

13

Let us now illustrate the verification problem with an example.

Example 6. Consider the base system B shown in Figure 2(a), the feature
specification θ given in Example 1 and a conflict-tolerant controller C for B
shown in Figure 3(a). Atoms and other details of the construction are given
below. The deterministic finite-state transition system AV

ϕi
is shown in Figure

5 and the synchronized product B ‖ C ‖ AV

ϕi
is shown in Figure 6. Now we can

see that no state (p, q, r) as mentioned in theorem 3 is reachable in B ‖ C ‖ AV

ϕi

and hence C is a valid CTC for B satisfying θ.

∧
ϕi = {timer}.

psf (
∧
ϕi) = {timer}.

cl(
∧
ϕi) = {⊤,⊥, rel, relDouble,noRel, timer,

¬rel,¬relDouble,¬noRel,¬timer}.

The set of atoms is given below (A is the initial state).

A = {⊤,¬rel,¬relDouble,¬noRel,¬timer}.

B = {⊤, rel,¬relDouble,¬noRel,¬timer}.

C = {⊤,¬rel, relDouble,¬noRel,¬timer}.

D = {⊤,¬rel,¬relDouble,noRel,¬timer}.

E = {⊤,¬rel,¬relDouble,¬noRel, timer}.

7 Feasibility and Synthesis

Now that we have addressed the verification problem let us now turn our at-
tention to feasibility and synthesis problems in our setting. Informally the
controller feasibility problem is that given a base system and a CT-LTL speci-
fication does there exist a valid conflict-tolerant controller for the base system
which meets the specification. And the synthesis problem is that if there ex-
ists a valid conflict-tolerant controller for given a base system and a CT-LTL
specification is it possible the synthesise one. We answer the feasibility ques-
tion affirmatively and also give a procedure for synthesising a conflict-tolerant
controller for a given base system from a CT-LTL specification.

Let B be a base system and let θ be the specification given by (
∧i=n
i=1 (ϕi ⇒

ψi)). Let Ai = 〈Q, s, F,→〉 be the formula automaton of ϕi (see section 5). Then
we construct the conflict tolerant transition system Ci = (Ai, Ni) as follows: let
A,A′ be atoms in Ai and let a ∈ Σ. Then (A, a,A′) ∈ Ni iff ϕi ∈ A and a 6|= ψi.
Let C = C1|| . . . ||Cn. Then we can easily prove that C is a valid controller for B
iff for every state (p, q) in B||C the following conditions hold:

14

noRel

noRel
rel

Double

re
lD

ou
ble

relDouble
rel

noRelrel

rel
timer

timer
tim

er

tim
erre

lD
ou

bl
e

re
l

no
R

el
no

R
el

rel

relDouble

timer

A

B
C

D

E

Figure 5: Deterministic finite-state transition system AV

ϕi
for specification

given in Example 1.

{P,S,A} {Q,T,E}

{P,S,B}

{P,S,C}

{P,S,D}

timer

relDouble

re
l tim

er

timer

ti
m

er

noR
el

Figure 6: The synchronized product of the base system B (Figure 2(a)), con-
troller C of Figure 3(a) and the formula automaton AV

ϕi
of Figure 5.

• C is non restricting: There does not exist an event e ∈ Σe such that e is
enabled at p in B but (e, 0) 6|=

∧
ϕi∈q

ψi.

• C is non blocking: There is an event c ∈ Σ which is enabled at p in B
and (c, 0) |=

∧
ϕi∈q

ψi.

One can also argue that a valid conflict-tolerant controller for B meeting the
specification θ exists iff C is a valid controller for B. As checking whether C is a
valid controller for B is a simple reachability analysis we have that:

15

Theorem 4. Given a base system B and a conflict-tolerant specification θ over
Σ the controller feasibility problem for B meeting the specification θ is decidable.

Theorem 5. Given a base system B and a conflict-tolerant specification θ over
Σ one can synthesise a valid conflict-tolerant controller for B meeting the spec-
ification θ provided such a controller is feasible.

We illustrate the construction of the formula automaton with the following
example.

Example 7. Consider the base system B shown in Figure 2(a) and the CT-LTL
specification given in Example 1. Atoms and other details of the construction
are given in Example 6. Then the valid CTTS meeting the specification obtained
with our construction with state E as the final state is shown in Figure 7.

noRel

noRel
rel

Double

re
lD

ou
ble

relDouble
rel

noRelrel

rel
timer

timer

tim
er

tim
erre

lD
ou

bl
e

re
l

no
R

el
no

R
el

rel

relDouble

timer

A

B
C

D

E

Figure 7: Synthesized conflict-tolerant controller for the specification
(timer =⇒ ⊙ rel).

8 Conclusion and Future work

In this work we have proposed a way of specifying conflict-tolerant specifications
in temporal logic, and given algorithmic solutions to the associated verifying and
synthesis problems. Our formalism and associated methodology is therefore a
useful addition to the conflict-tolerant framework proposed in [1].

As a future work we would like to look at the integration of verification into
standard model checkers like SPIN and SMV. We would also like to explore how
to extend our framework to real-time setting.

16

References

[1] Deepak D’Souza and Madhu Gopinathan. Conflict-tolerant features. In
Aarti Gupta and Sharad Malik, editors, CAV, volume 5123 of Lecture Notes
in Computer Science, pages 227–239. Springer, 2008.

[2] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE,
1977.

[3] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification (preliminary report). In LICS, pages 332–
344. IEEE Computer Society, 1986.

[4] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the past.
In Rohit Parikh, editor, Logic of Programs, volume 193 of Lecture Notes in
Computer Science, pages 196–218. Springer, 1985.

[5] K. C. Wong, J. G. Thistle, R. P. Malhamé, and H. H. Hoang. Supervisory
control of distributed systems: Conflict resolution. Discrete Event Dynamic
Systems, 10(1-2):131–186, 2000.

[6] Y. L. Chen, S. Lafortune, and F. Lin. Modular Supervisory Control with
Priorities for Discrete Event Systems. In In IEEE Conference on Decision
and Control, pages 409–415, 1995.

17

